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Abstract

We give a constructive proof of the fact that for any sequence of positive integers
ni,MNo,...,nN there is a subsequence myq, ..., m, for which

,
— min E cosm;x > C'N,
x
1

where C' is a positive constant. Uchiyama had previously proved the above inequality
with the right hand side replaced by C'v/N. We give a polynomial time algorithm for
the selection of the subsequence m;.
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Notation: Let C' denote an arbitrary positive constant and N = {1,2,3,...} be the
set of positive integers. For any real ¢ we write {~ = min {0,¢}. We denote by [¢] the
greatest integer not greater than ¢ and by [¢] the smallest integer not smaller than ¢.
The Cosine Problem: Chowla [2] has conjectured that for any distinct positive
integers nq,...,nN

N
—ménzgcosnjx > CV'N.
=

(There are sequences n; for which the above minimum is at most Cv/ N in absolute
value.) The best result known today in this direction is that of Bourgain [1] who proved

that
N

. log® N
—mmg cosn;x > (C2°8
xr — J -
]:

for some € > 0.



Uchiyama [4] proved that there is always a subsequence my,...,m, of ny,...,ny

for which .
—mxinzcosmijC'vN. (1)
J=1
He actually proved the stronger statement
1 2 | T

Z cos m;x|dz > CV/N. (2)

27 Jo =

In this paper we improve (1).

Theorem 1 For any sequence nq,...,ny of positive integers there is a subsequence
my,...,m, such that
,
— mi x> C'N.
ménigcos mjz > CN (3)
]:

Theorem 1 is an obvious corollary of the more general theorem that follows.

Theorem 2 Let wip > 0 and w = 3 {7 wi < oo. Then there is a set E of positive
integers for which
— min Z wy cos kx > Cw. (4)
keE

The essential content of this paper is that the proof of Theorem 2 (and consequently
of Theorem 1) we give is constructive. Indeed there is a simple non-constructive proof

of our theorem.
Proof of Theorem 2 — Non-constructive: (Odlyzko [3]) Define

flz) = i wi(coskz)™.

Then
1 2T >0 1 2T B
2 )y f(z)dz = kz::lwkg./o (coskz) dx (5)
1

Thus there is zg € [0,271) with f(zq) < —%w. Let £ ={k € N :coskzg < 0}. Then
obviously
1
Z coskxrg < ——w.
keE T
QED
We now give a constructive proof of Theorem 2 with a worse constant. (See Remark
1 after the proof for the exact meaning of the word “constructive”.)
We shall need two lemmas.



Lemma 1 Let I = (ag,br) C (0,1), k =1,2,..., be intervals of length at least § > 0
and wy be nonnegalive weights associated with them. Lel also w = 3 {° wy < oo. Then
there is an interval J C (0,1), with |J| = 0/2, for which

1
Z wy > §0w. (7)
JCI,
Proof of Lemma 1: Let m = |2/6] and J, = [v0/2,(v+1)0/2),forv =0,1,...,m—

1. Write also s, = ZakeJy wy. Since w = 26”_2 s, there is some vy < m — 2 for which

Hw.

w 1
SVOZm—IZ§

Let J = J,,4+1. Then J satisfies (7) since aj, € J,, implies J,,+1 C I. QED

The following lemma is a useful special case of Theorem 2.

Lemma 2 Leta >0, 0 > 1, p > 240,
b r .
B, =[p’a,op’a) N N,

for 7 =0,1,2,... and
! !
E'=| ] E.
=0

Assume also wi, > 0, w = Y.{°wr < o0 and wi = 0 outside E'. Then there is a sel
E C E' for which
1
— min Z wy, cos kx > 185 (8)
keE

Proof of Lemma 2: First observe that in any interval of length at least 27 /k there is
a subinterval of length 27 /12k in which cos kz < —1/2. According to this observation,
for all k € E{ there is an interval I} contained in (0,27 /a), of length at least 27 /120a,
in which coskz < —1/2. By Lemma 1 (§ = 1/120) there is an interval Jy C (0,27 /a)
of length 27 /240a for which

dYoowp > —— Y w. (9)
JoCly 240 keE)
Let Eo = {k € E}: Jo C I}. Then
1
Z wy, cos kx < T Z wy, for all z € Jy. (10)
keEy keE)

Similarly we can find an interval J; C Jy, with |J1| = 27/120pa, and Ey C Ef, such

that )
Z wy cos kr < ——— Z wyg, for all z € Jy.

480
kEF, 8 keE;

This is possible since p > 240 and therefore Jy is big enough to accomodate all fre-
quencies in Ej. In the same fashion we define J, O J3 O ..., and FEy, Fs,.... Finally
we set £ = J3° E;. It follows that (8) is true. QED



We can now complete the proof of the theorem.
Proof of Theorem 2 — Constructive: Let ¢ =2, p = 64 and write forv =0,...,5

o0
A, = U[p]U”,p]U”"'l) N N.
J=0

Since N = |Jj A, there is some v for which

1
> wp > S (11)

k€ Aw,

An application of Lemma 2 with ¢ = 2, p = 64, @ = 1 and the collection of wy, for
k € A,, furnishes a set ¥ C A, for which

1
—minz wycoskx > ————w.
e 6-48 -2

QED

Remarks

1. The simple proof of Theorem 1 mentioned can of course be made constructive by
looking for an z that satisfies

N 1

Z(cos npx)” < —2—N

1 T

among the points z; = jh, for j = 0,...,[1/h]. But h has to be smaller than C’n]_\,l
and this leads to an algorithm which in the worst case takes time exponential in the
size of the input (which is considered to be the number of binary digits required to
write down all ny,...,ny). For example if ny = 2N then the algorithm needs time at
least C2N but the size of the input is at most N2,

In contrast, our construction takes time which is polynomial in the size of the
input (in other words, polynomial in N log ny ). Assume that we are given N positive
integers ny < --- < ny and let L = [logyny|. Define w; = [{k € N : j = ni}|. The
algorithm we described consists of the following steps. The notation of Lemma 2 is
used throughout.

1. Find for which vy € {0,...,5} inequality (11) is true.

2. Construct the sequence of intervals Jy D J; D --- and the sequence of sets
Fo, Fy,.... This proceeds inductively. Having constructed the interval J,,_1 and
the set K,,_1 we

a. construct the intervals I,,, for all ny € E/ |

b. find (as described in Lemma 1) a subinterval .J,, of J,,_; which is big and
is contained in many of the I,,,’s. The set F,, consists of those ny € E! for
which J,, C I, .

Notice that the sequences J,, and F,, have length O(L).

After observing that we never need to perform arithmetic with more than O(L) binary
digits, it is easy to see that all the above can be carried out in time O(N - L?), since an
algebraic operation on two numbers, with O(L) binary digits each, takes O(L?) time.



2. Uchiyama’s proof of (1) is probabilistic. We give an even simpler constructive proof
of (1). (Of course Uchiyama proved the stronger statement (2) about the L' norm of
a subseries.) Assume ny < ng < --- < ny and let p be any fixed number between 2
and 3, say p = 5/2. Observe that if ny < pny then

N
— min E cosnjx > CN,
xz

i=1

as can be seen by evaluating the function Z;Vﬂ cosn;z for = (1/2 4 €)/ny, where
€ = €(p) is a small positive constant.
Let Ay = ny and define A; € {nq,...,ny} recursively by

A =min{n; :n; > pAp_1} U {ny}.

Let L be the length of the sequence A\;. That is let Az, be the first A equal to ny. Then
either L > +/N or there is some k for which the set

A:{’n]‘:)\k S’n]‘ < )‘k+1}

has more than v/ N elements. In the first case we have

L-1
— min Z cosA\jo > CL>CvVN,
z .
J=1
since the A;’s form a lacunary sequence with ratio p > 2. Otherwise, according to the
above observation, we have

— min Z cosnjz > C|A| > CVN,
njEA

which completes the proof.

3. It is easy to see that Theorem 2 holds also for complex wg, with w = Y Jwg| < o0
and writing €** in place of cos kz. Also the minimum in (4) has to be interpreted as
the minimum (or maximum) of the real part.

References
[1] J. Bourgain, Sur le minimum d’une somme de cosinus, Acta Arith., 45 (1986),
381-389.

[2] S. Chowla, Some applications of a method of A. Selberg, J. Reine Angew. Math.,
217 (1965), 128-132.

[3] A. M. Odlyzko, Personal Communication.

[4] S. Uchiyama, On the mean modulus of trigonometric polynomials whose coeffi-
cients have random signs, Proc. Amer. Math. Soc., 16 (1965), 1185-1190.



