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Abstract. We show that the spectral set conjecture by Fuglede [6] holds in the setting of
cyclic groups of order pnq, where p, q are distinct primes and n ≥ 1. This means that a subset
E of such a group G tiles the group by translation (G can be partitioned into translates of E)
if and only if there exists an orthogonal basis of L2(E) consisting of group characters. The
main ingredient of the present proof is the structure of vanishing sums of roots of unity of order
N , where N has at most two prime divisors; the extension of this proof to the case of cyclic
groups of order pnqm seems therefore feasible. The only previously known infinite family of
cyclic groups, for which Fuglede’s conjecture is verified, is that of cyclic p-groups, i.e. Zpn .

1. Introduction

Let Ω be a measurable subset of Rn of positive Lebesgue measure. Ω is called spectral, if it
accepts an orthogonal basis of exponentials, namely eiλ·x, where λ ranges through Λ ⊆ Rn; the
set Λ is called the spectrum of Ω. On the other hand, Ω is called a tile of Rn, if there is a set
T ⊆ Rn such that almost every point of Rn can be written uniquely as ω+ t, where ω ∈ Ω and
t ∈ T ; T is hence called the tiling complement of Ω.

Fuglede’s spectral set conjecture [6] asserts that Ω is spectral if and only if Ω is a tile. For
many years, there was a lot of positive evidence towards the veracity of this conjecture; Fuglede
himself proved this conjecture when the spectrum or the tiling complement of Ω is a lattice.
Later on, the conjecture was proved for various families of subsets by numerous authors, for
example, for 2-dimensional convex bodies [7], unions of two intervals in R [11], etc.

Against the current of research on this subject, Tao disproved this conjecture for dimensions
5 and above [15], constructing a spectral set in 5 dimensions that does not tile the space1.
Subsequently, works by Kolountzakis and Matolcsi [9, 10, 14] and Farkas-Matolcsi-Mora [5]
showed that the conjecture is false in dimensions 3 and above in both directions, leaving it
open for R and R2.

This conjecture can be naturally stated for other spaces, for example Z or any locally compact
abelian group. These cases are not only interesting on their own, but they have connections
to the original case. In his disproof of the 5-dimensional case, Tao constructed a spectral set
in Z5

3 containing 6 elements, hence not a tile, as the cardinality of any tile of a finite abelian
group divides the order of the group; then he lifted this counterexample to R5.

Some examples of note, where Fuglede’s conjecture holds, include finite cyclic p-groups [12, 4],
Zp × Zp [8], and Qp [3, 4], the field of p-adic numbers. Borrowing the notation from [2], we
write S-T(G), respectively T-S(G), if the Spectral⇒Tile direction, respectively Tile⇒Spectral,
holds in G; when we put G = ZN , it is understood that the statement holds for all N . The
connection between the conjecture on R and on finite cyclic groups or Z is summarized below
[2]:

T-S(R)⇐⇒ T-S(Z)⇐⇒ T-S(ZN),

and
S-T(R) =⇒ S-T(Z) =⇒ S-T(ZN).
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According to the above connections, a counterexample in a finite cyclic group can be lifted
to a counterexample in R; on the other hand, if the conjecture were true for every cyclic group
and Z, this would hold no meaning for the original conjecture in R, unless it were proven that
every spectral set in R has a rational spectrum. We may ask nevertheless, to which extent is
Fuglede’s conjecture true for finite abelian groups, or even cyclic ones. Surprisingly, not much
is known for cyclic groups, apart from cyclic p-groups, i.e. Zpn for p prime. The direction
Tile⇒Spectral is known also for cyclic groups of order pnqm, for p, q distinct primes [1, 12]; see
Section 3 below.

The novel contribution of our present work is the proof of Spectral⇒Tile direction for cyclic
groups of order N = pnq, thus establishing the veracity of Fuglede’s conjecture in this setting.
The proof relies heavily on the structure of vanishing sums of roots of unity of order N , where N
is divided by at most two primes. The fact that such sums are nonnegative linear combinations
of p- and q-cycles [13] gives efficient bounds on spectral sets A ⊆ ZN ; we assert that these
techniques can be extended to every cyclic group of order N = pnqm. Unfortunately, we have
not managed to conclude our proof in this more general setting so far; hopefully, this will be
the subject of a subsequent article.

Lastly, we have to emphasize that these techniques can be no further extended. Consider the
following vanishing sum of roots of unity of order N = pqr, where p, q, r are distinct primes:

(ωp + ω2
p + · · ·+ ωp−1p )(ωq + ω2

q + · · ·+ ωq−1q ) + (ωr + ω2
r + · · ·+ ωr−1r ) = (−1)(−1) + (−1) = 0,

where ωn = e2πi/n. It is known that this sum cannot be expressed as a nonnegative linear
combination of p-, q-, or r-cycles [13], therefore we cannot obtain strong lower bounds on the
size of a spectral subset of ZN . Whether sums such as the above lead to a counterexample in
some finite cyclic group and eventually in R, remains to be seen.

2. Preliminaries

Let ZN denote the ring of integers modulo N . With every (multi)set A with elements from
ZN , we associate a polynomial in the quotient ring R = Z[X]/(XN − 1), say

A(X) =
∑
a∈A

maX
a,

where ma is the multiplicity of a in the multi-set A. A is a proper set, if and only if A(X) has
coefficients 0 and 1 (it is understood that we write any element in R as a linear combination
of 1, X, . . . , XN−1). A(X) is called the mask polynomial of A; it has the following connection
with the Fourier transform of the characteristic function of A:

χ̂A(n) = A(ω−n),

where ω = e2πi/N throughout this paper.
A subset A ⊆ ZN is called spectral if there is a set B with #A = #B, such that the set of

exponentials

x 7→ e
2πibx
N , b ∈ B

is orthogonal on A with the usual inner product.

Theorem 2.1. Let A ⊆ ZN be spectral. Then

B −B ⊆ {0} ∪ {n : A(ωn) = 0}.
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Proof. By definition, we get ∑
a∈A

e
2πi(b−b′)a

N = 0,

whenever b, b′ are distinct elements of B. This is equivalent to the condition

B −B ⊆ {0} ∪ {n : A(ωn) = 0}. �

There is a natural action of the Galois group

G = Gal(Q(ω)/Q) ∼= Z?N
on the values of A(X), given by

(2.1) σ(A(ωa)) = A(ωag),

where σ ∈ G is determined by σ(ω) = ωg, for some g ∈ Z?N . Therefore, in order to determine
the support of A(ωn) we only need to evaluate at the divisors of N . For any integer N , the
divisor class of N with respect to n > 0, a divisor of N , is simply nZ?N , which is the set of
residues modN whose greatest common divisor with N is equal to n. The set {n : A(ωn) = 0}
is just a union of divisor classes. This is equivalent to the fact that if A(ωd) = 0 for some d | N ,
then ΦN/d(X) | A(X), where Φn(X) denotes the n-th cyclotomic polynomial.

We also denote

D := {n ∈ N : n | N,A(ωm) 6= 0, for all m with n | m and m | N}.

Proposition 2.2. If A ⊆ ZN is spectral and n ∈ D, then #A ≤ n.

Proof. By Theorem 2.1 and the hypothesis we get

(B −B) ∩ nZN = {0}

for a spectrum B of A. Hence, no two distinct elements of B can have the same residue modn,
thus obtaining #A = #B ≤ n. �

The following properties on polynomials were introduced by Coven and Meyerowitz [1] in
their effort to characterize finite sets that tile the integers by translations. We will adapt this
definition for subsets of ZN .

Definition 2.3. Let A ⊆ ZN , and let A(X) be its mask polynomial. The set of prime powers
dividing N is denoted by S; define

SA = {s ∈ S : Φs(X) | A(X)}.

We say that A satisfies the property (T1), if

#A = A(1) =
∏
s∈SA

Φs(1),

and that it satisfies (T2), if for every distinct elements s1, . . . , sm of SA, Φs1···sm(x) divides
A(x).

Theorem 2.4 (Theorem A [1]). If A ⊆ ZN satisfies (T1) and (T2), then A tiles ZN by
translations.

Let d | N . A d-cycle is a coset by the cyclic subgroup of N with d elements, that is, a set of
the form

{j, j +N/d, j + 2N/d, . . . , j + (d− 1)N/d}.
Especially in the case when N has only two prime divisors, the following Lemma allows us to
discern the structure of n ·A := {na : a ∈ A} (a multi-set), whenever A(ωn) = 0. In particular,
it says that n · A must be the union of p- and q-cycles.



4 ROMANOS-DIOGENES MALIKIOSIS AND MIHAIL N. KOLOUNTZAKIS

Lemma 2.5. Let n | N be such that N/n has at most two prime divisors, say p and q. If
A(ωn) = 0, then

(2.2) A(Xn) ≡ Pn(Xn)Φp(X
N/p) +Qn(Xn)Φq(X

N/q) mod XN − 1,

where Pn and Qn have nonnegative coefficients.

Proof. By definition, A(ωn) is a vanishing sum of roots of unity of order N/n, in particular

0 = A(ωn) =
∑
a∈A

ωna.

As N/n has at most two prime divisors, p and q, the above sum can be written as linear
combination with nonnegative integer coefficients of sums of the form

ωk(1 + ωp + ω2
p + · · ·+ ωp−1p )

or

ωk(1 + ωq + ω2
q + · · ·+ ωq−1q ),

due to Theorem 3.3 from [13], which shows that n·A is the union of p- and q-cycles, as multi-sets.
Every p-cycle has a mask polynomial of the form XkΦp(X

N/p); union of multi-sets corresponds
to addition of the mask polynomials, thus obtaining (2.2). We note that the argument of Pn, Qn

is Xn, simply because A(Xn) can be expressed in terms of powers of Xn, as n | N . �

Remark. If N/n has only one prime divisor, say p, then it is understood that Qn ≡ 0.

It is also useful to find conditions under which n ·A cannot be written as a union of p-cycles
or q-cycles only, or equivalently, PnQn 6≡ 0, for every such possible choice of Pn and Qn.

Proposition 2.6. Let N have only two prime divisors, say p and q, and A(ωn) = 0, for some
n | N , so that

A(Xn) ≡ Pn(Xn)Φp(X
N/p) +Qn(Xn)Φq(X

N/q) mod XN − 1.

If A(ωnp
a
) 6= 0 for some a > 0, then Pn 6≡ 0, and if A(ωnq

b
) 6= 0 for some b > 0, then Qn 6≡ 0.

Proof. If Qn ≡ 0, then

A(Xnqb) ≡ Pn(Xnqb)Φp(X
Nqb/p) ≡ Pn(Xnqb)Φp(X

N/p),

thus obtaining A(ωnq
b
) = 0. The other case is proven similarly. �

(T1) and (T2) are conjectured to hold if and only if A tiles ZN [1] (this conjecture was
initially formulated in Z). For every set A ⊆ ZN , however, a weaker property than (T1) holds,
that is very useful for bounding #A.

Proposition 2.7. Let A ⊆ ZN . Then
∏

s∈SA Φs(1) divides #A. In particular, if p is a prime

divisor of N , and there are m integers 0 < a1 < a2 < · · · < am such that A(ωN/p
ai ) = 0 for all

1 ≤ i ≤ m, then pm | #A, where pam | N .

Proof. By definition, A(X) is divided by
∏

s∈SA Φs(X) in Z[X]. Putting X = 1, we get the
desired result. �

In the rest of this paper we will prove Fuglede’s conjecture on ZN , where N = pnq, for p 6= q
primes. The direction Tile⇒Spectral can be deduced from the work of Coven-Meyerowitz [1]
and  Laba [12] in the more general case when N has at most two prime divisors, and is shown
in Section 3. The direction Spectral⇒Tile is proven in section 5. For completeness, we will
also present the Spectral⇒Tile proof for N = pn in section 4 due to its elegance and brevity,
although a proof for this case follows from [12]; a different proof also appeared in [4].

One final tool that will be very useful in this note, is the following:
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Lemma 2.8. Let m,n > 0 be two relatively prime integers, and 0 < k < mn another integer.
Then, there is at most one pair (s, t) of nonnegative integers, such that k = sm+tn. If k = mn,
then there are exactly two such pairs, namely (n, 0) and (0,m).

Proof. Assume that 0 < k < mn and there is a pair (s, t) such that k = sm+ tn, with s, t ≥ 0.
All other pairs of integer solutions (s′, t′) to the Diophantine equation k = s′m + t′n, satisfy
s′ = s− nx, t′ = t+mx, for x ∈ Z. If x > 0, then s′ ≤ s− n ≤ k/m− n < 0, whereas if x < 0
we get t′ ≤ t−m ≤ k/n−m < 0. The case k = mn is proven similarly. �

3. Tile⇒Spectral, N = pnqm

In this section, we will review the proof of the fact that, if A ⊆ ZN tiles ZN by translations,
then A is spectral, where N has at most two prime factors, say p and q. The proof is not new,
and is based on combined arguments from [12] and [1], even though the case for finite cyclic
groups is not explicitly mentioned. We will need the following tools from [1] and [12].

Lemma 3.1 (Lemma 1.3, [1]). Let N be an integer and let A and B be finite multisets of
nonnegative integers with mask polynomials A(X) and B(X). Then the following statements
are equivalent. Each forces A and B to be sets such that #A#B = A(1)B(1) = N .

(1) A⊕ (B ⊕NZ) = Z is a tiling.
(2) A⊕B is a complete set of residues modulo N .
(3) A(X)B(X) ≡ 1 +X + · · ·XN−1 mod XN − 1.
(4) N = A(1)B(1) and for every factor t > 1 of N , the cyclotomic polynomial Φt(X) is a

divisor of A(X) or B(X).

Lemma 3.2 (Lemma 2.1, [1]). Let A(X) and B(X) be polynomials with coefficients 0 and 1,
N = A(1)B(1), and S the set of prime power factors of N . If Φt(X) divides A(X) or B(X)
for every factor t > 1 of N , then

(1) A(1) =
∏

s∈SA Φs(1) and B(1) =
∏

s∈SB Φs(1).
(2) SA and SB are disjoint sets whose union is S.

Now, assume that A tiles ZN by translations, and let B be the complementary tile.We
may assume that A ⊆ {0, 1, 2, . . . , N − 1}, and also assume that A tiles Z by translations;
furthermore, this tiling has period N , i. e. A⊕ (B ⊕NZ) = Z. We warn the reader, that not
only do we have to prove that A, as a subset of Z, is spectral, but also that the spectrum is a
subset of N−1Z, in order to claim that A, as a subset of ZN , is spectral.

We see that conditions (1) and (2) of Lemma 3.1 are satisfied, hence (4) is satisfied as well,
which is just the hypothesis of Lemma 3.2. By (2) of Lemma 3.2, we get that SA ⊆ S. Next,
we will use the following two theorems:

Theorem 3.3 (Theorems B1 and B2, [1]). Let A be a finite set of nonnegative integers with
corresponding polynomial A(x) =

∑
a∈A x

a. If A tiles the integers, and #A is divided by at
most two primes, then A satisfies (T1) and (T2).

Theorem 3.4 (Theorem 1.5(i), [12]). If A ⊆ Z satisfies (T1) and (T2), then A has a spectrum.

Remark. The important part of the proof, is that the spectrum is explicitly constructed with
respect to SA, namely, the set of all ∑

s∈SA

ks
s
,

where ks ∈ {0, 1, . . . , p− 1}, s ∈ SA and s = pα, is proven to be a spectrum of A, when it
satisfies (T1) and (T2) (see the beginning of Section 2 [12]).
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So, if A ⊆ {0, 1, . . . , N − 1} tiles Z by translations, the tiling having period N , which has
at most two prime divisors, then A satisfies (T1) and (T2) by Theorem 3.3, as #A divides N .
Next, by Theorem 3.4 we get that A is spectral; by Lemma 3.2 and the Remark above, we get
that the spectrum belongs to N−1Z, hence A ⊆ ZN is spectral, completing the proof.

4. Spectral⇒Tile, N = pn

Suppose Λ ⊆ ZN is a spectrum of A and let pν1 , . . . , pνk be the divisors d of N such that

Φd(X) | A(X) =
∑
a∈A

Xa.

We have
Φpνi (X) = 1 +Xpνi−1

+X2pνi−1

+ · · ·+X(p−1)pνi−1

.

Write Eν = {0, pν−1, 2pν−1, . . . , (p− 1)pν−1} so that Eνi(X) = Φpνi (X). Define next the set

(4.1) E = Eν1 + Eν2 + · · ·Eνk ,
and notice the sum is direct as e1 + · · ·+ ek ∈ E is determines ei ∈ Eνi from the νi-th digit in
its expansion to base p. This observation implies that |E| = pk.

Notice also that A(X) and E(X) have the same zeros at the N -th roots of unity. This implies
that Λ is also orthogonal on E as this is determined by the zeros of E(X) at the N -th roots of
unity. From the orthogonality we obtain

|A| = |Λ| ≤ |E| = pk.

Let B ⊆ ZN be the sum of those Eν , ν = 1, 2, . . . , n, not appearing in (4.1). This sum is again
direct, as with the sum (4.1), so we obtain

|B| = pn−k.

It follows that A(X)B(X) vanishes on all N -th roots of unity except 1, which implies that
A+B is a tiling of ZN at some level `. Then

`pn = |A| · |B| = pkpn−k = pn,

so that ` = 1 and A+B is a tiling of ZN at level 1.

5. Spectral⇒Tile, N = pnq

We distinguish two cases, depending on whether q belongs to D.

5.1. q ∈ D . We have #A ≤ q from Proposition 2.2. Furthermore, the property (T2) holds

vacuously, so we only need to prove (T1) due to Theorem 2.4. If #A = 1, A(X) is a monomial
and has no root of the form ωd, in particular, A(ωp

n
) 6= 0 and (T1) holds.

If #A > 1, and A is spectral, then B − B 6= {0} for a spectrum B, so A(ωd) must vanish
somewhere. Since q ∈ D, there must be some nonnegative a ≤ n such that A(ωp

a
) = 0, so that

A(Xpa) ≡ P (Xpa)Φp(X
N/p) +Q(Xpa)Φq(X

N/q) mod XN − 1,

by Lemma 2.5. q ∈ D yields A(ωp
aq) 6= 0, hence by Proposition 2.6 we get Q 6≡ 0, so that

#A = A(1) = pP (1) + qQ(1) ≥ q, leading to P ≡ 0 and Q(1) = 1. This certainly implies
that A(ωp

n
) = 0, A(1) = q, hence (T1) holds in any case where A is spectral and q ∈ D. By

Theorem 2.4, A tiles ZN by translations.
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5.2. q /∈ D . The size of a spectral set A ⊆ ZN depends on the number of roots of A(X) of

the form ωp
aq.

Definition 5.1. The numbers 0 ≤ a1 < · · · < am ≤ n − 1 are such that
{
a : A(ωp

aq) = 0
}

=
{a1, . . . , am}. If no such root exists, we simply put m = 0. Also, if A is spectral and B
a spectrum of A, we denote Bi = {b ∈ B : b ≡ i mod q}. The p-adic expansion of the least
nonnegative residue modpn of b ∈ B has the form

b ≡ b0 + b1p+ · · ·+ bn−1p
n−1 mod pn,

where 0 ≤ bi ≤ p − 1 for all i. We say that the p-adic expansions of b and b′ coincide at
a1, . . . , am, if bi = b′i for 1 ≤ i ≤ m, that is, they have the same p-adic digits at those places.
Finally, pi || b exactly when bi is the smallest nonzero p-adic digit of b.

We have seen in the previous subsection that Spectral⇒Tile holds when m = 0. By induction,
we may assume that Spectral⇒Tile holds for all nonnegative integers up to m − 1, for some
m > 0, where

{
a : A(ωp

aq) = 0
}

= {a1, . . . , am}, exactly as in the Definition above.

Proposition 5.2. Suppose that A ⊆ ZN is spectral and #A > pm. Then

(1) #A = pmq.
(2) #Bi = pm for all i, and the elements of Bi have all the possible p-adic expansions at

a1, . . . , am, each appearing exactly once.
(3) For every i, j and every b ∈ B, there is b′ such that paj || b− b′.
(4) There is some a 6= ai for all i, such that b−b′ ∈ paZ?N for some b, b′ ∈ B, and A(ωp

a
) = 0.

(5) If a > am, then A(ωp
aj

) = 0 for all j, as well as A(ωp
a′

) = 0 for all a′ ≥ a; in particular,
A(ωp

n
) = 0, or equivalently, pn /∈ D.

(6) If a < am, then A(Xpamq) ≡ pm−1qXkΦp(X
N/p) mod XN − 1, for some k.

Proof. As #B > pm, there are at least two distinct elements of B, say b, b′, that have the same
digits at places a1, a2, . . . , am. If q | b− b′, then b− b′ /∈

⋃
1≤i≤m p

aiqZ?N , contradicting the fact

that A(X) has exactly m roots of the form ωp
aq, due to Theorem 2.1. Hence q - b − b′, and

b− b′ ∈ paZ?N , so that A(ωp
a
) = 0 by Theorem 2.1, where a is the first place where the p-adic

expansions of b and b′ differ, therefore a 6= ai for all i, proving (4).
With the same argument we can show that #Bi ≤ pm for all i; in this case any two elements

b, b′ ∈ Bi satisfy q | b− b′, so by Theorem 2.1 and the hypothesis, they must have at least one
different digit at places a1, . . . , am, yielding #Bi ≤ pm, and #B = #A ≤ pmq. For convenience,
put ni = paiq and d = pa. By Lemma 2.5 we get

(5.1) A(Xd) ≡ Pd(X
d)Φp(X

N/p) +Qd(X
d)Φq(X

N/q) mod XN − 1,

where Qd 6≡ 0 due to Proposition 2.6, as A(ωp
aq) 6= 0.

Now, consider the largest index i, such that a > ai, assuming first that there is such an index,
i. e. a > a1; otherwise, we put i = 0. Put u = dq = paq, and denote by ‖A(X)‖∞ the largest
coefficient of A(X) in R = Z[X]/(XN − 1) written as a linear combination of 1, X, . . . , XN−1.

Claim 1. ‖A(Xu)‖∞ ≥ piq.

Proof of Claim. From (5.1) we obtain

(5.2) A(Xu) ≡ Pd(X
u)Φp(X

N/p) + qQd(X
u) mod XN − 1.

If i = 0, then from Qd 6≡ 0 we get that some coefficient of A(Xu) is at least as large as q, as
desired. Suppose that i > 0. By repeated application of Lemma 2.5, we have

A(Xnj) ≡ Pnj(X
nj)Φp(X

N/p),

for all j. For j = 1, if we replace X by Xn2/n1 , we also get A(Xn2) ≡ pPn1(X
n2), and

comparing this with A(Xn2) ≡ Pn2(X
n2)Φp(X

N/p), we deduce that Φp(X
N/p) divides Pn1(X

n2),
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thus obtaining A(Xn2) ≡ pP 1
n1

(Xn2)Φp(X
N/p), for some polynomial P 1

n1
with positive integer

coefficients. Proceeding inductively, we can get

A(Xni) ≡ pi−1P i−1
n1

(Xni)Φp(X
N/p),

hence

(5.3) A(Xu) ≡ piP i−1
n1

(Xu),

since ai < a < ai+1, where P i−1
n1

has positive integer coefficients. Comparing (5.2) and (5.3), we
get that pi divides all coefficients of A(Xu). Furthermore, since A(ωu) 6= 0, we deduce that there
is at least a p-cycle on which the elements of nm · A do not have the same multiplicity; using
(5.2) again, we deduce that two such multiplicities must differ by a multiple of q. Therefore, by
(5.3) we conclude that their difference is a multiple of piq, and since they are both nonnegative
and distinct, we finally get ‖A(Xu)‖∞ ≥ piq. �

If a > am the claim yields ‖A(Xu)‖∞ ≥ pmq, while on the other hand A(1) ≤ pmq, therefore,
A(Xu) ≡ pmqXuk, for some k. Then, (5.2) yields Pd ≡ 0, so for all a′ ≥ a (5.2) gives

A(Xpa
′

) ≡ Qd(X
pa
′

)Φq(X
N/q) mod XN − 1

establishing (5) (and (1) when a > am).
For the rest of the proof, we suppose a < am, and we will estimate ‖A(Xnm)‖∞.

Claim 2. ‖A(Xnj+1)‖∞ ≥ p‖A(Xnj)‖∞.

Proof of Claim. Since A(ωnj) = 0, we obtain from Lemma 2.5 A(Xnj) ≡ Pnj(X
nj)Φp(X

N/p).
The largest coefficient ofA(Xnj) would appear in a p-cycle, hence ‖A(Xnj+1)‖∞ ≥ p‖A(Xnj)‖∞,
and finally, ‖A(Xnj+1)‖∞ ≥ ‖A(Xnj+1)‖∞ ≥ p‖A(Xnj)‖∞, as desired. �

Applying the last two claims, we obtain ‖A(Xnm)‖∞ ≥ pm−1q. The largest coefficient of
A(Xnm) would appear on a p-cycle, since A(ωnm) = 0, so we would get #A = A(1) ≥ pmq;
but we have already shown that #A ≤ pmq, so A(1) = pmq and A(Xnm) ≡ pm−1qXkΦp(X

N/p)
thus proving (6) and (1) in all cases. (2) follows immediately from (1), as #B = pmq, hence
#Bi = pm for all i. Finally, (3) is a direct consequence of (2); let i and b ∈ Bi be arbitrary. For
every j, there is some b′ ∈ Bi whose p-adic expansion is the same on a1, . . . , aj−1 but differs on
aj, due to (2). Then, b − b′ ∈ pcqZ?N , for some c ≤ aj. By Theorem 2.1 and the hypothesis,
c = al, for some l, but c = al cannot hold for l < j, thus l = j, completing the proof. �

Next, we will make use of the induction assumption.

Proposition 5.3. Let A ⊆ ZN spectral and
{
a : A(ωp

aq) = 0
}

= {a1, . . . , am}. Define a parti-
tion of A into sets A0, A1, . . . , Ap−1 such that

a ∈ Aj ⇐⇒ pamqa ∈ [
N

p
j,
N

p
(j + 1)).

Then, all Aj have the same cardinality, and if d | pam−1q (assuming am > 1) with A(ωd) = 0,
then Aj(ω

d) = 0 for all j. Furthermore, Aj(ω
pamq) 6= 0.

Proof. By Proposition 2.6 we have A(Xpamq) ≡ P (Xpamq)Φp(X
N/p) mod XN − 1, and without

loss of generality we have degP (Xpamq) < N/p. The hypothesis implies that

Aj(X
pamq) ≡ P (Xpamq)X

N
p
j mod XN − 1,

so that Aj(1) = P (1) for all j, proving the first part.
Now, let d = pkqc with A(ωd) = 0, where k < am and c = 0 or 1. We will use the language of

multi-sets for this part; d cotA is a union of p- and q-cycles, as multi-sets. We will show that
every such cycle must belong exclusively to one of the mutli-sets d ·Aj, hence each d ·Aj is also
a union of p- and q-cycles, leading to Aj(ω

d) = 0, for all j.
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Indeed, suppose that da is a part of such a cycle; the other member of said cycle are da+lN/r,
where r = p or q, and 0 ≤ l ≤ r − 1. Define d′ by dd′ = pamq. Then, for every l,

d′da ≡ d′(da+ lN/r) mod N,

since d′l ≡ 0 mod r. This is true in case where r = p, because p | d′. If r = q, we can have
q-cycles only if c = 0, or equivalently q | d′. The above congruence clearly shows that any such
cycle belongs to one of the multi-sets d cotAj (we remark that these multi-sets are mutually
exclusive).

For the last part, we just note that P (ωp
amq) 6= 0, otherwise Φp(X

N/p) would be a factor of
P (Xpamq), an impossibility, since the degree of the latter does not exceed N/p. �

Proposition 5.4. Let A ⊆ ZN be spectral with
{
a : A(ωp

am) = 0
}

= {a1, . . . , am} and B a
spectrum. Consider the partition of A into A0, A1, . . . , Ap−1 as in Proposition 5.3. Suppose that
the maximal a /∈ {a1, . . . , am} with 0 ≤ a ≤ n and (B − B) ∩ paZ?N 6= ∅ (if it exists!) satisfies
a < am. Then, each Aj is spectral (if such a does not exist, we have the same conclusion).

Proof. Let Bi be the subset of elements B whose p-adic digit at am is equal to i. By hypothesis
and Proposition 5.3,

(Bi −Bi) ⊆ (B −B) \ (pamZ?N ∪ pamqZ?N) ⊆
{
d : A(ωd) = 0

}
\ pamZN ⊆ d : Aj(ω

d) = 0.

By pigeonhole principle, we may select one Bi such that #Bi ≥ 1
p
#B = Aj(1). This can only

be possible if we have equality, thus showing that each Aj is spectral by Theorem 2.1, having
the same spectrum (actually, any Bi would serve as such). �

If A(1) = pmq and A(X) has at least m roots of the form ωd, where d is a power of p, then
A has a special structure.

Proposition 5.5. Let A ⊆ ZN with A(1) = pmq. Suppose that A(Xdi) = 0, where di are
increasing powers of p, 1 ≤ i ≤ m and di ≤ pn. Then either

A(Xdj) ≡ Pdj(X
dj)Φp(X

N/p) mod XN − 1

for all j, where Pdj 6≡ 0 have nonnegative coefficients, or

A(Xdm) ≡ Qdm(Xdm)Φq(X
N/q) mod XN − 1,

where Qdm 6≡ 0 has nonnegative coefficients.

Proof. By Lemma 2.5 we obtain

A(Xdj) ≡ Pdj(X
dj)Φp(X

N/p) +Qdj(X
dj)Φq(X

N/q) mod XN − 1,

while on the other hand we can show inductively

A(Xdj+1) ≡ pjP j
d1

(Xdj+1)Φp(X
N/p) +

j∑
i=0

piQi
d1

(Xdj+1)Φq(X
N/q) mod XN − 1,

for all j, where all the polynomials appearing in these two formulae have nonnegative coeffi-
cients, and satisfy the reccurence relations

P j
d1

(Xdj+2) ≡ P j+1
d1

(Xdj+2)Φp(X
N/p) +Qj+1

d1
(Xdj+2)Φq(X

N/q) mod XN − 1.

Without loss of generality we can write

Pdj(X
dj) ≡ pj−1P j−1

d1
(Xdj), Qdj(X

dj) ≡
j−1∑
i=0

piQi
d1

(Xdj),

for all j. Putting j = m− 1 and X = 1 we get

pmq = A(1) = pmPm−1
d1

(1) + q

m−1∑
i=0

piQi
d1

(1),
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so by Lemma 2.8 we have either Pm−1
d1

(1) = q and
∑m−1

i=0 piQi
d1

(1) = 0, or Pm−1
d1

(1) = 0

and
∑m−1

i=0 piQi
d1

(1) = pm. In the former case, we have Qi
d1
≡ 0 for all i, hence Qdj ≡ 0

for all j, and A(Xdj) ≡ Pdj(X
dj)Φp(X

N/p). Otherwise, Pm−1
d1

≡ 0, so in this case we get

A(Xdm) ≡ Qdm(Xdm)Φq(X
N/q), as desired. �

Now, we can proceed with the conclusion of the Spectral⇒Tile proof. If pn ∈ D, (T2)
holds vacuously, so we need only prove (T1), namely A(1) = pm. Suppose on the contrary
that A(1) > pm, hence by Proposition 5.2(1) we have A(1) = pmq. If a spectrum B satisfies
the hypothesis of Proposition 5.4, then each Aj is spectral, so by induction they satisfy (T1).
Since Aj(1) = pm−1q, we must have Aj(ω

pn) = 0 for all j, yielding A(ωp
n
) = 0, contradicting

our assumption that pn ∈ D. If the maximal a such that (B − B) ∩ paZ?N 6= ∅ satisfies
a > am, then by Proposition 5.2(5) we get that A(ωp

ai ) = 0 for all 1 ≤ i ≤ m. Taking
{d1, . . . , dm} = {pa1 , . . . , pam−1 , pa} and applying Proposition 5.5 we get either

A(Xdm) ≡ Pdm(Xdm)Φp(X
N/p) mod XN − 1

or
A(Xdm) ≡ Qdm(Xdm)Φq(X

N/q) mod XN − 1,

where in each case Pdm , Qdm 6≡ 0 have nonnegative coefficients. However, this contradicts
Proposition 2.6, since A(ωp

n
)A(ωp

aq) 6= 0. We conclude that A must satisfy (T1) as well, thus
tiling ZN by translations due to Theorem 2.4.

Lastly, we suppose that pn /∈ D, so that A(ωp
n
) = 0. In this case, q | A(1) by Proposition 2.7,

hence A(1) > pm and A(1) = pmq by Proposition 5.2(1). Therefore, (T1), and it remains to
prove (T2), namely A(ωp

ai ) = 0 for all i. If the maximal a for which (B−B)∩paZ?N 6= ∅ holds,
satisfies a > am, for a spectrum B, then by applying Proposition 5.2(5) we deduce that (T2)
holds. Otherwise, B satisfies the conditions of Proposition 5.4. Therefore, each Aj is spectral
and satisfies (T2), yielding Aj(ω

pai ) = 0 for all j and 1 ≤ i ≤ m − 1, hence A(ωp
ai ) = 0 for

1 ≤ i ≤ m − 1. It remains to show that A(ωp
am

) = 0. We remark that an a as described in
Proposition 5.4 actually exists in this case due to Proposition 5.2(4), and a < am. We apply
Proposition 5.5 for {d1, . . . , dm} = {pa1 , . . . , pam−1 , pa}; if

A(Xdj) ≡ Pdj(X
dj)Φp(X

N/p) mod XN − 1

for all j, where Pdj 6≡ 0 have nonnegative coefficients, then A(ωp
aq) = 0, a contradiction.

Therefore,

A(Xdm) ≡ Qdm(Xdm)Φq(X
N/q) mod XN − 1,

where Qdm 6≡ 0 has nonnegative coefficients. Substituting X by Xpam/dm , we get A(Xpam ) ≡
Qdm(Xpam )Φq(X

N/q), yielding A(ωp
am

) = 0, completing the proof.
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