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Abstract

Let G be a finite abelian group and E a subset of it. Suppose that we know for all subsets T
of G of size up to k for how many x ∈ G the translate x+T is contained in E. This information
is collectively called the k-deck of E. One can naturally extend the domain of definition of
the k-deck to include functions on G. Given the group G when is the k-deck of a set in G
sufficient to determine the set up to translation? The 2-deck is not sufficient (even when we
allow for reflection of the set, which does not change the 2-deck) and the first interesting case is
k = 3. We further restrict G to be cyclic and determine the values of n for which the 3-deck of a
subset of Zn is sufficient to determine the set up to translation. This completes the work begun
by Grünbaum and Moore [GM] as far as the 3-deck is concerned. We additionally estimate
from above the probability that for a random subset of Zn there exists another subset, not a
translate of the first, with the same 3-deck. We give an exponentially small upper bound when
the previously known one was O(1

/√
n).

1 Introduction to the problem and results

Let G be a finite abelian group, written additively, and f : G → R be a function. For k ≥ 2 we
define the k-deck or k-th order correlation of f as the function

Nf,k : Gk−1 → R

defined by
Nf,k(x1, . . . , xk−1) =

∑
x∈G

f(x)f(x + x1) · · · f(x + xk−1). (1)

When E ⊆ G and f(x) = χE(x) is the indicator function of E we also write NE,k in place of Nf,k.
In this case, of f = χE , it is easy to see that the number NE,k(x1, x2, . . . , xk−1) is precisely the
number of times the pattern

0, x1, . . . , xk−1
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can be translated by an arbitrary element of G to be contained in E. In particular NE,2 determines
the difference multiset E−E of E. The k-deck may also be defined on an arbitrary locally compact
abelian group, provided we replace the summation in the definition above with integration with
respect to Haar measure.

As our primary interest is in indicator functions, we will mainly consider nonnegative functions
f . Another reason for considering only real functions is to avoid the extra complication due to the
fact that the functions f and ωf have the same k-deck whenever ω is a k-th root of unity.

It is evident that the functions f(x) and ft(x) = f(x− t) have the same k-decks for all values
of k. The problem we discuss in this paper is the following:

Is the function f : G → R+ determined up to translation if we know its k-deck?
What if the same question is asked for indicator functions?

It is not hard to see that for k = 2, and even for indicator functions, the answer is negative. Indeed,
suppose that we have two sets A,B ⊆ G such that −B is not a translate of B and suppose also
that the multisets E = A + B and F = A − B are actually sets. Take for example G = Z101 (the
cyclic group of 101 elements), A = {0, 10, 20, 30} and B = {0, 1, 3}. Then it is easy to see that
the sets E and F have the same 2-deck but are not necessarily translates of each other, e.g. in the
example we mentioned.

In this paper we will restrict ourselves to finite cyclic groups and the emphasis will be on the
3-deck or triple correlation. This problem is of significance in several fields of applied science, for
example crystallography and signal processing [Pet]. See also [JK] and the references therein.

Our problem is most naturally studied with the use of the Fourier Transform on G, defined for
any function f : G → C as a function f̂ on Γ, the group of characters of G (group homomorphisms
into the multiplicative group {z ∈ C : |z| = 1}), given by

f̂(γ) =
∑
x∈G

f(x)γ(x).

In the particular case of interest to us when G = Zn is the cyclic group of n elements then its dual
group Γ is also isomorphic to Zn and the FT of f : Zn → C is a function f̂ : Zn → C given by

f̂(k) =
n−1∑
j=0

f(j)ζ−jk
n , k = 0, . . . , n− 1,

where ζn = exp(2πi/n) is a primitive n-th root of unity.
It is easy to see that the Fourier Transform of the function Nf,k : Gk−1 → R+, the function

N̂f,k : Γk−1 → C, is given by

N̂f,k(ξ1, . . . , ξk−1) = f̂(ξ1) · · · f̂(ξk−1)f̂(ξ1 + · · ·+ ξk−1)

= f̂(ξ1) · · · f̂(ξk−1)f̂(−(ξ1 + · · ·+ ξk−1)) since f is real. (2)

This implies that

Nf,k ≡ Ng,k ⇐⇒
(
ξ1 + . . . + ξk = 0 =⇒ f̂(ξ1) · · · f̂(ξk) = ĝ(ξ1) · · · ĝ(ξk)

)
. (3)

In particular, if Nf,k ≡ Ng,k for two nonnegative functions f and g on G, we immediately get
f̂(0) = ĝ(0) by setting all ξj = 0. It is also clear that Nf,k ≡ Ng,k for nonnegative f and g implies
Nf,r ≡ Ng,r for all 2 ≤ r ≤ k − 1 as well, so that identity of the k-decks implies the identity of all
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lower order r-decks. Choosing ξ1 = −ξ2 = ξ and ξj = 0 for j ≥ 3 we get
∣∣∣f̂(ξ)

∣∣∣ = |ĝ(ξ)|. Note that

if k is odd then we get
∣∣∣f̂ ∣∣∣ ≡ |ĝ| even for two arbitrary real functions f and g on G with Nf,k = Ng,k

if f̂(0) 6= 0 or ĝ(0) 6= 0. Furthermore, if k = 3 and if we know that f̂ has no zeros on Γ it follows
using (2) that the ratio f̂

/
ĝ is a map from G to the unit circle which is a group homomorphism,

and this is equivalent to the function f being a translate of the function g.
This reveals the fact that the main difficulty in the study of this problem is the existence of

zeros in the Fourier Transform of the function whose k-deck we know. Consider for example the
case of the group G = Zp, p a prime. It is well known that the linear rank over Q of the set of
p-th roots of unity is p − 1, and this implies that any non-trivial Q-linear combination of at most
p − 1 such roots cannot vanish. In other words, if we have a non-constant function f : Zp → Q
(e.g. the indicator function of a non-trivial subset of Zp), then its FT never vanishes on Zp (which
is the dual group of itself). By the previous discussion then the 3-deck of any function f : Zp → Q
determines f up to translation [RS1].

The question of whether Nf,k determines f up to translation depends both on the group G on
which f is defined as well as on assumed properties of f . The main cases of interest are when (a) f is
any nonnegative function, (b) f is a rational-valued function, possibly restricted to be nonnegative,
and (c) f is an indicator function. It is not hard to see, for instance, that on the group R there are,
for every k, nonnegative functions which are not determined up to translation from their k-deck
[JK]. The same question is open if one demands that f is an indicator function of set of finite
measure although the answer is known to be positive in certain special cases of sets [JK]. On the
other hand even the 3-deck determines a function f ∈ L1(R) if it is of compact support [JK].

1.1 Previous results

In the case of cyclic groups the most significant work is that of Grünbaum and Moore [GM]. This
work seems largely to have gone unnoticed in the mathematical literature although it solves the
most important cases of the problem for cyclic groups. This is probably due to the fact that it
was published in a Crystallography journal. The following is a summary of the results in [GM]
regarding reconstructing f on Zn from its k-deck. Notice that in [GM] it is assumed at the outset
that all functions to be reconstructed from their k-deck have a non-zero sum over the group.

1. For any n, if f and g are rational-valued functions on Zn with the same 6-deck then they are
translates of each other [GM, Theorem 4].

2. If n is even and at least 30 then there are sets E,F ⊆ Zn which have the same 3-deck but
are not translates of each other [GM, §5.3].

3. If n is odd, f and g are rational-valued functions on Zn with the same 3-deck and f̂(1) 6= 0
then f and g are translates of each other [GM, Theorem 3]. This is heavily based on a result
of Lenstra [L] (see our §2.1).

4. For any n suppose that f is a rational-valued function on Zn and E ⊆ Zn, g = χE . Then if f
and g have the same 4-deck and f̂(1) 6= 0 it follows that f and g are translates of each other
[GM, Theorem 5]. It is suggested in [GM] that the condition f̂(1) 6= 0 may be unnecessary.

5. There is no value of k such that for all n the equality of the k-deck of two real functions f
and g on Zn implies that they are translates of each other [GM, §8.2].
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6. If n = pqr, with p and q distinct primes, and r > 1 is an integer then there are two rational-
valued functions f and g on Zn which have the same 3-deck, satisfy f̂(1) = ĝ(1) = 0, and are
not translates of each other [GM, §5.2].

Radcliffe and Scott [RS2] study the problem for infinite subsets of R which are subject to some
sort of “local finiteness” and prove reconstructibility from the 3-deck. In [RS1] the same authors
prove reconstructibility up to translation from the 3-deck in Zp, p a prime, show that almost all
subsets of Zn are determined up to translation by their 3-deck and show that any set in Zn is
determined up to translation by its k-deck with k being 9 times the number of distinct prime
factors of n.

Pebody, Radcliffe and Scott [PRS] study a variation of the problem. They prove that any finite
subset E of the plane can be reconstructed up to rigid motion if one knows for any subset A of the
plane of up to 18 points how many rigid-motion copies of A are to be found in E.

Jaming and Kolountzakis [JK] study the problem both in the case of the group R and in cyclic
groups. In the case of R it is pointed out that several conditions which guarantee some sort of
analyticity of f̂ are enough to imply that the 3-deck of f determines f up to translation. It is
shown that for every k there exist two nonnegative, smooth f, g ∈ L1(R) with the same k-deck,
which are not translates of each other. In fact for some such f there exist even uncountably many,
translation inequivalent, functions g which have the same k-deck as f .

It is also proved in [JK] that if E ⊆ R has finite measure, g ∈ L1(R) is nonnegative and χE and
g have the same 3-deck, then g is itself an indicator function. Although it is still an open problem
whether any E ⊆ R of finite measure is determined up to translation from its 3-deck, it is proved
in [JK] that if E is an open set with gaps bounded below (write E as a disjoint collection of open
intervals and look at the gaps so defined) then E is determined from its 3-deck.

In the case of the cyclic group Zn it is proved in [JK, Theorem 3.1 and following Remark]
that when n = pα, p a prime larger than 2, then the 3-deck of a set in Zn determines the set up
to translation. It is also shown that if n = 2α then the 4-deck of a set determines the set up to
translation (and this is mistakenly attributed to [GM]). In [JK, Theorem 3.2] it is erroneously
claimed that if n = pq with p and q two distinct primes then the 3-deck is enough to reconstruct
a set in Zn. Given the results of [GM] summarized above, the condition p, q > 2 clearly needs to
be added and then the theorem is correct. A corrected proof is given in our §2. The attempt, at
the end of [JK], to explain the examples given by Grünbaum and Moore for the case n = pqr (see
summary above) is also erroneous.

Pebody [P] defines r(G) (resp. rset(G)) the minimum k such that the k-deck of a nonnegative
rational-valued function on G (resp. subset of G) determines the function (resp. set) up to trans-
lation. Improving results for the cyclic group of Alon, Caro, Krasikov and Roditty [ACKR] and
Radcliffe and Scott [RS1], Pebody, computes the number r(G) for all finite abelian G and his result
implies r(Zn) ≤ 6. For the cyclic groups the result had already been proved in [GM]. In particular,
Pebody gets that the 3-deck determines all nonnegative rational valued functions up to translation
on the cyclic group Zn (n ≥ 3) if and only if n is a power of an odd prime or the product of two
odd primes.

1.2 New results

In §2 we complete the characterization of those finite cyclic groups in which the 3-deck determines
any subset up to translation. We show that

1. If n = p2q, with p and q distinct odd primes then any subset of Zn can be determined up to
translation from its 3-deck (Theorem 2.1).
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2. The same is true if n = pqr, with p, q, r distinct odd primes (Theorem 2.1).

3. If n = pqrd, with p, q distinct primes and r, d > 1, then there are two subsets E and F of Zn

with the same 3-deck which are not translates of each other (Theorem 2.23).

4. If n = 2k, k ≥ 6, we give two subsets E and F of Zn, not translates of each other, which have
the same 3-deck (Theorem 2.22). This result subsumes the above mentioned result of [GM]
(for even n, n ≥ 30) and, we think, our examples are much easier to understand.

If n is even and at most 10 we show that there are no such examples (Proposition 2.21).

Thus we get the following.

Corollary 1.1. Every subset of the cyclic group Zn can be determined up to translation from its 3-
deck if and only if n is a power of an odd prime or n is the product of at most three (not necessarily
distinct) odd primes or n ∈ {2, 4, 6, 8, 10}.

Remark 1.2. As we were finishing this paper we came across a manuscript by Pebody [P2] where
the cases of odd n for which the 3-deck is sufficient are also determined. Our work was done
independently and, apparently, almost simultaneously.

Comparing Corollary 1.1 to the last mentioned special case of the result of Pebody [P] in the
previous subsection, we observe that the analogous characterization of the “good” values of n is
different if we consider nonnegative rational valued functions instead of subsets.

Key to our results are theorems which significantly restrict the zero set of the Fourier Transform
of indicator functions of subsets of certain cyclic groups. See for instance Lemma 2.18.

In §3 we study the number of subsets of Zn which are not determined by their 3-deck up to
translation. In [RS1] Radcliffe and Scott had already shown that this number is O(2n/

√
n) as

n → ∞. We show that this number is in fact much smaller, namely O(2−Cεn1−ε
2n), for any fixed

ε > 0 (Theorem 3.4).

2 For which cyclic groups the 3-deck determines a set up to trans-
lation

2.1 Positive results

The main result of this subsection is the following:

Theorem 2.1. Let n be a power of an odd prime or the product of at most three (not necessarily
distinct) odd primes. Then every subset of Zn is uniquely determined up to translation by its 3-deck.

For completeness and because it needs no extra effort, our proof will cover not only the new
results but also the known ones. We shall use only the same theorem of H. W. Lenstra that was
used by Grünbaum and Moore in [GM]:

Lenstra’s Theorem [L]. If N is an odd integer, and m and N are coprime then there exists
a finite sequence x1, . . . , xl of relative primes to N such that x1 = 1, xl = m and every member
except the first is the sum or difference of two not necessarily different previous members of the
sequence.

As we saw in the Introduction, the 3-deck determines a nonnegative function up to translation
if its Fourier Transform has no zero. We shall show that if n is a power of an odd prime or n is
the product of at most three (not necessarily distinct) odd primes then the support of the Fourier
Transform of a characteristic function on Zn is always rich enough to get the same conclusion. Our
method can be considered as a generalization of the methods in [GM] and [JK].
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Definition 2.2. We say that A ⊂ Zn is an extendable domain if for every h : A → R/Z additive
(by which we mean that h(x + y) = h(x) + h(y) whenever x, y, x + y ∈ A) function there exists an
L ∈ R such that h(k) = Lk (mod 1) for every k ∈ A.

Lemma 2.3. (1) If f and g are nonnegative functions on Zn with the same 3-deck and supp f̂ is
an extendable domain then f and g are translates of each other.

(2) If f and g are real valued functions on Zn with the same 3-deck, f̂(0) 6= 0 or ĝ(0) 6= 0 and
supp f̂ is an extendable domain then f and g are translates of each other.

Proof. Suppose that f and g satisfy the conditions of (1) or (2). We saw in the Introduction that
in these cases having the same 3-deck implies that f̂ and ĝ have the same modulus. Hence there
exists a function h : supp f̂ → R/Z such that ĝ(l) = e2πih(l)f̂(l). Substituting this to (3) we get
that h must be additive as defined in Definition 2.2. Then, since supp f̂ is an extendable domain, h
must be linear, thus e2πih(l) is the restriction of a character to supp f̂ , and so f and g are translates
of each other.

Therefore, to prove Theorem 2.1 it is enough to prove the following:

Proposition 2.4. If n is a power of an odd prime or n is the product of at most three (not neces-
sarily distinct) odd primes then the support of the Fourier Transform of a characteristic function
on Zn is always an extendable domain.

To prove this proposition we need several facts and lemmas, some of which may be known
and/or interesting in themselves. The following five facts are surely known but for completeness,
and because it is easier to prove them than to find them in the literature, we present their proofs.

Notation 2.5. Let (k, l) denote the greatest common divisor of k and l. For a|n let

〈a〉n = {k ∈ Zn : (k, n) = a} and

aZn =
{

0, a, 2a, . . . ,
(n

a
− 1
)

a
}
⊂ Zn.

Fact 2.6. If f : Zn → Q then supp f̂ is the union of sets of the form 〈a〉n (a|n).

Proof. We can write f̂(k) =
∑n−1

j=0 f(j)ζj
n,k, where ζn,k = e−2πik/n is the k-th root of unity of order

n. The right hand side is a rational polynomial evaluated at the roots of unity. It is well known
that ζn,k is an algebraic conjugate of ζn,l over Q if and only if (n, k) = (n, l).

Fact 2.7. For a|n a function f : Zn → C is a-periodic if and only if supp f̂ ⊂ n
a Zn.

Proof. The space of a-periodic functions on Zn has dimension a and it is clearly spanned by the
characters χl(j) = e2πi ln

a
j , l = 0, 1, . . . , a− 1.

Fact 2.8. For a function f : Zn → C we have supp f̂ ⊂ a1Zn ∪ . . . ∪ akZn if and only if f can be
written in the form f = f1 + . . . + fk, where fj : Zn → C is n

aj
-periodic (j = 1, . . . , k).

Proof. The splitting f =
∑

fj is accomplished by arbitrarily splitting f̂ =
∑

f̂j , in a way that f̂j

is supported on ajZn, inverting the Fourier Transform and using Fact 2.7.

Fact 2.9. If n is odd then any integer k can be written as k = a + b where (a, n) = (b, n) = 1.
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Proof. We can clearly assume that n is squarefree; that is, it is of the form n = p1 · · · pr, where
p1, . . . , pr are distinct primes. For each j = 1, . . . , r let aj = 2 and bj = −1 if k = 1 (mod pj) and let
aj = 1 and bj = k− 1 otherwise. By the Chinese Remainder theorem there exist a and b such that
a = aj (mod pj) and b = bj (mod pj) for j = 1, . . . , r. Now a + b = k (mod pj) for each j = 1, . . . , r,
so a + b = k (modn). By choosing a properly, by which we mean that we add a multiple of n to a
if necessary, we can guarantee that a + b = k. Since each pj > 2, we have aj , bj 6= 0 (mod pj), so
(a, n) = (b, n) = 1.

Fact 2.10. If there are two equivalence relations on a set such that both contain at least two classes
then there exist two elements which are inequivalent w.r.t. both relations.

Proof. If not then any two elements which are inequivalent w.r.t. the first relation should be equiv-
alent w.r.t. the second. This easily implies that there is only one equivalence class w.r.t. the second
relation, a contradiction.

Lemma 2.11. If a is a divisor of the odd n and 〈a〉n ⊂ A ⊂ aZn then A is an extendable domain.

Proof. Let h : A → R/Z be an additive function. It is enough to prove that

m ∈ Z,ma ∈ A =⇒ h(ma) = mh(a) (mod 1), (4)

since then for any L ∈ R such that h(a) = La (mod 1) we get that h(ma) = mh(a) = Lma (mod 1),
which is exactly what we want to show.

Let N = n/a. Note that ma ∈ 〈a〉n holds if and only if m and N are coprime. Using the
previously stated Lenstra’s Theorem for N = n/a and an m such that m and N are coprime we get
a sequence x1, . . . , xl of relative primes to N such that x1 = 1, xl = m and every member except
the first is the sum or difference of two not necessarily different previous members of the sequence.
Note that, since xi and n/a are coprime, xia ∈ 〈a〉n ⊂ A for each i. Then by induction we get that
h(xia) = xih(a), and so (4) holds whenever m and n/a are coprime. Then (4) in the general case
follows by using Fact 2.9.

Corollary 2.12. If n is odd, f : Zn → Q and a ∈ supp f̂ ⊂ aZn then supp f̂ is an extendable
domain.

In particular, the following two statements hold:

(i) If n is odd, f : Zn → Q and f̂(1) 6= 0 then supp f̂ is an extendable domain.

(ii) If n is a power of an odd prime and f : Zn → Q then supp f̂ is an extendable domain.

Proof. The first statement follows immediately from Lemma 2.11 and Fact 2.6. If a = 1 then we
get (i). Statement (ii) is also a special case of the first statement since if n = pk and l is minimal
such that pl ∈ supp f̂ then pl ∈ supp f̂ ⊂ plZn. �

Lemma 2.13. If χE = fa + fb, and fa and fb are periodic Z → C functions with coprime periods
a and b then χE is periodic with period a or b.

Proof. Using the periodicity and χE = fa + fb, for any k, n, l ∈ N we get

fb(ak + bn + l) = fb(ak + l) = χE(ak + l)− fa(ak + l) = χE(ak + l)− fa(l). (5)

Since a and b are coprime, for any fixed l ∈ Z every integer can be written in the form ak + bn + l.
Thus (5) implies that for any fixed l ∈ Z the range of fb is a subset of {−fa(l), 1 − fa(l)}. This
implies that fa or fb must be constant on Z.
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Lemma 2.14. Suppose that a and b are divisors of n, n/a and n/b are coprime, E ⊂ Zn, and
supp χ̂E ⊂ aZn ∪ bZn. Then supp χ̂E ⊂ aZn or supp χ̂E ⊂ bZn.

Proof. By Fact 2.8, supp χ̂E ⊂ aZn ∪ bZn implies the existence of an n/a-periodic function f and
an n/b periodic function g such that χE = f + g. Since n/a and n/b are coprime, by Lemma 2.13,
we get that χE must be n/a-periodic or n/b periodic. By Fact 2.7, this implies that supp χ̂E ⊂ aZn

or supp χ̂E ⊂ bZn.

Lemma 2.15. Suppose that a and b are coprime divisors of n, E ⊂ Zn,

supp χ̂E ⊂ (aZn ∪ bZn \ abZn) ∪ {0}.

Then supp χ̂E ⊂ aZn or supp χ̂E ⊂ bZn.

Proof. Let c = n
ab . By Fact 2.8, supp χ̂E ⊂ aZn ∪ bZn implies that χE can be written in the form

χE = fa + fb, where fa is bc-periodic and fb is ac-periodic. Applying Lemma 2.13 we get that for
each t = 0, 1, . . . , p − 1 the function χE(kc + t) is a-periodic or b-periodic. Let mt be the number
of points of the form kc + t in E. Then

mt ∈ {0, 1, . . . , ab} is divisible by a or b;
by a if χE(kc + t) is b-periodic and by b if χE(kc + t) is a-periodic. (6)

A straightforward calculation shows that for any s ∈ Z

χ̂E(sab) =
c−1∑
t=0

mt

(
e

2πis
c

)t
.

Since we assumed that χ̂E(sab) = 0 for s = 1, . . . , c−1, we get that the c−1 c-th roots of unity e
2πis

c

(s = 1, . . . , c−1) are all roots of the (c−1)-th order polynomial
∑c−1

t=0 mtz
t. Hence

∑c−1
t=0 mtz

t must
be a constant multiple of Πc−1

s=1(z− e
2πis

c ) =
∑c−1

t=0 zt and so all mt must be the same. Using (6) and
that a and b are coprime this implies that χE(kc + t) is a-periodic for each t or b-periodic for each
t. Thus χE is ac-periodic or bc-periodic hence, by Fact 2.7, supp χ̂E ⊂ aZn or supp χ̂E ⊂ bZn.

Lemma 2.16. If a and b are coprime divisors of the odd n and 〈a〉n∪〈b〉n∪{ab} ⊂ A ⊂ aZn∪ bZn

then A is an extendable domain.

Proof. Let h : A → R/Z be an additive function. We have to find an L ∈ R such that h(k) = Lk
(mod 1) for every k ∈ A.

By Lemma 2.11, A ∩ aZn and A ∩ bZn are extendable domains, so there exist La and Lb such
that

h(k) = Lak (mod 1) if k ∈ A ∩ aZn, and h(k) = Lbk (mod 1) if k ∈ A ∩ bZn. (7)

Note that for any u, v ∈ Z, La can be replaced by La + u
a and Lb can be replaced by Lb + v

b in (7).
Thus it is enough to find u, v ∈ Z such that La + u

a = Lb + v
b , which is equivalent to

ub− va = Laab− Lbab. (8)

Using ab ∈ A and (7), we get Laab = h(ab) = Lbab (mod 1), so Laab−Lbab ∈ Z. Then, since a
and b are coprime, there exists u, v ∈ Z for which (8) holds, which completes the proof.
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In the sequel we shall use Fact 2.6 in the proofs many times without explicitly citing it.

Lemma 2.17. Let the odd n = pqd, where p and q are two distinct primes, and d is a prime or
d = 1. If E ⊂ Zn and supp χ̂E ⊂ pZn ∪ qZn then supp χ̂E is an extendable domain.

Proof. If p, q ∈ supp χ̂E then, applying Lemma 2.15 for a = p, b = q, we get that supp χ̂E ∩pqZn 6=
{0}, which implies that pq ∈ supp χ̂E . Then we can apply Lemma 2.16 to get that supp χ̂E is
indeed an extendable domain.

So we can suppose by symmetry that q 6∈ supp χ̂E . Then supp χ̂E ⊂ pZn ∪ qZn implies that
supp χ̂E ⊂ pZn ∪ qdZn. Then, in case of d 6= p by Lemma 2.14, in case of d = p clearly, we have
supp χ̂E ⊂ pZn or supp χ̂E ⊂ qdZn.

If supp χ̂E ⊂ qdZn then supp χ̂E = 〈qd〉n∪{0} or supp χ̂E = {0}, so we are done by Lemma 2.11.
So we can suppose that {0} 6= supp χ̂E ⊂ pZn. If p ∈ supp χ̂E then by Corollary 2.12 supp χ̂E

is an extendable domain, so we can suppose that p 6∈ supp χ̂E . Then, by Fact 2.6, supp χ̂E can be
only 〈pd〉n ∪ {0} or 〈pq〉n ∪ {0} or 〈pq〉n ∪ 〈pd〉n ∪ {0} with d 6= 1, q. The last case is impossible by
Lemma 2.14 (for a = pq, b = pd), while in the first two cases Lemma 2.11 implies that supp χ̂E is
an extendable domain.

The following lemma about the possible support of the Fourier Transform of characteristic
functions on Zn is the key for handling the hardest case when n is the product of three distinct
primes. This statement might be useful in other applications, too.

Lemma 2.18. Suppose p, q and r are pairwise coprime, but not necessarily primes. Let n = pqr
and let E ⊂ Zn. Then

p, q ∈ supp χ̂E ⊂ pZn ∪ qZn ∪ rZn =⇒ (∃z ∈ {1, 2, . . . , r − 1}) zpq ∈ supp χ̂E .

Proof. Suppose that for each z = 1, 2, . . . , r − 1 we have

0 = χ̂E(zpq) =
r−1∑
c=0

pq−1∑
k=0

χE(kr + c)e−2πi
(kr+c)zpq

pqr =
r−1∑
c=0

(
pq−1∑
k=0

χE(kr + c)

)(
e−2πi z

r

)c
.

This implies that
∑pq−1

k=0 χE(kr + c) must be the same for each c ∈ Zr; that is,

pq−1∑
k=0

χE(kr + c1)− χE(kr + c2) = 0 (c1, c2 ∈ Zr). (9)

For each j ∈ Zn (n = pqr) let (aj , bj , cj) ∈ Zp × Zq × Zr be the unique triple such that

j = aj mod p, j = bj mod q and j = cj mod r,

and let φ be the inverse of the above Zn → Zp × Zq × Zr bijections; that is, φ(a, b, c) (a ∈ Zp, b ∈
Zq, c ∈ Zr) is the unique element of Zn for which

φ(a, b, c) = a mod p, φ(a, b, c) = b mod q and φ(a, b, c) = c mod r.

Since supp χ̂E ⊂ pZn ∪ qZn ∪ rZn, χE can be written as χE = f + g +h, where f is qr-periodic,
g is pr periodic and h is pq-periodic.

Since f is qr-periodic, f(φ(a, b, c)) does not depend on a, so f ◦ φ can be written in the form
f(φ(a, b, c)) = F (b, c). Similarly g ◦ φ and h ◦ φ can be written as g(φ(a, b, c)) = G(a, c) and
h(φ(a, b, c)) = H(a, b). So using the notation E′ = φ−1(E) ⊂ Zp × Zq × Zr we get that

χE′(a, b, c) = F (b, c) + G(a, c) + H(a, b) a ∈ Zp, b ∈ Zq, c ∈ Zr.
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We claim that there exist c1, c2 ∈ Zr such that neither the Zq → R function F (· , c1)− F (· , c2),
nor the Zp → R function G(· , c1)−G(· , c2) is constant. Indeed, F (· , c1)− F (· , c2) being constant
defines an equivalence relation on Zr and so does G(· , c1)−G(· , c2) being constant. If there is only
one equivalence class w.r.t. the first relation then F can be written as F (b, c) = u(b) + v(c) which
implies

χE(j) = χE′(aj , bj , cj) = v(cj) + G(aj , cj) + u(bj) + H(aj , bj),

and this would in turn imply χ̂E(p) = 0, contradicting our assumption. Hence there are at least
two classes w.r.t. the first relation. Similarly there are two classes w.r.t. the second relation and
using Fact 2.10 we obtain our claim.

On the other hand, since

(F (b, c1)− F (b, c2)) + (G(a, c1)−G(a, c2)) = χE′(a, b, c1)− χE′(a, b, c2) ∈ {−1, 0, 1}

for any a ∈ Zp, b ∈ Zq, we have

Range(F (· , c1)− F (· , c2)) + Range(G(· , c1)−G(· , c2)) ⊂ {−1, 0, 1}.

Since by the previous paragraph Range(F (· , c1) − F (· c2)) and Range(G(· , c1) − G(· , c2)) have at
least two elements, this implies that they must be of the form

Range(F (· , c1)− F (· , c2)) = {A,A + 1},

Range(G(· , c1)−G(· , c2)) = {−A,−A− 1}

for some A ∈ R.
Let l1 ∈ {1, . . . , q− 1} be the number of elements b ∈ Zq for which F (b, c1)−F (b, c2)) = A and

l2 ∈ {1, . . . , p− 1} be the number of elements a ∈ Zp for which G(a, c1)−G(a, c2)) = −A.
Then, combining this with (9) we get

0 =
pq−1∑
k=0

χE(kr + c1)− χE(kr + c2)

=
∑
a∈Zp

∑
b∈Zq

χE′(a, b, c1)− χE′(a, b, c2)

=
∑
a∈Zp

∑
b∈Zq

F (b, c1)− F (b, c2) + G(a, c1)−G(a, c2)

= pl1A + p(q − l1)(A + 1) + ql2(−A) + q(p− l2)(−A− 1)
= −l1p + l2q,

which is a contradiction since l1p cannot be divisible by q.

Lemma 2.19. Let n = pqr with p, q, r three distinct primes, E ⊂ Zn. Then

p, q, r ∈ supp χ̂E ⊂ pZn ∪ qZn ∪ rZn =⇒ supp χ̂E = pZn ∪ qZn ∪ rZn.

Proof. Suppose that p, q, r ∈ supp χ̂E ⊂ pZn ∪ qZn ∪ rZn. By Lemma 2.18 we have 〈pq〉n ∪
〈pr〉n ∪ 〈qr〉n ⊂ supp χ̂E . Since E cannot be empty, 〈pqr〉n ⊂ supp χ̂E . Since pZn ∪ qZn ∪ qZn =
〈p〉n ∪ 〈q〉n ∪ 〈r〉n ∪ 〈pq〉n ∪ 〈pr〉n ∪ 〈qr〉n ∪ 〈pqr〉n, this completes the proof.

Lemma 2.20. If a, b, c ∈ Z are pairwise coprime then aZn ∪ bZn ∪ cZn is an extendable domain.
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Proof. Let A = aZn ∪ bZn ∪ cZn and let h : A → R/Z be additive. Then it is easy to show that for
α = h(a)/a, β = h(b)/b, γ = h(c)/c we have

h(ma) = αma, h(mb) = βmb, h(mc) = γmc (mod 1) (m ∈ Z). (10)

It is enough to find u, v, w ∈ Z such that

α +
u

a
= β +

v

b
= γ +

w

c
(11)

since then h(x) = Lx (mod 1) would follow for L = α + u
a = β + v

b = γ + w
c from (10).

For v ∈ Z there exist u and w such that (11) holds if

va = αab− βab (mod b) and vc = γbc− βbc (mod b),

which hold for some v ∈ Z if and only if

αab− βab ∈ Z, γbc− βbc ∈ Z and c(αab− βab) = a(γbc− βbc) (mod b). (12)

Using (10) for m = a, b, c we get that

αab = βab, βbc = γbc and αac = βac (mod 1),

which implies (12) and so completes the proof.

Proof. (Proposition 2.4) By Corollary 2.12 we are done if n is a power of an odd prime or if
1 ∈ supp χ̂E . So we can suppose that 1 6∈ supp χ̂E and n = pqr, where p and q are different primes
and r is a prime or r = 1. If r = 1 or r = p or r = q then n equals pq or p2q or pq2 and so
1 6∈ supp χ̂E implies that supp χ̂E ⊂ pZn ∪ qZn, hence we are done by Lemma 2.17.

Therefore we can suppose that 1 6∈ supp χ̂E and n = pqr, where p, q and r are distinct primes.
Then we have supp χ̂E ⊂ pZn ∪ qZn ∪ rZn.

If p, q, r ∈ supp χ̂E then, by Lemma 2.19, we have supp χ̂E = pZn ∪ qZn ∪ rZn, which is an
extendable domain by Lemma 2.20.

Otherwise, we can suppose by symmetry that r 6∈ supp χ̂E and so supp χ̂E ⊂ pZn ∪ qZn. Then
we are done by Lemma 2.17

This completes the proof of Proposition 2.4 and so also the proof of Theorem 2.1.

If n is even then we get positive results for small n:

Proposition 2.21. For n = 2, 4, 6, 8 and 10 every subset of Zn is uniquely determined up to
translations by its 3-deck.

For n = 2, 4 and 6 this statement follows very easily from the definition of 3-deck. For both
n = 8 and n = 10 one can provide proofs using the lemmas and the method of this section. However,
in these cases there are only 28 and 210 subsets of Zn, so one can easily check (and we indeed did
check) the statement by computer. Hence we omit the quite complicated detailed proof, in which
many cases have to be distinguished and no new idea is needed.
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2.2 Negative results

Theorem 2.22. Let n = 2k with k ≥ 6 integer. Then there exists E,F ⊂ Zn such that they are
not translates of each other, however they have the same 3-deck.

Proof. Let

E = {0} ∪ {3, 4, . . . , k − 1} ∪ {k + 1, k + 2}, and F = {0, 1} ∪ {3, 4, . . . , k − 1} ∪ {k + 2}.

Since k ≥ 6, both E and F contain a unique block of k − 3 consecutive numbers. Thus if a
translation takes E to F then this block of E must be taken to the block of F . Since these blocks
are identical, the translation must be the identity. But E 6= F , so we proved that they are not the
translates of each other.

By (2), for checking that E and F have the same 3-deck we have to show that for the Fourier
Transforms of their characteristic function we have

s1 + s2 + s3 = 0 (mod 2k) =⇒ χ̂E(s1)χ̂E(s2)χ̂E(s3) = χ̂F (s1)χ̂F (s2)χ̂F (s3). (13)

Letting z = ζ−s
2k = e−2πi s

2k we have

χ̂E(s) = ζ−0s
2k +

(
ζ−3s
2k + ζ−4s

2k + . . . + ζ
−(k−1)s
2k

)
+ ζ

−(k+1)s
2k + ζ

−(k+2)s
2k (14)

= 1 + (z3 + z4 + . . . + zk−1) + zk+1 + zk+2 = (1− z + z3)(1 + z + . . . + zk−1),

and similarly

χ̂F (s) = 1 + z + (z3 + z4 + . . . + zk−1) + zk+2 = (1− z2 + z3)(1 + z + . . . + zk−1). (15)

If s is even but s 6= 0 (mod 2k) then

1 + z + . . . + zk−1 =
zk − 1
z − 1

=
e−2πi ks

2k − 1
e−2πi s

2k − 1
= 0,

and so χ̂E(s) = χ̂F (s) = 0.
Since s1 + s2 + s3 = 0 (mod 2k) implies that at least one of s1, s2 and s3 is even, we get that

(13) clearly holds unless at least one of s1, s2 and s3 is zero.
So suppose that at least one of s1, s2 and s3 is zero. Then, in order to check (13), we have to

show that
χ̂E(s)χ̂E(−s) = χ̂F (s)χ̂F (−s) (s ∈ Z2k). (16)

This is just a restatement of the fact that E and F have the same 2-deck, which is clearly true as
E is a translate of −F .

Theorem 2.23. Let n = pqrd with p, q two distinct primes and r, d > 1 integers. Then there exist
E,F ⊂ Zn such that they are not translates of each other, however they have the same 3-deck.

Proof. Let

A =
{

l1n

q
+ kd : k ∈ {0, 1, . . . , r − 1}, l1 ∈ {0, 1, . . . , q − 1}

}
,

B =
{

l2n

p
+ kd : k ∈ {0, 1, . . . , r − 1}, l2 ∈ {0, 1, . . . , p− 1}

}
,

E = A ∪ (B + 1) and F = A ∪ (B + d + 1).
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Then

χ̂E(s) =

(
r−1∑
k=0

e−2πi kds
n

)
︸ ︷︷ ︸
0 if pq|s but pqr-s

·


q−1∑
l1=0

e
−2πi

l1s
q

︸ ︷︷ ︸
q if q|s, 0 if q-s

+e−2πi s
n ·

p−1∑
l2=0

e
−2πi

l2s
p

︸ ︷︷ ︸
p if p|s, 0 if p-s


and

χ̂F (s) =

(
r−1∑
k=0

e−2πi kds
n

)
·

 q−1∑
l1=0

e
−2πi

l1s
q + e−2πi

s(d+1)
n ·

p−1∑
l2=0

e
−2πi

l2s
p

 .

Thus
χ̂E(s) 6= 0 ⇐⇒ χ̂F (s) 6= 0 ⇐⇒ (p|s or q|s) and (pq6 |s or pqr|s),

hence
supp χ̂E = {s ∈ Zn : p|s, q6 |s}︸ ︷︷ ︸

Sp

∪{s ∈ Zn : q|s, p6 |s}︸ ︷︷ ︸
Sq

∪{s ∈ Zn : pqr|s}︸ ︷︷ ︸
Spqr

.

For checking that E and F have the same 3-deck we have to show that

s1 + s2 + s3 = 0(modn) =⇒ χ̂E(s1)χ̂E(s2)χ̂E(s3) = χ̂F (s1)χ̂F (s2)χ̂F (s3). (17)

We have nothing to prove unless s1, s2, s3 ∈ supp χ̂E . So suppose that s1, s2, s3 ∈ supp χ̂E .
Note that χ̂E(s) = χ̂F (s) unless s ∈ Sp. Thus if none of s1, s2, s3 are in Sp then we are done.
It is impossible that exactly one of them is in Sp (because of divisibility by q).
If two of them, say s1 and s2, are in Sp then s3 is in Sp or in Spqr. In both cases it is easy to

check (17).
Finally, suppose that F = E + t (mod n). Since both E and F have qr elements that are 0 mod

d and pr elements that are 1 mod d, t must be of the form t = md. Thus we must have A = A+md
and B +d = B +md (mod n). But B consists of blocks which are arithmetic progressions of length
r and step d, and these are regularly spaced at intervals of length qrd. Hence B+d = B+md (mod
n) can only happen if d−md is a multiple of qrd, or, equivalently, if m = 1 mod qr. On the other
hand, by the similar structure of A it follows that m = 0 mod pr, which is a contradiction.

2.3 Results about real-valued functions

Given the results we have proved so far we can also characterize those values of n for which the
3-deck determines the characteristic function of any nonempty subset of Zn up to translation even
among all Zn → R functions.

Theorem 2.24. For n ≥ 3 the following three statements are equivalent.

(i) n is a power of an odd prime or n is the product of at most 3 (not necessarily distinct) odd
primes.

(ii) The support of the Fourier Transform of any characteristic function on Zn is an extendable
domain.

(iii) If for some ∅ 6= E ⊂ Zn and g : Zn → R, χE and g have the same 3-deck then they are
translates of each other.
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Proof. (i)⇒(ii): This is exactly Proposition 2.4.
(ii)⇒(iii): If E 6= ∅ then χ̂E(0) 6= 0 and so by Lemma 2.3 (2) we get that χE and g are indeed

translates of each other.
(iii)⇒(i): If n is odd and (i) does not hold then, by Theorem 2.23, there exists counterexamples

for (iii), even with g being a characteristic function.
Now suppose that n > 2 is even and let E = {1, 2, . . . , n/2}. It is easy to check that supp χ̂E =

{0, 1, 3, 5, . . . , n− 1}. Let

hα(l) =


α if l = 1,

−α if l = −1,

0 otherwise.

Let gα be the inverse Fourier Transform of the function Gα(l) = e2πihα(l) · χ̂E(l) on Zn. Since hα

is an odd function, Gα(−l) = Gα(l), and so gα is a real valued function. Since hα is additive on
supp χ̂E , the right hand side of (3) holds for k = 3, f and g = gα, and so NχE ,3 = Ngα,3. This way
we get continuum many distinct gα : Zn → R functions. Since χE has only finitely many translates
(iii) cannot hold for every gα.

Example 2.25. Let n ≥ 4 be arbitrary, f = 0 on Zn and g(k) = cos 2kπ
n (k ∈ Zn). Then clearly

f̂ = 0 and one can check that

ĝ(l) =


n/2 if l = 1,

−n/2 if l = −1,

0 otherwise.

Then it is easy to check that the righthand-side of (3) holds for k = 3, so Nf,3 = Ng,3, however f
and g are clearly not translates of each other.

This shows that if we allow E = ∅ in (iii) of Theorem 2.24 then (i)⇒(iii) is not true any more.

Remark 2.26. It is proved in [JK] (Proposition 2.7) that if f is the characteristic function of a
subset of R of finite measure and g ∈ L1(R) is a nonnegative function such that Nf,3 = Ng,3 then
there g must be equal to a characteristic function almost everywhere.

One can check that the same proof works on Zn as well. This has the following consequences.

1. The characteristic functions on Zn are determined up to translation by their 3-deck among
nonnegative functions if and only if they are determined up to translation among characteristic
functions; that is, by Corollary 1.1, if and only if n is a power of an odd prime or n is the
product of at most three (not necessarily distinct) odd primes or n ∈ {2, 4, 6, 8, 10}.

2. Only the (at most finitely many) characteristic functions can be nonnegative among the
(continuum many) gα functions of the proof of (iii)⇒(i) of Theorem 2.24.

3 The percentage of subsets of Zn not determined by their 3-deck
up to translation

As we mentioned in the Introduction, in [RS1] Radcliffe and Scott proved that almost all subsets of
Zn are determined up to translation by their 3-deck. More specifically they proved that the fraction
of subsets of Zn whose Fourier Transform vanishes somewhere is at most Cε

/
n1/2−ε, for any ε > 0,

and, since any set whose FT does not vanish is uniquely determined from its 3-deck, this proves
that a fraction at most Cε

/
n1/2−ε of the possible sets are not determined by their 3-deck.

14



Furthermore, it is easy to see that the probability of having the FT of a random subset of Zn

vanish somewhere is at least C
/√

n. For this one takes n to be even and examines the FT of the
random set at n/2. The vanishing there is equivalent to a random subset of a set of n/2 ones and
n/2 minus-ones having a vanishing sum. This probability is equal to

(
n

n/2

)/
2n ∼ C

/√
n.

However, here we show that the probability that a random subset of Zn is not uniquely deter-
mined up to translation by its 3-deck is exponentially small (Theorem 3.4). When talking about
random sets in this section we mean that all subsets of Zn are equally probable. This is the same
as tossing an independent fair coin for each element of Zn to decide membership in the random set.

Lemma 3.1. Suppose u1, . . . , um are vectors in a vector space V and that the collection u1, . . . , uD,
D ≤ m, are linearly independent. Suppose also that εj, j = 1, . . . ,m, are {0, 1}-valued random
variables which are unbiased and independent. Then

Pr

 m∑
j=1

εjuj = 0

 ≤ 2−D. (18)

Proof. Since u1, . . . , uD are independent, for any fixed εD+1, . . . , εm, the 2D possible values of∑m
j=1 εjuj are all distinct, so only at most one of them can be zero.

Corollary 3.2. If E ⊆ Zn is random then

Pr [χ̂E(k) = 0] ≤ 2−Cn
/

(k,n) log log n,

for some absolute constant C > 0 and for all k ∈ Zn.

Proof. Let ω = e2πi/n. Then

χ̂E(k) =
n−1∑
j=0

εjω
kj , (19)

where the εj , j = 0, . . . , n− 1, are independent, unbiased, {0, 1}-valued random variables.
It is well known that the algebraic order of ωk over the field Q is φ(n/(k, n)), where φ(n) is the

Euler function which counts how many numbers from 1 to n are coprime to n. It is also well known
[HW] that φ(n) ≥ Cn

/
log log n. This means that if P (x) is a polynomial with rational coefficients

and degree < Cn
/
(k, n) log log n then P (ωk) 6= 0. This, in turn, implies that the complex numbers

1, ωk, ω2k, . . . , ω(Cn/(k,n) log log n)·k

are Q-linearly independent. Applying Lemma 3.1 to the random sum (19) in the vector space C
over Q we get our result.

Corollary 3.3. If n is odd then the probability that a random subset of Zn is not uniquely deter-
mined by its 3-deck is at most 2−Cn/ log log n.

Proof. We make use of a result of Grünbaum and Moore [GM] (see §1.1) which states that if n is
odd, E ⊆ Zn, and χ̂E(1) 6= 0 then E is determined by its 3-deck. The rest follow from Corollary
3.2 with k = 1.

For arbitrary n we lose a little in the exponent. Probably this is unnecessary.
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Theorem 3.4. If E is a random subset of Zn the probability that E is not determined by its 3-deck
is at most

2−Cεn1−ε
,

for any ε > 0.

For the proof we use some notions (recall Definition 2.2 and Notation 2.5) and lemmas from
§2.1 and also some new ones. Write

Ax = {k ∈ Zn : (k, n) ≤ x},

and write GAP(B) for the size of the largest interval contained in the complement of B ⊆ Zn.

Lemma 3.5. GAP(Ad(n)) ≤ d(n), where d(n) denotes the number of divisors of n.

Proof. Suppose that I = {a, a + 1, . . . , a + d(n)} ⊆ Ac
d(n) is an interval of size d(n)+1, and i, j ∈ I,

i 6= j. Then (i, n) > d(n) and (j, n) > d(n). It follows that (i, n) 6= (j, n), otherwise we would have
|i− j| ≥ (i, n) > d(n), which cannot happen as all distances in I are at most d(n). Thus, to each
i ∈ I there corresponds a different divisor of n, namely (i, n). But this cannot happen as I has
d(n) + 1 members but there are only d(n) different divisors of n. �

Lemma 3.6. If {0, 1, . . . , d} ⊂ A ⊂ Zn and GAP(A) ≤ d then A is an extendable domain.

Proof. Let h : A → R/Z be an additive function. First by induction we get that h(j) =
jh(1) (mod 1) for j = 1, . . . , d. Since GAP(A) ≤ d, this can be extended by induction to all
of A.

Lemma 3.7. If E ⊂ Zn and {1, 2, . . . , d(n)} ⊂ supp χ̂E then E is determined up to translation by
its 3-deck.

Proof. By Fact 2.6, {1, 2, . . . , d(n)} ⊂ supp χ̂E implies that Ad(n) ⊂ supp χ̂E . Thus by Lemma 3.5,
GAP(supp χ̂E) ≤ d(n). Hence by Lemma 3.6, supp χ̂E is an extendable domain. Therefore by
Lemma 2.3 (1), E is determined up to translation by its 3-deck.

Proof. (Theorem 3.4) By Corollary 3.2,

Pr [∃j ∈ {1, 2, . . . , d(n)} : χ̂E(j) = 0] ≤ d(n)2−Cn/d(n) log log n

≤ Cεn
ε2−Cεn1−ε

≤ 2−Cε′n
1−ε′

,

where ε′ > 0 is again arbitrary, and we used the fact that d(n) = O(nε) for all ε > 0 [HW]. By
Lemma 3.7, this completes the proof of Theorem 3.4.
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