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Abstract. Take an interval [t, t + 1] on the x-axis
together with the same interval on the y-axis and
let ρ be the normalized one-dimensional Lebesgue
measure on this set of two segments. Continuing
the work done by Lev [ Lev18 ], Lai, Liu and Prince
[ LLP21 ] as well as Ai, Lu and Zhou [  ALZ23 ] we ex-
amine the spectrality of this measure for all different
values of t (being spectral means that there is an or-
thonormal basis for L2(ρ) consisting of exponentials
e2πi(λ1x+λ2 y)). We almost complete the study showing
that for − 1

2 < t < 0 and for all t < Q the measure ρ
is not spectral. The only remaining undecided case
is the case t = − 1

2 (plus space). We also observe that
in all known cases of spectral instances of this mea-
sure the spectrum is contained in a line and we give
an easy necessary and sufficient condition for such
measures to have a line spectrum.
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1. Introduction

1.1. Spectrality and the Fuglede Conjecture. Let µ
be a Borel probability measure on Rd with compact sup-
port Ω. The measure µ is called spectral if there exists a
countable set Λ ⊂ Rd such that
EΛ := {e2πiλ·x : λ ∈ Λ} forms an orthogonal basis for L2(µ),

i.e., there exists a countable set Λ ⊂ Rd such that
f (x) =

∑
λ∈Λ

cλ( f )eλ(x), with eλ(x) = e2πiλ·x,

for any f ∈ L2(µ), where

cλ( f ) = ⟨ f , eλ⟩µ =
∫

f (x)e−2πiλ·x dµ(x).

In this case, we call Λ a spectrum of µ. In particular,
if µ is the Lebesgue measure restricted on the set Ω of
Lebesgue measure 1, then we sayΩ is a spectral set. (The
definition is trivially extended to finite nonnegative Borel
measures, not necessarily probability measures, and sets
of finite Lebesgue measure.)

Spectral sets were first introduced by Fuglede [  Fug74 ]
who proposed the Fuglede Conjecture (also known as
Spectral Set Conjecture).

Fuglede Conjecture: Ω ⊂ Rd is a spectral set if and
only if it tilesRd by translation. The setΩ is said to tileRd

by translations if there exists a discrete set L ⊂ Rd such
that⋃
l∈L

(Ω+l) = Rd and m((Ω+l1)∩(Ω+l2)) = 0 for all l1 , l2 ∈ L,

where m(·) denotes the Lebesgue measure and L is called
a tiling complement of Ω.

The classical example in dimension 1 is the interval
Ω = [0, 1] which is both a spectral set and a translational
tile. More precisely, the set Λ = Z serves simultane-
ously as a spectrum and a tiling complement of Ω, and
f (x) =

∑
n∈Z cn( f )e2πinx for any f ∈ L2([0, 1]). For more gen-

eral examples, Fuglede [  Fug74  ,  Fug01  ] proved that the
conjecture is true in the case of a triangle or a disk in the
plane (both sets are neither spectral nor tiles), and he also
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proved that Ω can tile with a lattice tiling complement L
if and only if the dual lattice L∗ is a spectrum for Ω.

It has been proved [  Tao04 ,  KM06b ,  KM06a ,  FMM06 ,
 FR06 ] that both directions of the conjecture are not valid
when the dimension is at least 3, but the conjecture is still
open in both directions in dimensions 1 and 2. Although
the conjecture is not correct in high dimensions, it has
been an important topic of research and there are many
positive and negative results about the relation of tiling
to spectrality. For example, an important result was re-
cently proved by Lev and Matolcsi [  LM22 ], who showed
that the conjecture holds in any dimension for a convex
body. For some cyclic groups, this conjecture is also true
if some appropriate conditions are restricted, and more
results can be found in [  Łab02 ,  Zha23 ,  MK17 ,  KMSV22  ].
See also the recent survey [ Kol24 ] for a more thorough
description of the problem and the existing results.

The goal of the paper is to study the spectrality of a
class of so-called symmetric additive measures. They are
described in the next section.

1.2. Symmetric additive measures. Previous work.
Recall that a Borel measure µ is continuous if µ({x}) = 0
for all x ∈ R.

Definition 1.1. Let µ be a continuous Borel measure on
R. The symmetric additive measure for µ is the probabil-
ity measure ρ on R2 given by

ρ = µ × δ0 + δ0 × µ,

where δ0 is the Dirac measure at 0.

The study of exponential bases for additive measures
was initiated in [ Lev18 ] and continued in [  LLP21 ] and
in [ ALZ23 ].

We are interested in the special case where µ is
Lebesgue measure where µ is one-half of Lebesgue mea-
sure supported on the unit interval [t, t + 1] (see Fig.  1 ).
When one wants to know the spectrality or not of this
measure it is enough, by the symmetry of the problem,
to consider only the cases t ≥ − 1

2 of the parameter t.
The following are some of the results proved in [  LLP21 ,

 ALZ23 ] about this measure.
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Theorem A ( [ Lev18 ,  LLP21 ,  ALZ23 ]) Let ρ = µ×δ0+δ0×µ
be a symmetric additive measure, where the measure µ is
one-half of Lebesgue measure supported on [t, t + 1].

(1) If − 1
2 < t < 0 and 2t+1 = 1

a , where a > 1 is a positive
integer, then ρ is not spectral.

(2) If t ∈ Q \ {− 1
2 }, then ρ is a spectral measure if and

only if t ∈ 1
2Z. In this case, ρ has a unique spectrum

of the form

Λ = {(λ,−λ) : λ ∈ Λ0},
where Λ0 is the spectrum of the Lebesgue measure
supported on [−t − 1,−t] ∪ [t, t + 1].

(3) If EΛ is a Riesz basis for a symmetric additive space
L2(ρ), then at least one of EΛx, EΛy is not a Riesz
basis for the component space L2(µ), where Λx, Λy
are the projections of Λ onto the x−, and y− axis.

(4) For t = −1/2 (“plus space”) any frame of expo-
nentials cannot have frequencies contained in a
straight line.

(5) The measure ρ admits a frame of exponentials for
all t.

1.3. Main results. The following answers Question 1 of
[ LLP21 , §7] except for the case t = −1/2 (“plus space”,
according to [  LLP21 ]), which remains open. Note that the
case t = 0 (the L-shape of [  LLP21 ]) does have a spectrum,
the set {(n/2,−n/2), n ∈ Z}, as shown in [  LLP21 ], and also
in our Section  4 .

Theorem 1.1. If ρ is the probability measure µ× δ0 + δ0 ×
µ, where µ is one-half Lebesgue measure on the interval
[t, t + 1] with t ∈ (− 1

2 , 0), then ρ is not spectral.

This Theorem proves the non-spectrality of all the cases
where the two segments intersect except the case when
the two segments intersect in their midpoint. We prove
Theorem  1.1 in Section  3 .

All the spectra of the measure ρ that are known
[ LLP21 ,  ALZ23 ], for any value of t, belong to the straight
line y = −x. Our next result describes precisely when it is
possible for ρ to have a spectrum contained in a straight
line. (Notice we can always assume the straight line goes
through the origin as all spectra can be translated to con-
tain the origin.)
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t t + 1

t

t + 1

ρ

Figure 1. The symmetric additive measure
we consider in this paper. ρ is a probabil-
ity measure. On each of the two unit-length
segments it equals 1/2 Lebesgue measure.
The segments may or may not intersect. By
symmetry it is enough to consider the cases
t ≥ − 1

2 .

Let L be a straight line through the origin and u be a
unit vector along L. Let us also denote by u⊥ the orthog-
onal subspace to L (a straight line also). We denote by πL
the orthogonal projection operator onto line L (but taking
values in R). In other words πL(v) = t for any v ∈ tu + u⊥.

If ν is a Borel measure on R2 then the projection of ν
onto L is the measure πLν on R defined by

πLν(E) = ν(Eu + u⊥),

where E ⊆ R.

Theorem 1.2. Suppose ρ is a probability measure on R2

whose support is a finite union of line segments. Suppose
also that L is a straight line through the origin such that
the orthogonal projection πL onto L is one-to-one ρ-almost
everywhere.
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Then ρ has a spectrum Λu ⊆ L if and only if the projec-
tion measure πLρ has spectrum Λ ⊆ R.

We prove Theorem  1.2 in Section  4 . We also show there
that all known cases of spectral measures ρ of the above
type are simple consequences of Theorem  1.2 and known
results about one-dimensional spectral sets such as the
characterization in [  Łab01 ] of which sets that are unions
of two intervals are spectral (exactly those that tile).

In the negative direction again we complete the study
of this problem by proving the following.

Theorem 1.3. If ρ is the probability measure µ× δ0 + δ0 ×
µ, where µ is one-half Lebesgue measure on the interval
[t, t + 1] with t < Q, then ρ is not spectral.

Notice that the only case that is left undecided after our
results is the case t = −1/2, the plus space. In Section  5 

we prove Theorem  1.3 .
In Section  2 we describe some properties of the zero set

of the Fourier Transform of the measure ρ which will be
useful in the proofs that follow.

Acknowledgement: The first author would like to
thank Chun-Kit Lai for showing him the problem and re-
lated results during a visit in November 2023.

2. The zero set and the spectrum

Let ρ be the measure µ × δ0 + δ0 × µ, where µ is one-
half of Lebesgue measure on [t, t + 1], for some t ∈ R so
that ρ is a probability measure. The set of zeros of ρ̂ is
easily [ LLP21 ,  ALZ23 ] seen to be the set

Z(ρ) =
{
λ : ρ̂(λ) = 0

}
=
{
λ = (λ1, λ2) : eπi(λ1−λ2)(2t+1) sinπλ1

πλ1
= −sinπλ2

πλ2

}
.(1)

(Notice that the value of the function sinπx
πx at 0 is 1.)

Suppose ρ is spectral with spectrumΛ ⊆ R2, with 0 ∈ Λ.
Assume also that t , −1/2, so that we exclude from our
discussion in this section the case of the plus space. We
conclude that

(2) Λ ⊆ Λ −Λ ⊆ {0} ∪ Z(ρ) ⊆ H1 ∪H2
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where the two subgroups H1,H2 of R2 are

H1 = Z
2, H2 =

{
(λ1, λ2) : λ1 − λ2 ∈

1
2t + 1

Z
}
.

Indeed, for λ = (λ1, λ2) to be in Z(ρ) the factor eπi(λ1−λ2)(2t+1)

must be real or both sines must be 0. The second case
means that λ ∈ Z2 while the first case implies that (λ1 −
λ2)(2t + 1) must be an integer. The group H2 consists of
equispaced parallel lines perpendicular to the line y = −x.

It follows from Lemma 11.4 in [ GL17 ] that
Λ ⊆ H1 or Λ ⊆ H2.

From Theorem 4.2 in [ LLP21 ] (see also our Remark  2.1 

below) it follows that Λ ⊆ H1 = Z2 is not true, so we con-
clude that Λ ⊆ H2.

We have proved:

Theorem 2.1. If ρ is the probability measure µ× δ0 + δ0 ×
µ, where µ is one-half Lebesgue measure on the interval
[t, t + 1], with t , −1/2, and ρ is spectral with spectrum
Λ ⊆ R2 and 0 ∈ Λ then for every λ = (λ1, λ2) ∈ Λ there
exists an integer k(λ) such that

(3) λ2 − λ1 =
k(λ)

2t + 1
.

Remark 2.1. The fact that the multiplicity of Λ is 1 (all
points of Λ project uniquely onto the coordinate axes)
is the easy part of Theorem 4.2 in [  LLP21 ], while the
fact that Λ cannot be a subset of Z2 is more involved
in [  LLP21 ] and uses the proof of Theorem 1.2 therein. Let
us show here an easy proof of the latter result using the
fact that the multiplicity is 1.

Take the function f ∈ L2(ρ) which is 1 on the horizontal
segment and 0 on the vertical segment. It does not matter
if the two segments of ρ intersect as they will intersect on
at most one point which has ρ-measure 0. If 0 ∈ Λ ⊆ Z2

is a spectrum of ρ then f =
∑
λ∈Λ ⟨ f , eλ⟩eλ. But

⟨ f , eλ⟩ =
∫

f (x, y)e−2πi(λ1x+λ2 y) dρ(x, y)

=
1
2

∫ t+1

t
e−2πiλ1x dx

=

{
1/2 if λ1 = 0,
0 otherwise.
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The multiplicity of Λ being 1 means that there is at most
one point of Λ with λ1 = 0, therefore this point is the ori-
gin. From the expansion of f with respect to Λ it follows
that f is constant (the series has one term only), a con-
tradiction.

3. Intersecting line segments

In this section we prove Theorem  1.1 . Under the as-
sumptions of that theorem let us assume that Λ is a spec-
trum of ρ containing 0. We will arrive at a contradiction.

From Theorem  2.1 it follows that for any λ = (λ1, λ2) ∈ Λ
we have

(4) λ2 − λ1 ∈
1

2t + 1
Z.

Let now f (x) =
∑
λ∈Λ cλ( f )eλ(x), where cλ( f ) ∈ ℓ2(Λ). It fol-

lows from ( 4 ) that
(5) f (x + T) = f (x), as functions in L2(dρ),

where T = (2t+1,−2t−1). SinceΛ is assumed to be a spec-
trum of ρ it follows that every function f ∈ L2(dρ) satisfies
the periodicity condition ( 5 ).

Since − 1
2 < t < 0 we have 0 < 1+2t < 1+t < 1 and the two

points (0, 1 + 2t) and (1 + 2t, 0) both belong to the interior
of the line segments comprising suppρ. The difference of
these two points is T, the period vector appearing in (  5 ).
However (  5 ) is true for almost all x so we need some more
work to arrive to a contradiction.

Define the function f ∈ L2(dρ) to be 0 on the vertical
segment, equal to 1 at the point (1 + 2t, 0) , (0, 0) and,
restricted to the open horizontal segment, to be a smooth
function. In other words take f to be a smooth bump func-
tion supported close to (1 + 2t, 0). (See Fig.  2 .) We have
the L2(dρ) expansion

(6) f (x) =
∑
λ∈Λ
⟨ f , eλ⟩eλ(x).

But ⟨ f , eλ⟩ = 1
2

∫ t+1

t
f (s)e−2πiλ1s ds and, since f is smooth, we

have ∣∣∣⟨ f , eλ⟩∣∣∣ = O(|λ1|−10).
From Theorem 4.2 in [  LLP21 ] we also have that there
is exactly one λ ∈ Λ for each λ1 appearing (in the ter-
minology of that paper, Λ has multiplicity 1). From
Theorem 4.1 in [ LLP21 ] we have that the set of λ1 is a
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t

1 + t

1 + t

1 + 2t

f

t

1 + 2t

T

Figure 2. The measure ρ in the case −1/2 <
t < 0, with the smooth function f used in the
proof.

frame for Lebesgue measure on [t, t + 1], so it must have
bounded density (this follows also from the tiling property
proved in Lemma  5.2 below). These two facts imply that∑
λ∈Λ
∣∣∣⟨ f , eλ⟩∣∣∣ < ∞ and from this we obtain that (  6 ) holds

for all x ∈ suppρ (in fact, for all x ∈ R2) as both sides are
continuous functions. From ( 5 ) we must then have

1 = f (2t + 1, 0) = f (0, 2t + 1) = 0,

a contradiction.

4. Line spectra from projections

Here we prove Theorem  1.2 and see how it can be ap-
plied to produce line spectra for some collections of mea-
sures supported on line segments.

Let u be a unit vector in the straight line L that goes
through the origin. By our assumption on the injectivity
of πL ρ-almost everywhere, any function f (x) on suppρ
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can be written as
f (x) = f̃ (u · x),

for ρ-almost all x, where f̃ : R → C is supported on
u · suppρ. Also by the injectivity of πL we have that∫
R2

∣∣∣ f ∣∣∣2dρ =
∫
R

∣∣∣∣ f̃ ∣∣∣∣2dπLρ. Hence the map f → f̃ is a Hilbert
space isometry L2(ρ) → L2(πLρ) and inner products are
also preserved.

Next, observe that if λu ∈ L for some λ ∈ R, then we
have that eλ(x)u = e2πiλu·x, x ∈ R2, is constant on lines
perpendicular to L. In other words, eλu(x) = ẽλ(πL(x)) =
eλ(πL(x)).

This implies that Λ ⊆ R is a spectrum for πLρ if and
only if Λu ⊆ R2 is a spectrum for ρ, as we had to show.

□

The following result if valuable in determining when
the projection measure is spectral.

Theorem B ( [  DL14 ][Corollary 1.4]) If a measure µ onRd,
absolutely continuous with respect to Lebesgue measure, is
spectral (or even has a tight frame of exponentials) then it
is a constant multiple of Lebesgue measure.

Using Theorem  B in conjunction with Theorem  1.2 al-
lows us to easily determine the existence of line spectra.

Corollary 4.1. If ρ is a probability measure in the plane
which consists of one-half the Lebesgue measure on the
line segment from (t, 0) to (t + 1, 0) and one-half the
Lebesgue measure on the line segment from (0, t) to (0, t+1),
then if 0 ≤ t ∈ 1

2Z the measure ρ is spectral and with a
spectrum contained in the line y = −x.

Proof. Projecting ρ onto the line L given by y = −x we see
that the projection measure is supported on the union of
two intervals

U =
1√
2

((−(t + 1),−t) ∪ (t, t + 1)) ,

and is constant on U. From Theorem  1.2 and Theorem  B 

it is enough to show that U ⊆ R is spectral. See Fig.  3 .
By the result of [  Łab01 ] which verifies the Fuglede Con-

jecture when the set consists of two intervals, U is spec-
tral if and only if it tiles the real line. If t = 0 the union
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ρ

L

t t + 1

t

t + 1

πLρ

Figure 3. We project the two line segments
onto L. If the resulting two intervals tile
the line, then they are spectral and so is the
measure ρ.

is one interval only, which certainly tiles the line. If t > 0
and 2t ∈ Z then the gap between the two intervals is of
length 2t/

√
2, which is an integer multiple of the length

of each of the two intervals which have length 1/
√

2. In
this case one can easily see that U tiles the line by first
showing the it can tile an interval. To tile an interval we
just take k+ 1 = 2t+ 1 copies of U translated at the points
0, 1√

2
, . . . , k√

2
.

□

Remark 4.1. Notice that our approach provides an easy
way to complete the proof in [ ALZ23 ] after the essential
Proposition 8 in that paper has been proved which says
that any spectrum of ρ in the case t ∈ Q \ {−1/2} must be
contained in a straight line. In Corollary  4.1 we saw that
a line spectrum exists if 0 < t ∈ 1

2Z. And if t ∈ Q any
spectrum must be contained in a straight line [  ALZ23 ,
Prop. 8]. But the only line onto which ρ projects injectively
to a function that is constant on its support is the line
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y = −x. And the projection on that line is a union of two
equal intervals which can tile the line (equivalently, is
spectral in the line) only when t ∈ 1

2Z.

The method of projections is quite flexible when one
seeks to determine if ρ is spectral with a line spectrum.
Take for instance two arbitrary non-intersecting line seg-
ments in the plane, equipped with a constant multiple of
Lebesgue measure each, as shown in Fig.  4 .

ρ

πLρ

Figure 4. We choose a line L onto which to
project ρ so that the projection meeasure is
constant on its support.

So ρ is the sum of Lebesgue measure on one interval
multiplied by some constant c1 > 0 and Lebesgue measure
on the other interval multiplied by some constant c2 > 0.
We then choose a line L such that the projection measure
πLρ is constant on its support (which is one or two inter-
vals). If such a line cannot be found (this depends on the
slopes of the segments and the constants c1, c2) then ρ does
not have a line spectrum. If such a line is found then we
examine if the support of the projection can tile the line.
If it does then its spectrum is also a spectrum of ρ. If not
then ρ does not have a spectrum on this line.
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And the method need not be restricted to two segments.
In the cases shown in Fig.  5 it is easy to find a line onto
which ρ projects to a measure constant on its support and
this support is itself spectral in the line, thus implying
that ρ has a line spectrum. In all three examples shown
we project onto the x-axis. The projection function is con-
stant on its support. This support is a single interval in
the first two cases from the left. For the case on the right
the support consists of two intervals which together tile
periodically with period ℓ, and so we have a spectrum in
this case as well.

ℓ ℓ

Figure 5. These measures all have a spec-
trum contained in the x-axis.

5. The case of irrational t

In this section we prove Theorem  1.3 . In what follows
ρ is the probability measure µ × δ0 + δ0 × µ where µ is
one-half Lebesgue measure on the interval [t, t+1], where
t ∈ R \

{
−1

2

}
is fixed.

Our first goal is to show that for all points λ = (λ1, λ2) ∈
Λ the two coordinates are comparable.
Lemma 5.1. If Λ, with 0 ∈ Λ, is a spectrum of ρ then it is
not possible to have an infinite sequence λn = (λn

1 , λ
n
2) ∈ Λ

tending to infinity such that λn
2 = o(λn

1) or λn
1 = o(λn

2).
In other words there is a constant K > 1 such that for all
λ ∈ Λ \ {(0, 0)} we have
(7) K−1|λ1| ≤ |λ2| ≤ K|λ1|.

Proof. For any two different points λ = (λ1, λ2), ν = (x, y) ∈
Λ we have, from (  1 ), that

(8)
∣∣∣∣∣sinπ(x − λ1)
π(x − λ1)

∣∣∣∣∣ = ∣∣∣∣∣sinπ(y − λ2)
π(y − λ2)

∣∣∣∣∣.
The set Λ is infinite and there is a positive lower bound
on the distance of any two of its points (this is true for
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all spectra), so it must be the case that its points tend to
infinity.

Fix a point (λ1, λ2) ∈ Λ \ {(0, 0)} and apply (  8 ) while
ν = (x, y) → ∞, with y = o(x), is a point of Λ. It is clear
that the left hand side is o(·) of the right hand side, un-
less sinπ(y−λ2)→ 0 (for some subsequence of the points ν,
which we may consider to be the whole sequence), which
is equivalent to {y − λ2

} → 0, where {·} denotes the frac-
tional part. Using the same reasoning with the point
(0, 0) ∈ Λ in place of (λ1, λ2) we also obtain that {y} → 0.
Together these two imply that λ2 ∈ Z. Thus we showed
that all λ2 ∈ Z. From (  8 ) with (x, y) = (0, 0) it follows that
if λ2 = 0 then we also have λ1 = 0 and if λ2 ∈ Z \ {0} then
we also have λ1 ∈ Z \ {0}. We have proved that Λ ⊆ Z2

which is impossible by the results in [  LLP21 , Theorem
4.2] (but see also our Remark  2.1 ). This concludes the
proof that we cannot find a sequence ν = (x, y) ∈ Λ tend-
ing to infinity with y = o(x) or, by symmetry, x = o(y). Also
by [  LLP21 , Theorem 4.2] it follows that for λ ∈ Λ \ {(0, 0)}
we have λ1 , 0 and λ2 , 0 (multiplicity one, in the lan-
guage of [  LLP21 ]). From this observation and the impos-
sibility of λ2 = o(λ1) or λ1 = o(λ2) the bound (  7 ) follows for
some K > 1.

□

Next, we show that the spectrality assumption for ρ
leads to a certain one-dimensional tiling, which will al-
low us to deduce properties of the projection of Λ to the
coordinate axes.
Lemma 5.2. IfΛ is a spectrum of ρ then we have the level-
2 tiling of the real line

2 =
∑
λ∈Λ

∣∣∣∣1̂[− 1
2 ,

1
2 ]

∣∣∣∣2(x − λ1) (x ∈ R).

Proof. Consider the function f ∈ L2(ρ) which is 0 on the y-
axis and equal to ϕ on [t, t+1]×{0} for some ϕ ∈ L2([t, t+1]).
Expanding f with respect to Λ we get

2
∥∥∥ϕ∥∥∥2

L2([t,t+1])
=
∑
λ∈Λ

∣∣∣∣ϕ̂(λ1)
∣∣∣∣2.

Picking ϕ(s) = 1[t,t+1](s)e2πixs for some x ∈ R we get

(9) 2 =
∑
λ∈Λ

∣∣∣∣1̂[− 1
2 ,

1
2 ]

∣∣∣∣2(x − λ1).
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□

The next Lemma shows the very crucial property of the
set Λ1, that it is of finite complexity: in any fixed-length
window on the line we may only see a finite set of different
patterns of Λ1.

Lemma 5.3. The tiling in Lemma  5.2 is of finite complex-
ity. This means that there are finitely many different gaps
among successive points in Λ1 = {λ1 : λ = (λ1, λ2) ∈ Λ}.

Proof. Let us write the set Λ = {λn : n ∈ Z} in increasing
order of the first coordinates as follows

· · · ≤ λ−1
1 ≤ λ0

1 = 0 ≤ λ1
1 ≤ λ2

1 < · · · .
Our first goal is to show that λ1

1 can take only finitely
many values.

By the tiling property, there is an absolute constant C
such that λ1

1 ≤ C, so λ1 belongs to the vertical strip

V =
{
(x, y) : 0 ≤ x ≤ C

}
.

From (  7 ) we also know that λ1 belongs to the union of two
sectors

S =
{
(x, y) : x ≥ 0, K−1x ≤

∣∣∣y∣∣∣ ≤ Kx
}
.

See Fig.  6 .
Finally we already know that we must have

λ1
2 − λ1

1 =
k

2t + 1
for some k ∈ Z (remember that we have assumed t ,
−1/2), and it follows that |k|must be bounded because only
finitely many of the straight lines y − x = k/(2t + 1) inter-
sect V∩S. For each of the finitely many eligible values of k
there are finitely many points on the line y− x = k/(2t+ 1)
which are zeros of ρ̂ and belong to V, since on each such
line the zeros of ρ̂ are a discrete set as they correspond
the values of x such that

sinπx
πx

= ±
sinπ(x + k

2t+1 )

π(x + k
2t+1 )

,

and these are zeros of two entire functions of x that are not
identically zero. It follows that the possible locations for
λ1

1 are finitely many. Let us call the set of these locations
L ⊆ R.



SPECTRALITY OF TWO LINE SEGMENTS 16

By translatingΛ by−λn we obtain that the only possible
values for λn+1

1 − λn
1 are again the set L. We have proved

that the tiling ( 9 ) is a tiling of finite complexity.
□

In the next Lemma we use a result [  IK13 ] which says
that tilings of finite complexity, whose set of translates
has a spectral gap, are necessarily periodic. This was first
used [  IK13 ] to prove that spectra of bounded subsets of R
are necessarily periodic.

Lemma 5.4. The projections of Λ onto the x- and y-axes,
Λ1 and Λ2, are periodic sets, with periods in 1

2Z. In other
words, there are positive T1,T2 ∈ 1

2Z such that Λ1 = Λ1+T1
and Λ2 = Λ2 + T2.

Proof. From Lemma  5.3 we know that the tiling (  9 ) is a
tiling of finite complexity. It was proved in [  IK13 ], though
not stated precisely in this form (see [  KL16 , Theorem
5.1]), that in any tiling of finite complexity with a spec-
tral gap, the set of translates is periodic. To have a spec-
tral gap, the distribution δ̂Λ1 needs to vanish on an in-
terval. To see that this is the case here we need to ap-
ply [ KL16 ][Theorem 4.1] with

f =
∣∣∣∣1̂[− 1

2 ,
1
2 ]

∣∣∣∣2 ∈ L1(R).

By the conclusion of that result we obtain that

supp δ̂Λ1 ⊆ {0} ∪
{

f̂ = 0
}
.

But f̂ = 1[− 1
2 ,

1
2 ] ∗1[− 1

2 ,
1
2 ] so that

{
f̂ = 0

}
is the complement of

(−1, 1), and we see that δ̂Λ1 vanishes in any proper subin-
terval of (0, 1). We conclude that Λ1 is periodic. Let T1 > 0
be one of its periods. By symmetry there must also exist
a positive real number T2 such that Λ2 = Λ2 + T2.

It is easy to see from the tilings that T1,T2 ∈ 1
2Z. In-

deed, since the integral of
∣∣∣∣1̂[− 1

2 ,
1
2 ]

∣∣∣∣2 is 1 it follows that the
integral of the right hand side of ( 9 ) over a period, which
is 2T1 by looking at the left hand side of (  9 ), must be equal
to the total number of copies in a period, call it n1, which
gives 2T1 = n1, i.e. T1 ∈ 1

2Z, and similarly T2 ∈ 1
2Z.

□
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In the next Lemma we exploit the fact that exponentials
with frequencies on the line y = x cannot span L2(ρ) as the
projections of the two segments on that line overlap.

Lemma 5.5. If Λ is a spectrum for ρ then Λ has infinitely
many points not on the line y = x.

Proof. The exponentials of the form e(λ,λ)(x, y) = e2πi(λx+λy)

are constant along any straight line that is perpendicular
to the line y = x. Thus the exponentials with frequencies
inΛ∩{(x, y) : y = x

} can only generate part of the subspace
of L2(ρ) which consists of functions that are symmetric
with respect to the mapping (x, y) → (y, x). Clearly this
subspace has infinite co-dimension in L2(ρ) (its orthogonal
complement contains all functions which are negated un-
der the transformation (x, y) → (y, x)), so infinitely many
exponentials are required outside y = x if the exponen-
tials with frequencies in Λ are to generate L2(ρ). □

The irrationality of t is exploited next to show that there
is at most one point of the spectrum on each line y − x =
k/(2t + 1) for k , 0.

Lemma 5.6. If 0 ∈ Λ is a spectrum of ρ and t < Q then on
each line of the form

y − x =
k

2t + 1
, for some k ∈ Z,

there is at most one point of Λ.

Proof. It is easy to see from (  1 ) that

(10) {
ρ̂ = 0

} ∩ {(x, x) : x ∈ R} = {(n,n) : 0 , n ∈ Z}.

SinceΛ−Λ ⊆ {ρ̂ = 0
}∪{0}we deduce that any two different

points of Λ on the same line

Lk =

{
(x, y) : x − y =

k
2t + 1

}
, k ∈ Z,

must differ by a vector of the form (n,n), with 0 , n ∈ Z.
Let us first assume k , 0.
We now show that if t is irrational then there is at most

one point of Λ on each line Lk with k , 0. Indeed, suppose
that

(λ1, λ2), (λ1 + ν, λ2 + ν) ∈ Lk ∩Λ, for some ν ∈ Z.
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Then we have

eπi(λ1−λ2)(2t+1) sinπλ1

πλ1
= −sinπλ2

πλ2
(11)

eπi(λ1−λ2)(2t+1) sin(πλ1 + πν)
πλ1 + πν

= −sin(πλ2 + πν)
πλ2 + πν

.(12)

Since sin(x + πν) = (−1)ν sin x for x ∈ R we can, assuming
that both λ1 and λ2 are not integers, divide (  12 ) by (  11 )
and get

1 +
ν
λ1
= 1 +

ν
λ2
.

Since k , 0 it follows that λ1 , λ2 so the last equation
implies ν = 0, as we had to show. It remains to ensure that
λ1, λ2 < Z. If one of them is an integer then so is the other,
by (  11 ). But if they are both integers then by λ1−λ2 =

k
2t+1

we obtain that t ∈ Q, contrary to our assumption.
Let us now show the result for k = 0.
Assume that ν ∈ Z \ {0} and that (−ν,−ν) ∈ Λ. From

Lemma  5.5 there exists at least one point of Λ outside the
line y = x. Let us call this point (λ1, λ2). We immediately
have equations (  11 ) and (  12 ) and by the same argument
as above we arrive at a contradiction.

□

Proof of Theorem  1.3 . Assuming Λ to be a spectrum of ρ,
with 0 ∈ Λ, we obtain from Lemma  5.4 that
(13) Λ1 = T1Z + A, Λ2 = T2Z + B,

for some positive T1,T2 ∈ 1
2Z and some finite sets A ⊆

[0,T1) and B ⊆ [0,T2).
If λ = (λ1, λ2) ∈ Λ then, by Theorem  2.1 , there is k ∈ Z

such that
λ2 − λ1 =

k
2t + 1

.

From (  13 ) we have that λ1 = mT1 + a and λ2 = nT2 + b,
for some integers m,n and some a ∈ A, b ∈ B so, taking
fractional parts,

{2λ2 − 2λ1} = {2b − 2a} =
{

2k
2t + 1

}
.

The quantity {2b − 2a} takes only finitely many values as
A,B are finite sets. For different k the values of

{
2k

2t+1

}
are

different since 2/(2t + 1) is irrational. This means that
there are at most finitely many k’s for all points ofΛwhich
contradicts Lemma  5.6 .
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□
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C

Figure 6. The shaded region is V ∩ S. Only
finitely many of the lines y − x = k/(2t + 1),
k ∈ Z, intersect this region and on each of
these lines only an interval is contained in
the region.
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