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Abstract. Suppose Ω ⊆ Rd is a bounded and measurable set and Λ ⊆ Rd is a lattice.
Suppose also that Ω tiles multiply, at level k, when translated at the locations Λ. This
means that the Λ-translates of Ω cover almost every point of Rd exactly k times. We
show here that there is a set of exponentials exp(2πit ·x), t ∈ T, where T is some countable
subset of Rd, which forms a Riesz basis of L2(Ω). This result was recently proved by
Grepstad and Lev under the extra assumption that Ω has boundary of measure 0, using
methods from the theory of quasicrystals. Our approach is rather more elementary and
is based almost entirely on linear algebra. The set of frequencies T turns out to be a
finite union of shifted copies of the dual lattice Λ∗. It can be chosen knowing only Λ and
k and is the same for all Ω that tile multiply with Λ.

Keywords: Riesz bases of exponentials; Tiling

Contents

1. Introduction 1
1.1. Riesz bases 1
1.2. Orthogonal bases 2
1.3. Lattice tiles 2
1.4. Multiple tiling by a lattice 3
1.5. Multiple lattice tiles have Riesz bases of exponentials 3
2. Proof of the main result 4
References 6

Notation: We write e (x) = e2πix. If E is a set then χE is its indicator function. If A is a
non-singular d × d matrix and Λ = AZd is a lattice in Rd then Λ∗ = A−>Zd denotes the
dual lattice.

1. Introduction

1.1. Riesz bases. In this paper we deal with the question of existence of a Riesz (un-
conditional) basis of exponentials

et(x) := e(t · x) = e2πit·x, t ∈ L,

for the space L2(Ω), where Ω ⊆ Rd is a domain of finite Lebesgue measure and L ⊆ Rd

is a countable set of frequencies. By Riesz basis we mean that every f ∈ L2(Ω) can be
written uniquely in the form

(1) f (x) =
∑
t∈L

at · e(t · x)

with the coefficients at ∈ C satisfying

(2) C1

∥∥∥ f
∥∥∥2

2
≤

∑
t∈L

|at|
2
≤ C2

∥∥∥ f
∥∥∥2

2
,
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for some positive and finite constants C1,C2.

1.2. Orthogonal bases. One very special example of a Riesz basis occurs when the
exponentials e(t · x), t ∈ L, can be chosen to be orthogonal and complete for L2(Ω). One
can then choose at = |Ω|−1/2

〈 f , et〉 and C1 = C2 = 1/|Ω| for (2) to hold as an equality. For
instance, if Ω = (0, 1)d is the unit cube inRd then one can take L = Zd and obtain such an
orthogonal basis of exponentials. This case, where an orthogonal basis of exponentials
exists, is a very rigid situation though and many “reasonable” domains do not have
such a basis (a ball is one example [4, 10], or any other smooth convex body or any
non-symmetric convex body [7]).

The problem of which domains admit an orthogonal basis of exponentials has been
studied intensively. The so called Fuglede or Spectral Set Conjecture [4] (claiming
that for Ω to have such a basis it is necessary and sufficient that it can tile space by
translations) was eventually proved to be false in dimension at least 3 [20, 12, 2, 3, 11],
in both directions. Yet the conjecture may still be true in several important special
cases such as convex bodies [8], and it generated many interesting results even after
the disproof of its general validity (a rather dated account may be found in [10]).

It is expected that the existence of a Riesz basis for a domain Ω is a much more
general, and perhaps even generic, phenomenon, although proofs of existence of a
Riesz basis for specific domains are still rather rare, especially in higher dimension
[13, 14, 16]. Also no domain is known not to have a Riesz basis of exponentials [13].

1.3. Lattice tiles. One general class of domains for which an orthogonal basis of ex-
ponentials is known to exist is the class of lattice tiles. A domain Ω ∈ Rd is said to tile
space when translated at the locations of the lattice L (a discrete additive subgroup of
Rd containing d linearly independent vectors) if

(3)
∑
t∈L

χΩ(x − t) = 1, for almost all x ∈ Rd.

Intuitively this condition means that one can cover Rd with the L-translates of Ω, with
no overlaps, except for a set of measure zero (usually the translates of ∂Ω, for “nice”
domains Ω).

It is not hard to see that when Ω has finite and non-zero measure then the set L has
density equal to 1/|Ω|. If L is a lattice then we call Ω an almost fundamental domain of L
and |Ω| = (dens L)−1. A fundamental domain of L is any set which contains exactly one
element of each coset mod L, for instance a fundamental parallelepiped. There are of
course many others, as indicated in Figure 1.

0 1

1

Ω

Ω

Figure 1: Shaded Ω is a fundamental domain of R2/Z2

It is easy to see [4, 10] that every lattice tile by the lattice L has an orthogonal basis of
exponentials, namely those with frequencies t ∈ L∗, where L∗ is the dual lattice.
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1.4. Multiple tiling by a lattice. We say that a domain tiles multiply when its translates
cover space the same number of times, almost everyhwere.

Definition 1.1. Let Ω ⊆ Rd be measurable and L ⊆ Rd be a countable set. We say that Ω tiles
Rd when translated by L at level k ∈N if

(4)
∑
t∈L

χΩ(x − t) = k,

for almost every x ∈ Rd. If we do not specify k then we mean k = 1.

Multiple tiles are a much wider class of domains that level-one tiles. For instance
[1, 9], any centrally symmetric convex polygon in the plane whose vertices have integer
coordinates tiles multiply by the lattice Z2 at some level k ∈ N. In contrast, only
parallelograms or symmetric hexagons can tile at level one.

Another difference is the fact that if two disjoint domains Ω1 and Ω2 both tile multiply
when translated at the locations L then so does their union. In the case of multiple lattice
tiling this operation gives essentially the totality of multiple tiles starting from level-one
tiles, according to the following easy Lemma.

Lemma 1. Suppose Ω ⊆ Rd is a measurable set which tiles Rd at level k when translated by
the lattice Λ ⊆ Rd. Then we can partition

(5) Ω = Ω1 ∪ · · · ∪Ωk ∪ E,

where E has measure 0 and the Ω j are measurable, mutually disjoint and each Ω j is an almost
fundamental domain of the lattice Λ.

Proof. Let D ⊆ Rd be a measurable fundamental domain of Λ, for instance one of its
fundamental parallelepipeds. For almost every x ∈ D (call the exceptional set E ⊆ D)
it follows from our tiling assumption that Ω ∩ (x + Λ) contains exactly k points, which
we denote by

p1(x) < p2(x) < · · · < pk(x),

ordered according to the lexicographical ordering inRd. We also have that almost every
point of Ω belongs to exactly one such list.

Let then Ω j =
⋃

x∈D\E p j(x), for j = 1, 2, . . . , k. In other words, for (almost) each one of
the classes mod Λ we distribute its k occurences in Ω into the sets Ω j. It is easy to see
that the Ω j are disjoint and measurable and that they are almost fundamental domains
of Λ. �

1.5. Multiple lattice tiles have Riesz bases of exponentials. It is not true that domains
that tile multiply by a lattice have an orthogonal basis of exponentials. For instance, it
is known [8] that the only convex polygons that have such a basis are parallelograms
and symmetric hexagons, yet every symmetric convex polygon with integer vertices is
a multiple tile, a much wider class.

It is however true that multiple tiles have a Riesz basis of exponentials. The main
result of this paper is the following theorem.

Theorem 1. Suppose Ω ⊆ Rd is bounded, measurable and tiles Rd multiply at level k with the
lattice Λ. Then there are vectors a1, . . . , ak ∈ Rd such that the exponentials

(6) e
(
(a j + λ∗) · x

)
, j = 1, 2, . . . , k, λ∗ ∈ Λ∗

form a Riesz basis for L2(Ω).
The vectors a1, . . . , ak depend on Λ and k only, not on Ω.
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Theorem 1 was proved by Grepstad and Lev [6] with the additional topological
assumption that the boundary ∂Ω has Lebesgue measure 0.

In [6] the result is proved following the method of [18, 17] on quasicrystals. Our
approach is more elementary and almost entirely based on linear algebra. The authors
of [6] have pointed out to me that there are similarities of the method in this paper and
the methods in [14, 15, 16]. The method essentially appears also in [19, §3.2].

As an interesting corollary of Theorem 1 let us mention, as is done in [6], that,
according to the recent result of [5], if Ω is a centrally symmetric polytope inRd, whose
codimension 1 faces are also centrally symmetric and whose vertices all have rational
coordinates, then L2(Ω) has a Riesz basis of exponentials.

Open Problem 1. Is Theorem 1 still true if Ω is of finite measure but unbounded?

2. Proof of the main result

The essence of the proof is contained in the following lemma.

Lemma 2. Suppose Ω ⊆ Rd is bounded, measurable and tiles Rd multiply at level k with the
lattice Λ. Then there exist vectors a1, a2, . . . , ak ∈ Rd such that the following is true.

For any f ∈ L2(Ω) there are unique measurable functions f j : Rd
→ C such that

(1) The f j are Λ-periodic,
(2) The f j are in L2 of any almost fundamental domain of Λ, and
(3) We have the decomposition

(7) f (x) =

k∑
j=1

e
(
a j · x

)
f j(x), for a.e. x ∈ Ω.

Finally we have

(8) C1

∥∥∥ f
∥∥∥2

L2(Ω)
≤

k∑
j=1

∥∥∥ f j

∥∥∥2

L2(Ω)
≤ C2

∥∥∥ f
∥∥∥2

L2(Ω)
,

where 0 < C1,C2 < ∞ do not depend on f .

Proof. Using Lemma 1 we can write Ω as the disjoint union

Ω = Ω1 ∪ · · · ∪Ωk,

where each Ωk is a measurable almost fundamental domain of Λ. We can now define
for j = 1, 2, . . . , k and for almost every x ∈ Rd

(9) ω j(x) as the unique point in Ω j s.t. x − ω j(x) ∈ Λ, and

(10) λ j(x) = x − ω j(x).

(The maps ω j are clearly measurable and measure-preserving when restricted to a
fundamental domain of Λ.) Since the sought-after f j are to be Λ-periodic it is enough
to define them on Ω1 and extend them to Rd by their Λ-periodicity. We may therefore
rewrite our target decomposition (7) equivalently as follows.

(11) For each x ∈ Ω1 and r = 1, 2, . . . , k: f (ωr(x)) =
∑k

j=1 e
(
a j · (x − λr(x))

)
f j(x).

We view (11) as a k × k linear system

(12) MF̃ = F

whose right-hand side is the column vector

F = ( f (ω1(x)), f (ω2(x)), . . . , f (ωk(x)))>
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and the unknowns form the column vector

F̃ = ( f1(x), f2(x), . . . , fk(x))>.

We have a different linear system for each x ∈ Ω1 and its matrix is M = M(x) ∈ Ck×k

with

(13) Mr, j = Mr, j(x) = e
(
a j · (x − λr(x))

)
, r, j = 1, 2, . . . , k.

Factoring we can write this matrix as

(14) M(x) = N(x) diag (e (a1 · x), e (a2 · x), . . . , e (ak · x)),

with the matrix N = N(x) given by

Nr, j = Nr, j(x) = e
(
−a j · λr(x)

)
, r, j = 1, 2, . . . , k.

The key observation here is that when varying x ∈ Ω1 the number of different N(x)
matrices that arise (the a j are fixed) is finite and bounded by a quantity that depends
on Ω and Λ only. The reason for this is that the vectors λr(x) are among the Λ vectors
in the bounded set Ω −Ω, hence they take values in a finite set. (This is the only place
where the boundedness of Ω is used.)

Let us now see that the vectors a1, . . . , ak can be chosen so that all the (finitely many)
possible matrices N are invertible. We have

(15) det N(x) =
∑
π∈Sk

sgn (π) e

− k∑
j=1

a j · λπ j(x)

,
where Sk denotes the permutation group on {1, 2, . . . , k}. By the definition of the vectors
λr(x) and the disjointness of the sets Ωr it follows that for each x no two λr(x) can be
the same. View now the expression (15) as a function of the vector a = (a1, . . . , ak) ∈ Rdk.
Clearly it is a trigonometric polynomial and it is not identically zero as all the frequencies
(for π in the symmetric group Sk)

(16) λπ(x) = (λπ1(x), . . . , λπk(x)) ∈ Rdk,

are distinct precisely because all the λr(x) are distinct. Since the zero-set of any trigono-
metric polynomial (that is not identically zero) is a set of codimension at least 1 it
follows that the vectors a1, . . . , ak can be chosen so that all the N(x) matrices that arise
are invertible.

Let now x ∈ Ω1 and consider the solution of the linear system (12) at x that now takes
the form

(17) F̃(x) = diag (e (−a1 · x), e (−a2 · x), . . . , e (−ak · x)) N(x)−1F(x).

Since N(x) runs through a finite number of invertible matrices and the diagonal matrix
in (17) is an isometry it follows that there are finite constants A1,A2 > 0, independent
of f , such that for any x ∈ Ω1 we have

(18) A1‖F(x)‖2`2 ≤

∥∥∥F̃(x)
∥∥∥2

`2 ≤ A2‖F(x)‖2`2 .

Integrating (18) over Ω1 we obtain

(19) A1

∥∥∥ f
∥∥∥2

L2(Ω)
≤

k∑
j=1

∥∥∥ f j

∥∥∥2

L2(Ω1)
≤ A2

∥∥∥ f
∥∥∥2

L2(Ω)
.

This implies (8) with C j = k ·A j, j = 1, 2. To show the uniqueness of the decomposition
(7) observe that any such decomposition must satisfy the linear system (17), whose
non-singularity has been ensured by our choice of the a j. �

We can now complete the proof of our main result.
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Proof of Theorem 1. Let f ∈ L2(Ω). By Lemma 2 we can write f as in (7). Since the f j are
Λ-periodic and are in L2 of any almost fundamental domain D of Λ it follows that we
can expand each f j in the frequencies of Λ∗ (the dual lattice of Λ)

(20) f j(x) =
∑
λ∗∈Λ∗

f j,λ∗e (λ∗ · x), j = 1, 2, . . . , k,

with

(21)
∥∥∥ f j

∥∥∥2

L2(D)
=

∑
λ∗∈Λ∗

∣∣∣ f j,λ∗
∣∣∣2,

since the exponentials e(λ∗ · x), λ∗ ∈ Λ∗, form an orthogonal basis of L2(D) (we assume
without loss of generality that |D| = 1).

The completeness of (6) follows from (7):

(22) f (x) =

k∑
j=1

∑
λ∗∈Λ∗

f j,λ∗e
(
(a j + λ∗) · x

)
.

The fact that (6) is a Riesz sequence follows from (8):

k
C2

∑
j,λ∗

∣∣∣ f j,λ∗
∣∣∣2 ≤ ∥∥∥∥∥∥∥∑j,λ∗ f j,λ∗e

(
(a j + λ∗) · x

)∥∥∥∥∥∥∥
2

L2(Ω)

≤
k

C1

∑
j,λ∗

∣∣∣ f j,λ∗
∣∣∣2.

As is clear from the proof above, the k-tuples of vectors a1, . . . , ak that appear in
Theorem 1 are a generic choice: almost all k-tuples will do. The exceptional set in Rdk

is a set of lower dimension.
With a little more care one can see that one can choose the vectors a1, . . . , ak to depend

on Λ and k only and not on Ω. In the proof of Lemma 2 the a j were chosen to ensure
that the trigonometric polynomials (15) are all non-zero. Fix Λ and k and form the set of
all polynomials of the form (15) which are not identically zero. This set of polynomials
is countable and each such polynomial vanishes on a set of codimension at least 1 in
Rdk. It follows that the union of their zero sets cannot possibly exhaustRdk and we only
have to choose the a j to avoid that union.

Thus there is a choice of a j that works for all Ω of the same lattice. This proof does
not give uniform values for the constants C1 and C2 in (8) though. �
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