PERIODICITY OF THE SPECTRUM OF A FINITE UNION OF INTERVALS
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ABSTRACT. A set Q, of Lebesgue measure 1, in the real line is called spectral if there is a set A of real
numbers such that the exponential functions ex(z) = exp(2midz), A € A, form a complete orthonormal
system on L?(2). Such a set A is called a spectrum of Q. In this note we present a simplified proof of the
fact that any spectrum A of a set €2 which is finite union of intervals must be periodic. The original proof
is due to Bose and Madan.
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1. INTRODUCTION AND STATEMENT OF THE RESULT

Let Q € R? be a bounded measurable set of Lebesgue measure 1. A set A C R? is called a spectrum of
Q (and € is said to be a spectral set) if the set of exponentials

E(A) = {eA(m) = 2miAT . )\ ¢ A}

is a complete orthonormal set in L?(€2). (The inner product in L*(Q) is (f,g) = [, f7.)
It is easy to see (see, for instance, [5]) that the orthogonality of E(A) is equivalent to the packing
condition

(1) Yol @-n) <1, ae (2),
AEA

as well as to the condition
(2) A—AC{0}U{xa =0}

The completeness of F(A) is in turn equivalent to the tiling condition

(3) Z o’z =X =1, ae (2)

AEA

These equivalent conditions follow from the identity
(4) (ensen) = | extn = XA — p)

and from the completeness of all the expontials in L?(Q).

Ezample: If Qq = (—1/2,1/2)? is the cube of unit volume in R? then Z? is a spectrum of Qg.

In the one dimensional case, which will concern us in this paper, condition (2) implies that the set A
has gaps bounded below by a positive number, the smallest zero of xq.

Research on spectral sets has been driven for many years by a conjecture of Fuglede [4] which stated
that a set €2 is spectral if and only if it is a translational tile. A set 2 is a translational tile if we can
translate copies of  around and fill space without overlaps. More precisely there exists a set S C R? such
that

(5) ng(az —s)=1, ae. (z).
sesS
This conjecture is now known to be false in both directions if d > 3 [12, 11, 7, 8, 2, 3] and both directions
are still open in dimensions d = 1, 2.
In this paper we present a new proof of the periodicity of the spectrum, which is a considerable simpli-
fication of that in [1].
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Theorem 1 (Bose and Madan [1]). If @ = Ji_,(a;,b;) C R is a finite union of intervals of total length 1
and A C R is a spectrum of ) then there exists a positive integer T such that A +T = A.

This is the spectral analogue of a result [10, 9, 6] which states that all translational tilings by a bounded
measurable set (or by a compactly supported function) are necessarily periodic. The proof of Theorem 1
is given in the next section.

2. PROOF OF THE PERIODICITY OF THE SPECTRUM

Let us observe first, as in [1], that the spectrum A = {)\; : j € Z}, A; < \j11, of any bounded set @ C R
has “finite complexity”, in the sense that all gaps A\j;1 — A; are drawn from the discrete set (xgq is analytic
as xqo has bounded support) {Xq = 0}. This implies that if we consider all intesections of A with a sliding
window of width h

AMA+A]NA, (where A € A),

then we only see finitely many different sets.
IfQ= U?Zl(aj, b;) C R it follows by a simple calculation that

(6) TE) = gozg D (7€ - o727,

j=1
The important ingredient of the approach in [1] that we keep in our approach is the view of the spectrum
as a linear space via the map ¢ = ¢q : R — C?" given by

—27rw,1;r’ o ’e—Qmanx’ e—27rzb1;t’ o ’e—2mbnx)‘

x— (e
Define the bilinear form A on C?" by (writing z = (21, 22), 21, 22 € C")
A(z,w) = (z1,w1) — (22, w3),
where (-, ) is the usual inner product on C". Using (6) we see that if A\ # p then
ex Le, if and only if A(é(N), o(n)) = 0.

Write
V(A) = span ¢(A)

for the subspace of C?" generated by the set ¢(A) = {p(N\) : X € A}.

Suppose now that B = {by,...,b,} C A is a generating set, i.e., that V(A) = span ¢(B). It follows that
x € A if and only if A(¢(x),p(bj)) for j =1,2,...,m. Indeed, if the latter condition is true it follows by
linearity that A(¢(x), ¢(n)) = 0 for all p € A and hence that e, L e, p € A\ {x}. This implies that x € A,
otherwise E(A) would not be a complete set of exponentials for L?(€2). As remarked in [1] this means that
A is determined by any such generating set B.

Lemma 1. Let Q be a finite union of intervals. If A C R is a set of positive minimum gap & then for

R > 0 we have
> Ixal*(a) < C/R,

acA
la|>R

for some constant C > 0 that may depend on Q and § only.
Proof. This is immediate from the fact that |xa|*(y) < C/|y|* (see (6)). O
Lemma 2. There is a finite T > 0 such that for all © € R the set AN (z,x +T) is a generating set.
Proof. Suppose not, so that there is a sequence my € A, k =1,2,..., such that
dim span ¢(A N (my — k, my + k)) < dimspan ¢(A).
Consider the sequence of finite sets
My = [A0 (my — k,my + k)] — my,

i.e., the sets A N (my — k, my + k) translated so that they are centered at 0 (therefore they all contain 0).
Observe that in any given interval (—¢,¢) the sets My may only take finitely many forms.
For n =1,2,3,... in turn we look at the infinite sequence

M0 (—n,n), k=1,2,....
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There is an infinite sequence of k’s such that all sets My N (—n,n) are the same. Keep only these indices
and define L,, to be this common set. In this way we define an increasing infinite sequence of sets Ly,
Ly, C Ly41, each of which contains 0 and is of the form

L,=ANn(ch —n,cn +n) — cp,
for some ¢,, € A.
Let L = J;2 | Ly. Since each finite part of L is a translate of a part of A it follows that the elements of
E(L) are orthogonal. We now show that F(L) is also complete and is thus also a spectrum of €.

For this it suffices to show that F(x) := ), IXal>(x — ¢) = 1 for almost every z € R. Assume for
simplicity that © > 0. We have for ¢t > 2z

1> F(x) (from (1), since E(L) is an orthogonal set)
> Y el -0
Le(—t,t)NL
= Z xal*(z = 0) (for some n = n(t) > t)
Le(—t,)NLy,

= Y Kale-o

leN—cy, |f<t

=1- Z IXal?(z —0) (by (3) for a.e. z, since A is a spectrum)
teN—cn, |0|>t

>1-— > IXal*(z —0) (as €| > t > 2z implies |z — £| > t/2)
LeN—cp, |lz—L|>t/2

=1- > Xal*(a) (with a = 2 — £)
a€x—A+cp, |a|>t/2
C .

>1-— n (from Lemma 1 applied to the set © — A + ¢,,).

Letting ¢ — oo we obtain that F(x) = 1 for almost all x € R. (Notice that the constant C' that appears
above does not depend on n.)
Since every finite subset of L is contained in some L,, it follows that

(7) dimspan ¢(L) < dimspan ¢(A).

To derive a contradiction let the finite set A’ C A be such that ¢(A’) is a basis of span ¢(A) and also let
the finite set L' C L be such that ¢(L') is a basis of span ¢(L). Some translate s + L’ of the finite set L' is
contained in A, hence

A(p(s+ ), 6(N)) =0, (forall ¢/ € L' and N € A'),

which implies
Alp(l),p(=s+ X)) =0, (forall ¢ € L' and X € N\'),
and this means that —s + A’ C L and therefore that
dim span ¢(L) > dim span ¢(—s + A’) = dim span ¢(A’) = dim span ¢(A),

in contradiction with (7). We have used the easy fact that dimspan ¢(A + x) = dimspan ¢(A) for any
z€R, ACR. 0

Completion of the proof: The set A is periodic.
Let T be as in Lemma 2 and consider all subsets of A of the form

By=ANMA+T], A€A.

It follows from Lemma 2 that B, is a generating set for each A\. But there are only finitely many different
forms the set By — X can take, hence there are A\, Ao € A, A1 > Ao, such that

B)\l - )\1 = B)\Q - )‘Qa

or
B)\l = B)\Q + A1 — Ao
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Since By, and By, are both generating sets for ¢(A) it follows that
reNse, Le, (yeBy,)

< €A —Ao 1 €y (y € B>\1)
<=>1‘+(/\1—)\2) € A.

In other words, T'= A1 — Ag is a period of A.

Let us also remark that any period of A must be an integer. This is a consequence of the fact that A
has density 1: if T" is a period of A this implies that there are exactly T elements of A in each interval
[,z 4+ T') hence T is an integer.

REFERENCES

[1] D. Bose and S. Madan. Spectrum is periodic for n-Intervals. Journal of Functional Analysis, 260(1):308-325, 2011.
[2] B. Farkas, M. Matolcsi, and P. Méra. On Fuglede’s conjecture and the existence of universal spectra. J. Fourier Anal.
Appl., 12(5):483-494, 2006.
[3] B. Farkas and S. Révész. Tiles with no spectra in dimension 4. Math. Scand., 98(1):44-52, 2006.
[4] B. Fuglede. Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal., 16:101-
121, 1974.
[5] M. Kolountzakis. The study of translational tiling with Fourier Analysis. In L. Brandolini, editor, Fourier Analysis and
Convexity, pages 131-187. Birkhauser, 2004.
[6] M. Kolountzakis and J. Lagarias. Structure of tilings of the line by a function. Duke Mathematical Journal, 82(3):653-678,
1996.
[7] M. Kolountzakis and M. Matolcsi. Complex Hadamard matrices and the spectral set conjecture. Collect. Math., Extra:281—
291, 2006.
[8] M. Kolountzakis and M. Matolcsi. Tiles with no spectra. Forum Math., 18:519-528, 2006.
[9] J. Lagarias and Y. Wang. Tiling the line with translates of one tile. Inventiones Mathematicae, 124(1):341-365, 1996.
[10] H. Leptin and D. Miiller. Uniform partitions of unity on locally compact groups. Advances in mathematics, 90(1):1-14,
1991.
[11] M. Matolcsi. Fuglede’s conjecture fails in dimension 4. Proc. Amer. Math. Soc., 133(10):3021-3026, 2005.
[12] T. Tao. Fuglede’s conjecture is false in 5 and higher dimensions. Math. Res. Lett., 11(2-3):251-258, 2004.

M.K.: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CRETE, KN0OSsOs AVE., GR-714 09, IRAKLIO, GREECE
E-mail address: kolount@gmail.com



