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Abstract

We present some applications of the probabilistic method in additive number theory and
harmonic analysis. We describe two general approaches to the probablistic construction of
certain objects. The question of whether one can actually “construct” these is also discussed
and several examples of “derandomized” probabilistic proofs are given.

1 Introduction

The term probabilistic method (counting method) in mathematics refers to the proof of the exis-
tence of a certain object by examining the behavior of an appropriate collection of candidates.
This collection is equipped with a nonnegative measure of total mass 1 (a probability mea-
sure). The behavior of the collection, with respect to a certain property of its members, is then
examined either on the average or in measure, as will become clear below.

The application of probability to different branches of mathematics in order to prove state-
ments that do not seem to have anything to do with probability has been occuring more and
more often since about the middle of this century, pioneered mainly by the work of Erd6s. The
method is used particularly frequently in combinatorics, number theory and harmonic analysis.
In [3] many applications of the method in discrete mathematics and theoretical computer science
are given, while [16] is the primary reference for applications in analysis.

In this paper we distinguish and describe two different arguments in which a probability
measure can be used to prove the existence of objects with interesting properties. We describe
these arguments mainly by giving examples from additive number theory and harmonic analysis.
We do not mean to and we cannot exhaustively describe all different ways of using probabilistic
ideas to prove theorems in these two branches of mathematics.

The common characteristic of the two kinds of probabilistic arguments is the ad-hoc definition
of the underlying probability measure. This definition depends much on the problem at hand
but a guiding principle in choosing a probability measure for a certain collection of objects is to
ensure at least good behavior on the average. Having made our choice of the probability measure
the probabilistic arguments that we want to discuss can be described as follows.

1. The Average Value argument
The existence of an object having a certain property follows from the fact that the expected
value of the single quantity of interest (with respect to the probability measure that we
have defined) falls in the desired range.
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2. The Large Deviation arqument

When the goodness of an element in our probability space depends on more than one
quantity (random variable) we cannot establish the existence of a good object by knowing
just that these random variables have expected values in the appropriate range. This is
so simply because this kind of information does not guarantee the existence of a point in
the probability space at which all random variables of interest are simultaneously in the
proper range. We then need to bound the probability that each of these random variables
deviates from its expected value (the probability of large deviation) and show that, in total,
these probabilities amount to less than 1.

The lack of the power to “construct” the solution to a specific problem is an inherent char-
acteristic of the probabilistic method. Very frequently the probabilistic proof of a theorem is
extremely simple compared to a bare hands constructive proof, and that 1s to be expected since
it furnishes less: the mere existence of a solution to a problem rather than the solution itself.
Probabilistic proofs are thus almost universally regarded as inferior, if simpler, than “construc-
tive” proofs, and probably with good reason. Yet, one of the points that we want to make here
is that, very often, a probabilistic proof can easily be turned into a construction if one assumes
the point of view, that an efficient algorithm is a consiruction. We shall give several examples
of this so-called derandomization of a probabilistic proof.

2 The prototype Average Value argument

The prototype example of the probabilistic method in this form can be considered to be the
following obvious statement.

Proposition 2.1 Ifzy,...,2, € R and

Bt ()

then for some j
x; > a. (2)

The usefulness of the method lies in the fact that the average (1) is often easier to compute
than exhibiting a specific z; for which (2) can be proved to hold.

Let us rephrase Proposition 2.1 in the following more useful form. The measure space €2 is
equipped with a nonnegative measure dPr of total mass 1, and a real random variable X on 2
is just a measurable function X : Q — R.

Proposition 2.2 Let X be a real random variable on a probability space (Q,dPr) whose ez-
pected value

E[X] = /ﬂX(w)dPr(w)
satisfies
E[X] > a.

Then there is w € Q such that
X(w) > a.

We remark that because of the obvious linearity property of the expectation of a random variable
E[aX1 + [))Xg] = aE[Xl] + [)’E[Xg]

(whenever the right hand side makes sense), the expected value of quantities of interest are al-
most always very easy to compute or at least to estimate very well. Notice that no independence
is required of the pair X7, Xs.

We proceed to give some examples.



2.1 An example from graph theory

Let n,m, with n > m > 3, be two positive integers. We denote by K,, the complete graph on n
vertices. We want to color the edges of K,, with two colors, say red and blue, so that it contains
few monochromatic copies of K, (m-cliques). Of course it is easy to have many monochromatic
K,,’s by coloring every edge with the same color. For each subset A of [n] = {1,...,n} with
|A| = m we define the function of the coloring

| 1 if A is monochromatic,
XA=1 0 otherwise.

Then the number X of monochromatic K,,’s 1s

x= Y (3)

AC[n], |Al=m

We color each edge of K, red or blue with equal probability 1/2 and independently of the other

edges, i.e. we toss a fair coin for each edge. The expected value of x4 is then 2(%)(73) and by
the linearity of expectation and (3) we get

E[X] = <">21—(2").

m

We have proved:

Theorem 2.1 There is a 2-coloring of the edges of the graph K, which gives rise to no more

than (:1)21_(2) monochromatic K,,’s.

2.2 A large sum-free subset of a given set of integers

A subset E of an additive group is called sum-free if
r4+y#z, forallz,yzeF. (4)

The following theorem of Erdés [10], [2] has a beautiful probabilistic proof. See also [19] for a
similar, but computationally more efficient, approach.

Theorem 2.2 Let A CN be a set of N positive integers. Then there i1s a sum-free subset E of
A with

|F|>1N
/| > 3N,

Proof: Let A = {ny < --- < ny} and choose any prime p > ny such that p = 3k + 2 for
some k € N. View the set A as a subset of the multiplicative group of units of the field Z, (the
integers mod p). Write

S={k+1,...,2k+ 1}

and notice that |S| > (p—1)/3 and S is sum-free as a subset of Z,. Let ¢ be uniformly distributed
over Z ={1,...,p— 1} and write

where t - A= {t-ny,...,t-ny} and the arithmetic is in Z,. Since
X:Zm”jeA)
j€s

and

, N
E[1(t7'j € A)] = T for all j € Z



(Z is a multiplicative group), we have

ISIN N
_— > —.

BIX]= > 3

This implies that there is ¢ € Z for which X > N/3. Define then

E=AN(t;"S).

It follows that E' is sum-free as a set of integers (even more, it is sum-free mod p) and |E| > N/3,
as we had to show. O

Open Problem: What is the largest constant that works in place of 1/3 in the previous theorem?
It must be smaller than 12/29 [2].

Bourgain [5] remarked to the author that a similar result can be proved about infinite
sequences of positive integers.

Theorem 2.3 Let A = {ay,as, ...} be an infinite sequence of positive integers and write A(z) =
|A N1, z]| for the counting function of A. Then there is an infinite sum-free subsequence E of

A with
E(z) 1

1 =-.

s Alz) 3

Note that Theorem 2.3 does not follow from Theorem 2.2 about sum-free subsets of finite sets.
The proof of Theorem 2.3 follows from the following well known result (see [23, p. 32]) on

uniform distribution of sequences mod 1.

Theorem 2.4 Let A ={a1,as,...} be an infinite sequence of positive integers. Then for almost
all (Lebesgue) real numbers x the sequence {xay} is uniformly distributed mod 1, that is for all

a?ﬁe[oﬂl]’a<ﬂ’

Im {(za1) mod 1,..., (zan) mod 1} N (e, §)]
N—oco N

=p—-oa. (5)
Above we denote by z mod 1 the fractional part of the real number z.
Let then z be one such real number for which (5) holds and define

E={acA: zamod1 € (1/3,2/3)}.

Clearly then F is sum-free and
. FE(@) 1
lim ==

c—co A(z) 3

follows from (5).

2.3 TUchiyama’s theorem on the ' norm of trigonometric polynomials

The following theorem regarding the L' norm of trigonometric polynomials was proved by
Uchiyama [29]. Tt is related to the so-called Littlewood Conjecture [20, 25].

Theorem 2.5 Let A= {ni <---<nn} be a set of N positive integers. Then there is a subset
E C A such that

Z ez > cVN, (6)
JEE 1

where C' 1s a positive constant.



Proof: Let g(z) = zjeA &7 and
OEDT
jeA
where ¢; = +1 with equal probability and independently. By the triangle inequality it suffices

to show that there is an assignment to ¢; that makes ||f||;, > V' N. To this end we use Holder’s
inequality in the form

2 2/3 4/3
1715 < AR 1A
We always have ||f||§ = N and

1= D cene’ =R

ik

Thus writing (the indices j, k always run through A)

r(z) = Z €€k

z=j—k

1 27
=5 [ 1 =% P

we get

and

E[lfl:= D El’@@)]= Y Elgeaeen]

zeN j—k=ji—k

and the only terms that will survive are essentially those with j = 7/, k = k’, thus
4 2 2
E[||f||] = N? 4+ o(N?).

This implies the existence of an assignment of the ¢; such that ||f||;1 < N? + o(N?). Using
Holder’s inequality for this assignment we get ||f||; > N2 _ 0(N1/2) which concludes the
proof. O

3 The prototype Large Deviation argument

Often we associate several quantities X1,..., X, with a random object (n can be infinite).
Typically their averages E[X1],..., E[X,] will be easy to compute or estimate and their value
will be in the desirable range. Our objective is to have the values of the random variables X;
themselves in that range, simultaneously for all j.

Having found a proper distribution of random objects, namely one for which the expected
values E[X;] are of the desirable magnitude, we still need to bound the probability that some
X; deviates too much from its expected value. That is, we want an upper bound on

Pr([|X; — E[X;]| > d;, for some j]. (7)

The maximum allowed deviations d; are problem dependent.
It is usually the case that the best upper bound that we know for this probability 1s

> Pr[X; — E[X;]| > d;].
j=1

So we aim for this sum to be strictly less than 1. This implies that with positive probability
none of the bad events
Bj = {lXJ - E[X]]l > d]}a .7 = 1;"')“;
holds. In particular there is an object for which the quantities X; satisfy
E[X;]-d; < X; < E[X;]+d;, forj=1,... n.

To achieve this we can use several well known Large Deviation inequalities.



3.1 Inequalities for Large Deviations

The following two inequalities are straightforward to prove.

Proposition 3.1 (Markov’s Inequality) If X is any nonnegative random wvariable with finite
ezxpectation then for all a > 0

Pr[X > oB[X]] <

Q|

(8)

Proposition 3.2 (Chebyshev’s Inequality) If X is any real random variable with finite variance
0? = E[(X — E[X])?] then for all @ > 0

Pr[|X — E[X]| > ac] < % ()

The inequalities of Markov and Chebyshev are rather weak in most cases but they are applicable
to virtually any random variable and this makes them very useful.

In the following theorems the random variable X is assumed to be of a special form: a sum
of independent random variables.

Theorem 3.1 (Chernoff [6], [3, p. 239]) If X = Xy + ---+ X}, and the X; are independent
indicator random variables (that is X; € {0,1}), then for all ¢ >0

Pr[|X — E[X]| > cB[X]] < 2¢~FIX]
where . > 0 is a function of ¢ alone

ce = min {—log (e(1 + e)_(l"'f)), e?/2}.

We call a random variable X which, as above, is the sum of independent indicator random
variables a STIRV.

Remarks on Theorem 3.1:

1. Observe that if X = X’ + X" where X’ and X" are SIIRV then we have
Pr[|X — E[X]| > cE[X]] < 4¢~° min {EIX'TEX"]}
2. Since there is no dependence of the bound on k (the number of summands in X), it is easy

to prove that the same bound holds for X = Z;i1 X;, provided that Z;i1 E[X;] < co.

3. Suppose one has to control n different SIIRV variables, say Y7,...,Y,. By this we mean
that we want to ensure that each Y is of the order of its expected value, with high
probability. In order then for Theorem 3.1 to be of any use the expectations E[Y;] must
be large, at least C'logn where the constant C' can be made as large as we please. One
cannot control with this theorem random variables with sublogarithmic expectations.

Theorem 3.2 [3, p. 236] Let p1,...,pn € [0,1] and let the independent zero-mean random
vartables X, ..., X,, have the distribution

v, — 1 —p; with probability p;,
N with probability 1 — p;.

IfX=a1 X1+ -+ an Xy, where ay,...,a, € C, then we have for alla >0
n
Pr(|X|>a] < Crexp | —Cha’/ D |a;* |,
ji=1

where C1,Cy > 0 are two absolute constants. In particular, if |aj| < 1 we have the above
probability bounded above by Cy exp (—C2a®/n).

Theorems 3.1 and 3.2 are extremely useful. In the next section we show a nice application
of Theorem 3.1 to a problem in additive number theory.



3.2 An asymptotic additive basis with small representation function

A set E of positive integers is called an asymptotic additive basis of order 2 if the representation
function

r(z) =rp(z) = {(a,b) : a,beE E& a<b& z=a+b}

is strictly positive for all sufficiently large integers . In other words all sufficiently large = can
be expressed as a sum of two elements of E. Examples of asymptotic additive bases are the set
N of natural numbers itself and the set {1,2,4,6,8,...}. We are interested in bases for which
the representation function is small. Notice that in the previous two examples r(z) can be as
large as C'z.
We present Erdds’s probabilistic proof [8, 9], [14, Ch. 3] that there is an asymptotic basis of
order 2 such that
c1loge < r(x) < caloge (10)

for all sufficiently large 2. The ratio of the two absolute constants ¢; and ¢2 can be made

1 . 1/2
Dz = K- < OgT>
xr

for the values of = for which the right hand side is in [0, 1]; otherwise let p, = 0. The constant
K will be determined later in the proof. We define a random set E by letting

arbitrarily close to 1.
Define the probabilities

Prz € E] = p,

independently for all 2. We show that with high probability the random set F has the claimed

property (10).
Define the indicator random variables

xj =1(j € E)
with mean values E[x;] = p;. We then have
l=/2]
r(@)= Y XjXe-j
j=1
from which and the independence of x; it follows that
L=/2]
E[r(z)] = Y pjpe-j. (11)
j=1

Notice also that, for each fixed , r(z) is a SITRV. Easy calculations on the right hand side of
(11) allow the asymptotic estimate

E[r(z)] ~ IK?logz,

1/2

where I = 0

(s(1 - 5))_1/2ds. We now define the bad events

1
Ao ={ @) - BE @] > JEOE | o =125,
Using Theorem 3.1 we can bound

1
Pr[A;] < 2exp (—5(31/211\"2 log T) =2z~



where a = %(31/2 TK2. All we have to do now is to choose the constant K large enough to have
a > 1. We deduce that )~ Pr[A;] is a convergent series and thus there is ng € N for which

> PriA]< 1,

r>ng
which implies that with positive probability none of the events A,, x > ng, holds. This in turn
implies the existence of a set £ C N such that

1 3
5[[&"2 loge < r(z) < 5[[&'2 log

for all x > ng, which concludes the proof.

We emphasize the structure of the proof. First we defined an appropriate class of random
objects (random subsets of N). We then showed that the quantities of interest (the numbers
r(z), © € N) have expected values of the desired size. The last, and most important, step was
to show that, with high probability, none of the quantities of interest deviates much from its
expected value.

Open Problem: s it possible to have 1 < r(z) = o(logz)? Note that Theorem 3.1 is
useless if E[r(z)] = o(logz) (see the remarks following that theorem). Is it possible to have
r(z) = Clogx 4 o(log 2)? See [14] for problems related to thin additive bases.

3.2.1 Good asymptotic bases of higher order

If one tries to prove a similar theorem for additive bases of order k > 3, 1.e. sets of integers such
that any sufficiently large integer can be written as a sum of k of them, one encounters an extra
difficulty. Given a set of integers £ let us write again

rk(a:):|{(a],...,ak)EEk : a]§-~~§ak&m:a]+-~-+ak}|

for the number of representations of the integer z as a sum of k elements of F,| without taking
the order of the summands into account. It i1s easy to see that the proper class of random sets
are those defined by

logl/ b

for K > 0 a sufficiently large constant. That is for this class of random sets we have

Elrp(z)] ~ Cy log 2.

Prjz € E]=K

All that is missing now in order to prove the existence of sets E for which C1(k)loga < rp(x) <
Cy(k)logx is a large deviation argument for the random variables r(z), which do have the
correct order of magnitude. These random variables can, once more, be expressed as

Tk(l‘) = ZX(nXaz o Xag (12)

where the summation extends over all k-tuples (a1, ..., a;) € N* which satisfy 2 = a1+ - -+ ay.
Thus ri(2) is again a sum of indicator random variables but, already in the case k = 3, these
are not independent, since a certain y; appears in many terms in this representation of r;(z).
Thus the Chernoff bound (Theorem 3.1) is not applicable here.

The problem has been solved recently by Erdds and Tetali [12], [3, p. 108] who proved the
following.

Theorem 3.3 There is an asympiotic basis of order k of the integers such that
e1loge < rp(z) < cgloge
where c1,c9 > 0 depend only on k and not on x.

The tools used to tackle the lack of independence in the summands of ri(z) in (12) were the so
called Janson inequalities [3, p. 95], [15] which allow for sparse dependencies in cases like this.



3.3 The density of infinite By[g| sets

Let £ C N and define a corresponding representation function on N
r(z) =re(z) = {(a,b) : a,bEF & a<b& z=a+b}| (13)

We say that the set £ is in the class Bs if #(2) < 1 for all # € N. In other words all sums of
the form

a+b, a,be E, (14)

are distinct except for permutation of a and b. It i1s not hard to see that this condition is
equivalent to requiring that all differences

a—b, a,be E, a#b, (15)

are distinct. The terminology “Sidon set” is sometimes used to describe By sets but we will
avoid it since it has a rather different meaning in harmonic analysis.
Remember the definition

rp(x) = H(ar,...,ap) 1 aj EE& a1 <---<ap&rx=a+- - -+ap}| (16)

We call a set E a By, set if rp(2) < 1 for all z € N. We call it a Bp[g] set if rp(z) < g for all
z € N. Thus a Bj, set 1s a set of which all sums of the form

ar+--+ap, a; € £, a1 <+ <ap,

are distinct.

While it is possible to have a By subset of {1,...,n} with about \/n elements, the following
theorem of Erdés [14, p. 88], [28] shows that the situation is quite different if we look at infinite
Bj sequences of high lower density.

Theorem 3.4 If the sequence {n1 < mny < -} CN is By then we have

s
lim sup —~— > 0. 17
i J*logj ()

Thus we cannot have a (finite or infinite — the infinite sequence can be obtained from finite
sequences by a diagonal argument) By sequence which satisfies for all j

For a long time the Bz sequence with the highest lower density known was the one produced
by the so called greedy method. Let nqy = 1 and having found ni, ..., n; choose ngy1 to be the
smallest positive integer z that is not in the set

{a+b—c : a,bce{ny,...,nx}}.

Tt then follows easily that the sequence n; is B2 and that n; < j®. The gap between this sequence
and Theorem 3.4 still stands except for the following result of Ajtai, Komlés and Szemerédi [1].

Theorem 3.5 There is a By sequence {ni1 < ny < ---} C N such that

j3
E <logj) '

Open Problem: Prove that if the sequence A is of type Bp[g], ¢ > 2, then

liming A& _ o,

z—oc0 gl/h




This is open for all ¢ > 2. The difficulty in proving this comes from the fact that the only known
proof (case of h = 2, g = 1) uses the fact that all differences (not sums) from A are distinct. This,
of course, fails for higher g. Related is the following problem. By just counting the distinct sums of
a By[2] set A C [1,n] one gets |A] < 2¢/2n'/? 4 o(n'/?). | believe that this is too high an upper
bound but | do not think anything better is known. If the case of By[1] sets is suggestive at all then
by counting distinct sums we get an upper bound ~ 2n'/? for the size of a By[1] set A C [1,n], by
counting distinct differences we get ~ V2n1/2 while the true bound is ~ n'/2 [7, 13], [14, Ch. 2].
What is the largest constant ¢ for which there is an infinite B3[1] sequence A with

Az) =c?

/2

lim sup
r—00

The largest known is ¢ = 1/v/2 [22], [14, Ch. 2] while by the upper bound for the finite Bs[1] sets
one might have c up to 1. The only way known for constructing such sets A with large ¢ is by piecing
together dense finite sets of type Bs[1].

The following theorem of Erdés and Rényi deals with dense infinite Bs[g] sequences. The
proof is once again probabilistic.

Theorem 3.6 (Erdds and Rényi [11], [14, Ch. 3]) For every §' > 0 there is an integer g and a
Bslg] sequence A ={ay < as < ---} such that

aj <<j2+51, (18)

for all j > 0.
Proof: Let ¢’ € (0,1) be given. Let A be a random set with

Prz € A] = ps,

independently for all z € N, where
pe = 2= 1/278/2,

Then with high probability A(z) > 2'/2=%/2 for all 2, which implies (18) for § = §(§’) properly
chosen. Write, as usual, x; = 1(j € A). Then we have

Lz/2]
r(@)= Y XjXe-j
ji=1

and we can estimate
E[r(z)] < Cz™°,

where C' = 2f1/2

0 (s(1 - .9))_1/2_5/2(13. Define the bad events

A= 10) > 9 = {r(0) > (g B G1

We now use the Chernoff bound (Theorem 3.1) with

g
E[r(2)]

€= > Cga?,

observing in Theorem 3.1 that
¢, ~ eloge, as € — oo.

We get
Pr [Az] S 26—2(:£E[7‘(.’11)] S 26—3(5E[r(m)])logs — 26—3g]0gs’

10



and using the estimate on E[r(z)] we get
Pr[A,] < Ce=Codloge — 0p=C9d,

Choose now g = C'/4, for large enough C to get Pr[A;] < 72 and thus }__ Pr[A;] < co. So
there 1s ng € N for which
Y Pri4,]<1

r2>no

so that with positive probability none of the bad events A, = > ng, holds. Now discard all
elements of the set A up to ng to get a By[g] set with the desired growth. O

3.4 The Salem-Zygmund theorem for trigonometric polynomials with
random coefficients

The following theorem is often used to estimate the maximum of a random trigonometric poly-
nomial

Theorem 3.7 (Salem and Zygmund [26], [16, p. 69]) Let fi(z),..., fu(z), be trigonometric

polynomaals of degree at most m, and &,...,&, be independent zero-mean random variables
¢ = 1 —p; with probability p;, 19)
T —py with probability 1 — p;, (19

for some p; € [0,1]. Write
r) = & fi(x)
j=1

Then, for some C > 0,
1/2

Ifll £C ZHfj”iolOgm —1, asm — oo.
=1

For the proof of the Salem-Zygmund theorem we need the following.

Theorem 3.8 Leta;;, i=1,...,n1, j=1,...,n9, be a matriz of complex numbers, such that
laij| < ;. Letalso py,...,pn, €[0,1] and the random variables &, ... &y, be defined as in (19).
Then with probability tending to 1 as ny — oo

s s 1/2
Zaijfj <C Zr?lognl , foralli=1,... nq,
j=1 j=1
where C' 1s an absolute constant.
Proof: Define ns
Li(§) = Z a;;;
j=1

We can clearly work on the real and imaginary parts of the linear forms I, separately, so we
assume a;; € R. Define the bad events

1/2

11



Using Theorem 3.2 we get

Pr [Az] < 2exp —20227“]2 log n]/zr]? — Cv]nl—CngJ
Jj=1 j=1

where the constants C,C3 > 0 of Theorem 3.1 are absolute. Now choose the constant C' =
(2/C2)'? to get

Pr U A;
i=1

n1 C
1

< Z PrA] < =,

i=1
which concludes the proof. O

To complete the proof of the Salem-Zygmund theorem we note that it is enough to ensure
that f(z;) is small for a sufficiently dense set of points z; € [0, 2).

Since f is a trigonometric polynomial of degree at most m we can use Bernstein’s inequality
[17, p. 12]:

1l < o

Define z; = "1%7;,1 fori=1,...,10m and the matrix
a5 :fj(:m), 1= 1,...,10m, j: 1,...,77,,
for which of course |a;;] < ||fj]|.,- Notice that for all i =1,... 10m

Flaa) =D & fixi) =D &aij.
ji=1 ji=1

From this and Theorem 3.8 follows that
1/2
Pr ([f(@)] < C | D lIfill logm |, foralli| —1 (20)

j=1

as m — oo. But the event in (20) implies that |f(z)] < C(32F_, ||fj||oo2log m)!/? for all
z € [0,27) and for a larger constant C. For assume that |f(zo)| = ﬂf”Oo and that

Then, using Bernstein’s inequality,

27

10m

27

[f(@o) = f(@n)l < 75 -1 llee < 51 (o)

and, since 27/10 < 1, we get
1/2

1£llee = [£(zo)l < Clfe) < C [ D NIfillo,* logm

j=1

For some applications of the Salem-Zygmund theorem to harmonic analysis see, for example,

[4, 16, 20, 21, 24].
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4 Are probabilistic proofs constructive?

After a probabilistic proof of the existence of a certain object has been given, it is frequently
followed by the remark that  ...although we have proved that almost all elements in this class
satisfy our requirements, no one knows how to construct a single one of them”. In mathematics
the terms probabilistic proof and ezistential proof have long been thought of as the former
implying the latter. This is a conception that we would like to shake a little bit.

To debate this matter one has to make clear, before the discussion begins, what one means
by “constructive”. We shall mean the following. We say that we have a constructive proof of
the existence of an object if we can give an algorithm, that can run on an ordinary computer,
to construct the object and this algorithm takes a reasonable time to finish. By reasonable we
usually mean a number of steps bounded by a fixed polynomial of the parameter of the problem
(what that parameter is is usually clear — though not always).

As an example of what is not acceptable as a construction, suppose that we have proved
a theorem stating that, with high probability, a random object that depends on the random
variables X1, ..., X,, has a certain property. Assume for simplicity that the X;’s are independent
0-1 random variables, with Pr[X; = 1] = p;, the p;’s being fixed given numbers. And as a
minimal requirement on the properties that we are trying to ensure our object has we demand
that for a given assignment X; = 0 or 1 it is easy to verify (i.e. there exists an efficient algorithm)
whether the object that corresponds to this assignment has the desired property. The following
simple-minded algorithm is then not acceptable as a construction of a good object: check all
possible assignments of the X;’s and pick the first that has the property (we know one exists
from the proof). Clearly this algorithm may take time that is not bounded by any polynomial
in n. On the other hand if we managed to find a good assignment in time O(n'?) we consider
that good enough, if not practical, a construction.

Not everybody agrees with this definition. Many insist that they should be able to actually
“see” the object itself rather than the algorithm that will construct it. It is of course impossible
to define this rigorously. Nevertheless mathematicians will usually agree that a certain proof fits
these aesthetic requirements or not. For the sake of distinguishing this concept from what we
have already termed constructive, we call these proofs ezplicit. Thus we think of explicitness as
a property more specific than constructibility, but we do not deal with it here. We stick to our
definition of what 1s constructive and proceed to show that many well known proofs of theorems
that have usually been called existential are, indeed, easy to turn into “efficient” constructions.

A single method of derandomization, a way of turning a probabilistic proof into an efficient
algorithm, will be described here. It is the so called method of conditional probabilities and is,
perhaps, the simplest and most widely applicable derandomization technique. It applies to a
great many problems and the requirements for its applicability are easy to state and check. We
demonstrate it with a few examples. For a more thorough treatment of this very interesting
subject see for example [3, p. 223].

4.1 Coloring a complete graph’s edges for few monochromatic cliques

We first describe the method of conditional probabilities on the proof of Theorem 2.1, which
stated that there is a 2-coloring of the edges of the complete graph K, on n vertices such that
the number of monochromatic copies of K,, is at most

(:1)21—@).

Assume that m is fixed and our task is to produce such a coloring of K,,. Trying every possible

coloring clearly takes too much time since there are 9(5) possible colorings. We describe the de-
randomization process and arrive at an algorithm for finding such a coloring in time polynomial
in n. We keep the same notation as in Section 2.1.

Let Ay, ..., Ay, where k = (), be all the copies of K, in K, (otherwise known as m-cliques),
and enumerate all edges of K, as eq, ..., €(z)- Let the color of edge e; be the random variable
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¢j. We are going to define the colors a; € {RED, BLUFE} one by one, for j =1,.. ., (g) Define
the events

RJ = Rj(al,...,aj) = {((31,...,(3(;)) I C1 :al,...,(:j = (1]}
Rg is the whole probability space. Intuitevely, R; represents our choices of colors up to the j-th
color.
As in Section 2.1 we define the 0-1-valued random variable y; to indicate whether A; is

monochromatic or not. We have X = Z;.C:l x; and we already computed E[X] = k2= (%) We

are going to choose the sequence of colors ay, . . ., @(n) 80 that the function of j

E[X | Rj]

is non-increasing. This is possible for the following general reason (the nature of the variable X
is immaterial here):

E[X | Rj_l(al,...,aj_l)] =
1
§(E[X | Rj(a1,...,aj_1, RED)|+ E[X | Rj(a1,...,a;-1, BLUE)]).

This means that at least one of the choices a;j = RED or a;j = BLUFE will yield E[X | R;] <
E[X | Rj_1]. Which of the two choices works can be decided (here the nature of X plays a role)
since we can explicitly compute

E[X | Rj((ll, .. .,(lj)]

for any colors ay,...,a;. This computation clearly takes time polynomial in n. We proceed like
this until the colors of all vertices have been fixed. Then X is completely determined
_ _ nY y1-(2)
X =B[X | Ryl < <E[X | R =B[x] < ()21
2 m
and the coloring a1, .. ., a(n) is thus a solution to our problem.

4.2 When can the method be applied?

The very general applicability of the method just described on the example from graph theory
should be obvious. The general context is the following. We have n independent random
variables €1, . .., €, which, without loss of generality, can be assumed to have the distributions

~_ | 1 with probability p;,
%7 0 with probability 1 — p;.

We also have a certain function X = X(e1, ..., €,) for which we can efficiently compute
E[X |61 =v1,...,6m = U]

for any m and v1,..., v, € {0,1}. In particular we can compute E[X] = u. We can then, as in
the example of the previous section, efficiently compute an assignment

€1 = V1,...,€p = Vpn, U1,...,0, € {0,1},

for which X < p.

In this formalism we can also fit the following case. Suppose that we have proved for
a certain event A that Pr[A] < 1. (This event is in the space defined by the ¢;’s of the
previous. paragraph.) Suppose also that the characteristic function X (w) = 1(w € A) satisfies
the computability requirements of the previous paragraph. Then we can find an assignment to
the ¢;’s which is not in A.

A good informal description of the method of conditional probabilities is the following. We
are fixing the values of the random variables, one by one, taking care to assign them a value
that will maximize the probability of our success given the choices that we have made so far.
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4.3 Constructibility of certain trigonometric polynomials with small
maximum

Theorem 3.8 has the following constructive equivalent [3, p. 225]. We give it only in the case
¢;j = 1, n1 = ng, but it holds in general.

Theorem 4.1 Let a;; be a real n x n matriz, |a;;| < 1. We can then find, in polynomial time
m n, signs €1,...,6, = x1 such that for every i =1,...,n we have

n

Z a;jej| < C(n]ogn)1/2,

ji=1
where C' s an absolute constant.

This of course means that the Salem-Zygmund Theorem 3.7 is equally effective since it is The-
orem 3.8 alone that was used in its proof.

Theorem 4.2 Given trigonometric polynomials f1,..., fn of degree at most m and numbers
p; €10,1] one can find, in time polynomial in mn, coefficients §; € {1 —p;,—p;}, 7=1,...,n,
such that
1/2
n n
2
dSGhH < DoIFE logm
j=1

j=1

o0

As the Salem-Zygmund theorem is the only “random” ingredient used in the proofs of the results
in [16, 21, 24] the objects that were proved to exist therein are computable in polynomial time.
Namely, in time polynomial in n one can find

1. a trigonometric polynomial f(z) = E?zl ajexp (ijx), with |a;| =1, j = 1,...,n, such

that
@)l
v
as n — oo, uniformly for all z in [0, 2x] (results of [16, 21]).
2. a cosine polynomial f(z) = M + 2;21 aj cos (ijxz) with a; nonnegative integers, such that
M < C(slogs)'/3, with s = a1 + - - - 4 a, (result in [24]).

Open Problem: Spencer [3, 27] has proved that, given a complex matrix a;;, with |a;;| < 1,
t=1,...,m1, j =1,...,ny, there are signs ¢; = £1, j = 1,...,n3, such that for all 1 we have

nao .
Z]':1 @ij€j

say, ny = ny = n, but we do not know how to find the signs ¢; in time polynomial in n.

< C’n%/Q. This is, in general, an improvement over the Salem-Zygmund theorem when,

Open Problem: Bourgain [4], [16, p. 78] has proved the existence of integer frequencies
Al < -+ < Ap such that |sin Az + - sin Az, < n2/3. The proof involves the Salem-
Zygmund theorem on a polynomial of degree super-polynomial in n. Indeed, one can easily see
that A, must necessarily be super-polynomial in n. Thus the straightforward derandomization of
the Salem-Zygmund theorem, as applied in Bourgain's proof, gives rise to an algorithm that does
not run in polynomial time. Can one find these frequencies Ay < --- < A, in time polynomial in n?

4.4 An effective additive basis for the integers

In this section we shall derandomize Erdos’s proof of the existence of an additive basis E of the
integers of order 2 for which the representation function satisfies

Cilogz < rp(x) < Cyloge (21)
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for all sufficiently large integers z. Erdds’s proof was described in Section 3.2. Our goal will be
to give an algorithm for the enumeration of £ which enumerates FN[1,n] in time polynomial in
n. It is not immediately clear that there exists any algorithm, whether fast or slow, to enumerate
E. Indeed, if one tries to perform any kind of exhaustive search of the probability space, one
faces the obstacle that making the decision whether to put a certain integer m in the set F or
not affects the values for rg(z) for all & > m, which are of course infinitely many.

This problem can be overcome if one looks at the original, slightly different, proof of Erdé&s
[8], which has been stated using counting arguments and not probability. It uses an existential
argument on a finite interval at a time and can thus be readily turned into a construction by
examining all possible intersections of F with the interval. But the algorithm which we get this
way takes time exponential in n to decide whether n is in E or not.

First we give our modified probabilistic proof. The method of conditional probabilities can

then be applied [18, 20].

4.4.1 A modified probabilistic proof

Define the modified representation function r'(z) = rip(z) as the number of representations of
the nonnegative integer x as a sum a +b, with a,b € E, g(z) < a < b, where g(z) = (zlogz)'/%.
This is our main difference from Erdds’s proof. By doing this modification we have achieved
that the presence or absence of a certain number n in our set F affects r'(z) for only a finite
number of nonnegative integers .

Theorem 4.3 There are positive constants c1,ca,c3, with ca < c3, and a set E of posttive
integers such that
calogz < r'(z) < cgloge

and
|E N[z —g(z),z]| <eiloge

for all large enough © € N.
Proof: We define the random set E by letting

log :13> 172

Pr[mEE]:pz:K~<
x
independently for all z € N, where K is a positive constant that will be specified later. Let

z/2
p=E[' (@)= > pper

t=g(=)

Define also
s(z) = |[EN[z —g(x),z]|

and

v=Els@)]= 3 p
t=r—g(z)

We can estimate p and v for large = to get
p~IK?logz, v~ Klogz,

where [ = 01/2(5(1 — s))_1/2ds.

The “bad” events are

As ={Ir'(@) = pl > eu},  Bo = {s(x) —v > e},
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for a positive constant €, say ¢ = 1/2. Since both #/(x) and s(x) are both STIRV we can use the
Chernoff bound (Theorem 3.1) to get

Pr[A;] <2e™ %" < 2¢zclK?logz _ 9, —a

and .
Pr[B;] <2e %" < 2~ 20 Klogz _ 9,=F

where a = %CEI[{Z and 8 = %CEK. Choose K large enough to make both o and 3 greater than
1.
Then

> Pr[A;] +Pr[B:] < o

which implies the existence of ng € N such that, with positive probability, none of the events
Ay and By, © > ng, holds. In particular there exists a set E for which

pu/2 <r'(z) <3p/2 and s(z) < 3v/2,

for all > ng. This implies the conclusion of Theorem 4.3 with ¢; = %K, €y = %TKQ and
_ 3752

3 = 5[[\ .o
Observe that v'(z) < r(z) < r'(2) + s(z). We deduce that for the set E of Theorem 4.3 we

have
esloge < r(x) < (c1 + ¢3)loge

so that (21) is true for E.

4.4.2 Derandomization of the modified proof

We showed that the complement of the bad event

B= ] (4 UB,)
r>ng

has positive probability, by establishing the inequality }_ -, Pr[A;] + Pr[B;] < 1. This
implies the existence of a point £ in our probability space {0, 1}N which is not in B (there is
a natural identification between points in the probability space and subsets of N). We give an
algorithm which at the n-th step outputs 0 or 1 to denote the absence or presence of n in our
set £,

Denote by x € {0,1}N a generic element in our space and by R(ai,...,ax) the event y; =
ai,..., Xk = ap, where a,...,ax € {0,1}. It is obvious that for any event D C {0, 1}V

Pr[D | R(a1,...,an-1)] = (22)
poPr[D | R(ay,...,an_1, )]+ (1 = p,)Pr[D | R(ay,...,a,_1,0)].

We are going to define the sequence a, € {0, 1} so that the function

bn =bn(ar,...,an) = > Pr[As | R(ar,...,an)]+ Pr[B; | R(a1,. .., an)]

r>ng

is non-increasing in n. (Notice that the function Pr[A; | R(a1,...,a,)] is constant in n
when n > z, and is equal to either 0 or 1. The same is true for the events B;.) Since
bo =3 .5, Pr{4:] + Pr[B;] < 1, the monotonicity of b, implies that

> Pr[A; | R(ar,...an,.. )]+ Pr[Bs | R(ar, ... an,.. )] < 1.

r>ng

17



The probabilities above are either 0 or 1, so they are all 0, and the point £ = (a1,...,an,...)
is not in B.
So all that remains to be done is to ensure that b, does not increase. Adding up (22) we get

bn_l(al, .. .,an_l) =

Prbn(ar,...,an_1, 1)+ (1 —pu)bn(ar,...,an_1,0),

which implies that at least one of b, (a1, ..., an—1,1) and b, (a1, ..., an—1,0) is not greater than
bn_1(ai,...,an—1). We let a, = 1 if the first number is smaller than the latter, otherwise we
let a, = 0.

Notice that

A = bn(al,...,an_l,l)—bn(al,...,an_l,O)
G(n

)
Pr[A; | R(a1,...,an_1,1)] — Pr[A; | R(a1,...,an_1,0)] +

+Pr[B; | R(a1,...,an_1,1)] — Pr[B; | R(ai,...,an_1,0)],

where G(n) = (1+0(1))n?/logn is the greatest integer k such that g(k) < n. This is so because
the events A, and By, with # > G(n) are independent of x1,...,x» and their probabilities
cancel out in the difference above. We have to decide in time polynomial in n whether A > 0.
This is indeed possible since the expression for A has ~ 4n?/logn terms, each of which can be
computed in polynomial time as the following easy Lemma [18, 20] claims.

Lemma 4.1 Let Xy =& + - -+ &, be a sum of k independent indicator random variables with
Pr((; =1]=p;, j=1,... k. Then the distribution of X} can be computed in time polynomial
m k.

Thus all probabilities of the form Pr[o < X < ] can be efficiently computed. Observe

that having fixed x1 = a1,...,xn = @n We have
z/2 n z/2
PE)= D XiXe—t = D @iXe—t+ D XiXa—t,
1=g(z) 9(z) ntl

for z —g(z) > n, otherwise r/(z) has already been completely determined by the assigned values
of x1,..., Xn. This means that r/(z) is a SITRV and so is s(2). Thus the probabilities of A; and
By conditioned on R(ai,...,an—1,1) and R(a1,...,an—-1,0) can be efficiently computed and
A > 0 can be decided in polynomial time, as we had to show.

One can check that it takes roughly O(n”) steps to enumerate all of £ N [1,n].

Open Problem: Is there a basis F that satisfies (21) and an algorithm that can answer the
question “Is n € E?" in time polynomial in logn? That would be the next best thing to being able
to write down a formula for the elements of F.
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