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1 Introduction

Let E be a measurable set in R" such that 0 < |E| < co. We will say that E tiles R® by translations
if there is a discrete set T C R" such that, up to sets of measure 0, the sets £+t : t € T are
mutually disjoint and J,cr(E +t) = R*. We call any such T a translation set for E, and write
E+T=TR"' Atiling E+ T = R" is called periodic if it admits a period lattice of rank n; it is a
lattice tiling if T itself is a lattice. Here and below, a lattice in R" will always be a set of the form
TZ™, where T is a linear transformation of rank n.

It is known [19], [18] that if a convex set E tiles R™ by translations, it also admits a lattice tiling.
A natural question is whether a similar result holds if F is “sufficiently close” to being convex, e.g.
if it is close enough (in an appropriate sense) to a n-dimensional cube. In this paper we prove that
this is indeed so in dimensions 1 and 2; we also construct a counterexample in dimensions n > 3.

A major unresolved problem in the mathematical theory of tilings is the periodic tiling conjec-
ture, which asserts that any E which tiles R” by translations must also admit a periodic tiling.
(See [3] for an overview of this and other related questions.) The conjecture has been proved for
all bounded measurable subsets of R [16], [12] and for topological discs in R? [2], [8]. Our Theorem
2 and Corollary 1 prove the conjecture for near-square domains in R2. We emphasize that no
assumptions on the topology of E are needed; in particular, F is not required to be connected and
may have infinitely many connected components.

Our work was also motivated in part by a conjecture of Fuglede [1]. We call a set E spectral
if there is a discrete set A C R, which we call a spectrum for E, such that {e*™* : X\ € A} is
an orthogonal basis for L?(E). Fuglede conjectured that E is spectral if and only if it tiles R by
translations, and proved it under the assumption that either the translation set 7" or the spectrum
A is a lattice. This problem was addressed in many recent papers (see e.g. [4], [7], [10], [13], [14],
[15], [16], [17]), and in particular the conjecture has been proved for convex regions in R? [9], [5],
[6]-

It follows from our Theorem 1 and from Fuglede’s theorem that the conjecture is true for £ C R
such that F is contained in an interval of length strictly less than 3| E|/2. (This was proved in [15]
in the special case when F is a union of finitely many intervals of equal length.) In dimension 2, we
obtain the “tiling = spectrum” part of the conjecture for near-square domains. Namely, if E C R?
tiles R? and satisfies the assumptions of Theorem 2 or Corollary 1, it also admits a lattice tiling,
hence it is a spectral set by Fuglede’s theorem on the lattice case of his conjecture. We do not
know how to prove the converse implication.

Our main results are the following.



Theorem 1 Suppose E C [0, L] is measurable with measure 1 and L = 3/2 — € for some ¢ > 0.
Let A C R be a discrete set containing 0. Then

(a) if E+ A =R is a tiling, it follows that A = 7Z.

(b) if A is a spectrum of E, it follows that A = Z.

The upper bound L < 3/2 in Theorem 1 is optimal: the set [0,1/2] U[1,3/2] is contained in
an interval of length 3/2, tiles Z with the translation set {0,1/2} + 2Z, and has the spectrum
{0,1/2} 4+ 2Z, but does not have either a lattice translation set or a lattice spectrum. This example
has been known to many authors; an explicit calculation of the spectrum is given e.g. in [14].

Theorem 2 Let E C R? be a measurable set such that [0,1)2 C E C [—¢,1 + €)% for € > 0 small
enough. Assume that E tiles R? by translations. Then E also admits a tiling with a lattice A C R?
as the translation set.

Our proof works for € < 1/33; we do not know what is the optimal upper bound for e.

Figure 1: Examples of near-square regions which tile R?. Note that the second region also admits
aperiodic (hence non-lattice) tilings.

Corollary 1 Let E C R? be a measurable set such that |E| = 1 and E is contained in a square of
sidelength 1 + € for € > 0 small enough. If E tiles R? by translations, then it also admits a lattice
tiling.

Theorem 3 Let n > 3. Then for any € > 0 there is a set E C R" with [0,1]" C E C [—¢,1 4+ €]
such that E tiles R® by translations, but does not admit a lattice tiling.

2 The one-dimensional case
In this section we prove Theorem 1. We shall need the following crucial lemma.

Lemma 1 Suppose that E C [0, L] is measurable with measure 1 and that L = 3/2 — € for some
€ > 0. Then
|[EN(E+z)| >0 whenever 0 <z < 1. (1)



Proof of Lemma 1. We distinguish the cases (i) 0 < z < 1/2, (ii) 1/2 < z < 3/4 and (iii)
3/4<z <1

(1) 0<z<1/2

This is the easy case as FU (F +z) C [0,L 4+ 1/2] = [0,2 — €]. Since this interval has length
less than 2, the sets ' and FE + x must intersect in positive measure.

(i) 1/2 < 2 < 3/4
Let z =1/2+ a, 0 < a < 1/4. Suppose that |[EN (E + z)| = 0. Then 1 + 2a < 3/2 and

[(EN[0,z]) U(EN|[z,2z])| <z,
as the second set does not intersect the first when shifted back by z. This implies that
|[E|<z+4+(3/2—€e—2z)=3/2—e—z=1—-€e—a<]1,

a contradiction as |E| = 1.
(iif) 3/4 < z < 1
Let x =3/4+ a, 0 < a < 1/4. Suppose that |E N (E + z)| = 0. Then

(EN0,3/4—a—€¢)U(EN[3/4+a,3/2 —€)| <3/4—a—¢,
for the second set translated to the left by x does not intersect the first. This implies that
|E|<(B/4—a—€+2a+e=3/4+a<1,

a contradiction.
Od

We need to introduce some terminology. If f is a nonnegative integrable function on R* and A
is a subset of R?, we say that f + A is a packing if, almost everywhere,

d fr-y <t (2)
AEA

We say that f + A is a tiling if equality holds almost everywhere. When f = xg is the indicator
function of a measurable set, this definition coincides with the classical geometric notions of packing
and tiling.

We shall need the following theorem from [10].

Theorem 4 If f,g > 0, [ f(z)dz = [g(z)dz = 1 and both f + A and g + A are packings of R?,
then f + A is a tiling if and only if g+ A is a tiling.

Proof of Theorem 1. (a) Suppose E + A is a tiling. From Lemma 1 it follows that any two
elements of A differ by at least 1. This implies that xjo,1) + A is a packing, hence it is also a tiling
by Theorem 4. Since 0 € A, we have A = Z.

(b) Suppose that A is a spectrum of E. Write

S =Y 0

AEA
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for the measure of one unit mass at each point of A. Our assumption that A is a spectrum for F
implies that
eI’ +A=R

is a tiling (see, for example, [10]). This, in turn, implies that dens A = 1.

We now use the following result from [10]:

Theorem 5 Suppose that f > 0 is not identically 0, that f € L'(R4), fz 0 has compact support
and A CRE. If f + A is a tiling then

suppds C {F =0} U{o}. (3)

Let us emphasize here that the object (/ix, the Fourier Transform of the tempered measure §,,
is in general a tempered distribution and need not be a measure.

For f = |x5|* Theorem 5 implies
supp dx C {0} U {xz * X& = 0}, (4)
since xx * Xg is the Fourier transform of |xz|? (where g(z) = g(—z)). But
{XB* X =0} = {s: |EN(E+2) =0},

This and Lemma 1 imply that R
suppdp N (—1,1) = {0}.

Let
Ks(z) = max {0,1 — (1 + 0)|z[} = (1 + 6)x15 * x15(2),

where I5 = [0, FIJ], be a Fejér kernel (we will later take § — 0). Then K; = (1 + 8)|xz;|* is a

non-negative continuous function and, after calculating x7;, it follows that
1

Ks(0) = 1

and

{o:Ks(@) =0} = (1 + )2\ {0}). (5)
Next, we use the following result from [11]:

Theorem 6 Suppose that A € R® is a multiset with density p, 65 = Y xea Or, and that gx s a
measure in a neighborhood of 0. Then d5({0}) = p.

Remark. The proof of Theorem 6 shows that the assumption of EX being a measure in a neighbor-
hood of zero is superfluous, if one knows a priori that d, is supported only at zero, in a neighborhood
of zero. Indeed, what is shown in that proof is that, as ¢ — oo, the quantity (¢ (tx)) remains
bounded, for any Cg° test function ¢. If SX were not a measure near 0 but had support only at
0, locally, this quantity would grow like a polynomial in ¢ of degree equal to the degree of the
distribution at 0.



Applying Theorem 6 and the remark following it we obtain that EX is equal to dy in a neigh-
borhood of 0, since A has density 1.

Next, we claim that
ZK(s(:E —-A) =1, fora.e. z.
AEA

Indeed, take 1. to be a smooth, positive-definite approximate identity, supported in (—¢,€), and
take € = €(d) to be small enough so that supp e * K5 C (—1,1). We have then

D Kile =) = lmd 4z~ VK~ )

AEA AEA

= limoy (9K (@)

= 1im s (4 * K5) ()

= lir% 00 ((¥pe x K5)(z)) (for e small enough)
(g

= lim %, *x K;5(0)
e—0

= K;(0)

= 1,

which establishes the claim. Applying this for z — 0 and isolating the term A = 0 we get
1

l=1 5+ > Ks(-N).

Letting § — 0 we obtain that f(\(s(—)\) — 0 for each A € A\ {0}, which implies that each such A is
an integer, as Z \ {0} is the limiting set of the zeros of Kj.

To get that A = Z notice that xjo,1) + A is a packing. By Theorem 4 again we get that x[o,1) + A
is in fact a tiling, hence A = Z.
a

3 Planar regions

Proof of Theorem 2. We denote the coordinates in R? by (z1,z2). For 0 < a < b < 1 we will
denote

Ei(a,b) =(En{a<z1<b, 29 <0})U{a <z <b, zo2 >0},
Ey(a,b) =(En{a<z1<b, 29 >0} U{a <z <Db, 2o <0},
Fi(a,b) =(EN{a<za<b, 21 <0})U{a <z <b, z1 >0},
Fy(a,b) =(EN{a<za<b, 1 >0}) U{a <z <b, z; <O0}.

We will also use S, 5 to denote the vertical strip [a,b] x R. Let v = (v1,v2) € R2. We will say that
Es(a,b) complements FE1(a’,b') 4+ v if E1(a’,b') +v is positioned above Es(a,b) so that (up to sets of
measure 0) the two sets are disjoint and their union is S, 5. In particular, we must have o’ + v = a
and b + v, = b. We will write E(a,b) = ap \ Fi(a,b), and similarly for Ey. Finally, we write
A ~ B if the sets A and B are equal up to sets of measure 0.



Lemma 2 Let 0 < s” < s’ < s < 2s". Suppose that E1(a,a + s) + v, Ei(a,a+ s')+ ', Ei(a,a+
s") + " complement E5(b— s,b), Eo(b—s',b), Eo(b— s",b) respectively. Then the points v,v',v"
are collinear. Moreover, the absolute value of the slope of the line through v,v" is bounded by
€(2s" — )L

Applying the lemma to the symmetric reflection of F about the line zo = 1/2, we find that
the conclusions of the lemma also hold if we assume that Fs(a,a + s) + v, Fa(a,a + ') + v/,
Es(a,a+ s") +v" complement E1(b— s,b), E1(b—s',b), E1(b — s",b) respectively. Furthermore,
we may interchange the 1 and 2 coordinates and obtain the analogue of the lemma with E1, Fo
replaced by F1, Fy.

Proof of Lemma 2. Let v = (v1,v2), v/ = (v],v)), v" = (v{,v]). We first observe that if
vy = v, it follows from the assumptions that v = v” and there is nothing to prove. We may
therefore assume that v; # v{. We do, however, allow v' = v or v/ = v".

It follows from the assumptions that Fy(b — s”,b) complements each of Ei(a,a + s") + v",

Ei(a+s —s"a+ )+, Ei(a+s—s",a+s)+v. Hence
Ei(a+s —5s"a+5)~ Ei(a,a+s")+ (0" =),
Ei(a+s—5",a+s) ~ Ei(a,a+ ")+ (v" —v).

Let n be the unit vector perpendicular to v — v” and such that no > 0. For t € R, let
Po={z: z-n<t} Wedefinefor0 <c<c <1:

Qe ol = 1nf{t eR: ‘El (C, C,) n Pt| > 0},

Be,er =sup{t € R: |Ey(c,d)\ P| > 0}.

We will say that z is a low point of Ei(c,d) if x € S, ¢, £-n = o, and for any open disc D
centered at x we have
|D N Ei(c,c)| > 0. (6)

Similarly, we call y a high point of E; (c,d)ify € Sc¢r, y-n = B, and for any open disc D centered
at y we have B
|D N Ei(c,c)| > 0. (7)

It is easy to see that such points z,y actually exist. Indeed, by the definition of o, and an
obvious covering argument, for any o > . there are points z’ such that z’ - n < o and that (6)
holds for any disc D centered at z’. Thus the set of such points z’' has at least one accumulation
point z on the line z - n = o, . It follows that any such z is a low point of Fj(c,c’). The same
argument works for y.

The low and high points need not be unique; however, all low points z of E1(c,c’) lie on the
same line z - n = . parallel to the vector v —v”, and similarly for high points. Furthermore, the
low and high points of E1(c,c') do not change if E1(c,c’) is modified by a set of measure 0.

Let now A = E1(a,a + s"), and let = be a low point of A. Since s < 2s”, we have
B:=Ei(a,a+s) = Ei(a,a+s")UFE(a+s—5",a+3s)~ AU (A+2" —v),
hence z is also a low point of B with respect to v — v"”. Now note that

Ei(a+s —s"a+s)~A+ (" -2



intersects any open neighbourhood of z + (v” — v') in positive measure. But on the other hand,
Ei(a+ s —s",a+s') C B. By the extremality of z in B, z + (v" — v') lies on or above the line
segment joining z and z + (v” — v), hence v" — v’ lies on or above the line segment joining 0 and

" — .

Repeating the argument in the last paragraph with z replaced by a high point y of E; (a,a+s"),
we obtain that v" — v’ lies on or below the line segment joining 0 and v — v. Hence v,v',v" are
collinear.

Finally, we estimate the slope of the line through v, v"”. We have to prove that

25" — s
wlﬂé’—wlﬁe (8)
recall that v/ —v; = s — s"”). Define = as above, and let k € Z. Tterating translations by v — v’
1 ) g y
in both directions), we find that = + k(v — v") is a low point of B as long as it belongs to B, i.e.
g g
as long as
a<zi+k(s—s")<a+s.

The number of such k’s is at least %5 — 1. On the other hand, all low points of B lie in the
rectangle a < 1 <a+s,—e < z9 < 0. Hence

(

S

s— s

= 2)lvg —va| <,

which is (8).
a

We return to the proof of Theorem 2. Since F is almost a square, we know roughly how the
translates of E can fit together. Locally, any tiling by E is essentially a tiling by a “solid” 1 x 1
square with “margins” of width between 0 and 2¢ (see Fig. 2).

We first locate a “corner”. Namely, we may assume that the tiling contains £ and its translates
E +u, E+ v, where
1<u; <142 —2e<uy< 2, )

1
OS’U1§§+6,1S’U2S1+26. (10)

This can always be achieved by translating the tiled plane and taking symmetric reflections of it if
necessary.

Let F + w be the translate of £ which fits into this corner:
n+1l1<w <v1+142 upo+1<wy <ug+ 1+ 2e (11)

We will prove that w = u + v (without the e-errors).

From (11), (9), (10) we have
3
1<w < 54—36, —4e < wy — v9 < 4e.

Hence w satisfies both of the following.



Et+v E+w

E E+u

Figure 2: A “corner” and a fourth near-square.

(A) E2(0,1 — (wy — u1)) complements Fy(wy; — u1,1) + (w — u), and

3 1
1—(’LU1—U1):1—11)1+U121+1—(§+36):§—36,

|(w1 —ul) —111| = |(w1 —’01) —u1| S 2e.

(B) —4e < wg — w9 < 4e, and Fy(r,t) complements Fi(r',t') + (w — v), where
r = max(0,ws — v2), ' = max(0, vy — wy),

t =1—max(0,v2 — ws), t' = 1 — max(0, wy — v3).

If w =u+ v, we have w — u = v, w — v = u, hence by considering the “corner” E, E +u, E 4+ v
we see that both (A) and (B) hold. Assuming that € is small enough, we shall prove that:

1. All points w satisfying (A) lie on a fixed straight line /; making an angle less than 7/4 with
the z; axis.

2. All points w satisfying (B) lie on a fixed straight line /o making an angle at most 7/4 with
the o axis.

It follows that there can be at most one w which satisfies both (A) and (B), since /; and
lo intersect only at one point. Consequently, if F + w is the translate of E chosen as above,
we must have w = u + v. Now it is easy to see that F 4+ A is a tiling, where A is the lattice
{ku+muv: k,m € Z}.

We first prove 1. Suppose that w,w’,w",... (not necessarily all distinct) satisfy (A). By the
assumptions in (A), we may apply Lemma 2 with E; and Ey interchanged and with a =0, b = 1,
s=1—(w; —w),s =1— (w} —w),... > 1 — 3e. From the second inequality in (A) and the
triangle inequality we also have |s — s”| < 4e. We find that all w satisfying (A) lie on a line /; with

slope bounded by
€ € €

< < ,
|2s" —s| T s —|s" —s| T 1/2 —Te
which is less than 1 if e < 1/16.




To prove 2., we let w,w', w" be three (not necessarily distinct) points satisfying (B) and such
that wy < w) < wj. We then apply the obvious analogue of Lemma 2 with Fj, Fs replaced by
Fy, F, and with ¢ = max(vy — w9,0) < 4¢, b = 1 — max(ve — wy) > 1 — 4e. From the estimates in
(B) we have 1 — 16€ < s, ', 8" <1, hence |2s” — 5] > 2 —32¢ — 1 = 1 — 32e. We conclude that all
w satisfying (B) lie on a line /3 such that the inverse of the absolute value of its slope is bounded
by 1=55¢- This is at most 1 if e < 1/33.

O

Proof of Corollary 1. Let @Q = [0,1] x [0,1]. By rescaling, it suffices to prove that for any
€ > 0 there is a 6 > 0 such that if E C Q, F tiles R? by translations, and |E| > 1 — §, then E
contains the square

Qe = [651_6] X [631_6]
(up to sets of measure 0). The result then follows from Theorem 2.
Let F be as above, and suppose that Q. \ E has positive measure. Since F tiles R?, there is a
v € R? such that |E N (E + v)| =0 and |Q. N (E + v)| > 0. We then have
|[EU(E+v)|=|E|+|E+v| >2-26,
but also
IEU(E+v)] <]QU(Q+v)| <2—¢é,

since E C Q, E+v C Q+v, and Q.N(Q+v) # 0 so that |QN(Q+v)| > €2. This is a contradiction
if ¢ is small enough.
O

4 A counterexample in higher dimensions

In this section we prove Theorem 3. It suffices to construct E for n = 3, since then E x [0,1]"3 is
a subset of R” with the required properties.

Let (z1,72,73) denote the Cartesian coordinates in R®. It will be convenient to rescale E so
that [e,1]> C E C [0,1 + €]3.

Q
D C
S R
A B
P

Figure 3: The construction of E.

We construct E as follows. We let £ be bounded from below and above by the planes z3 = 0
and z3 = 1 respectively. The planes 1 = €,71 = 1,79 = €¢,79 = 1 divide the cube [0,1 + ¢]? into



9 parts (Figure 3). The middle part is entirely contained in E. We label by A, B,C,D,P,Q, R, S
the remaining 8 segments as shown in Figure 3. We then let

1 1 5
< < = — < < =
ENP= Pn{o 3 Sor2_ac3_8},
1 1 5
< < = - < < =
ENR= RO{O $3_80r2_:1:3_8},
1 3 3 7
= < < — — < < - - < <
ENQ Qﬁ{O_x3_4or8_x3_4or8_:c3_1,
1 3 3 7
= < < - - < < — - < <
ENS Sﬁ{O_x3 4or8_:v3_4or8_x3_1},
and 1 . 9
< < — = < < —
ENA= Am{o xg_lﬁ} ENC Aﬂ{2_a:3_16}
5 3 1 13
= — < < < < - — < < .
ENB Bm{16 x3_4} END= Dﬂ{0_$3_40r16_:c3_1}

We also denote K = [J;cz(E + (0,0, j)).

Let E + T be a tiling of R3, and assume that 0 € 7. Suppose that £ + v and E + w are
neighbours in this tiling so that the vertical sides of (E N P) + v and (E N Q) + w meet in a
set of non-zero two-dimensional measure. Then we must have v — w = (0,1, (v — w)3), where
(v—w)s € {:t%, :t%}. A similar statement holds with P,Q replaced by R, S and with the z1, x5
coordinates interchanged. We deduce that the tiling consists of copies of FE stacked into identical
vertical “columns” K;; = K + (4, j, t;j), arranged in a rectangular grid in the 125 plane and shifted
vertically so that ¢;11; — t;; and t; j41 — t;; are always :i:i. We will use matrices (¢;;) to encode
such a tiling or portions thereof.

It is easy to see that (t;;), where t;; = 0 if i + j is even and 1 if 4 + j is odd, is indeed a tiling.
It remains to show that £ does not admit a lattice tiling. Indeed, the four possible choices of the
generating vectors in any lattice (¢;;) with ¢;; = :i:i produce the configurations

() (V0) (5 0)- (0 9)

But it is easy to see that the corners A, B,C, D do not match if so translated.
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