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Abstract. It is possible to have a packing by translates of a cube that is maximal
(i.e. no other cube can be added without overlapping) but does not form a tiling. In
the long running analogy of packing and tiling to orthogonality and completeness of
exponentials on a domain, we pursue the question whether one can have maximal
orthogonal sets of exponentials for a cube without them being complete. We prove
that this is not possible in dimensions 1 and 2, but is possible in dimensions 3 and
higher. We provide several examples of such maximal incomplete sets of exponen-
tials, differing in size, and we raise relevant questions. We also show that even in
dimension 1 there are sets which are spectral (i.e. have a complete set of orthogo-
nal exponentials) and yet they also possess maximal incomplete sets of orthogonal
exponentials.

1. Introduction

1.1. If Ω ⊂ Rd is a measurable set of finite measure, we call it spectral if there
exists a countable set Λ ⊂ Rd such that the system of exponential functions

E(Λ) = {e2πi⟨λ,x⟩ : λ ∈ Λ} (1.1)
forms an orthogonal basis in L2(Ω). The set of frequencies Λ is then called a spec-
trum of Ω. The properties of spectral sets, especially in comparison with properties
of sets that tile by translations, have been a subject of intense research for decades
(see, for instance, the recent survey [Kol24]). The Fuglede conjecture [Fug74]
stated that the spectral sets are precisely those that can tile the space by trans-
lations (this means that one can find a collection of translates of the set such that
almost every point of the space belongs to exactly one translate), but this conjec-
ture is now known to be false in dimensions 3 and higher [Tao04], [Mat05], [KM06],
[FMM06], [FR06]. Still a lot more is known and continues to be discovered about
the connection of spectrality to tiling, a major recent result being the truth of the
Fuglede conjecture for convex sets [LM22].
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For the unit cube Q = [−1
2
, 1
2
]d, which is of course both a spectral set and a trans-

lational tile in Rd, a lot more is known. In particular it is known that the spectra Λ
of Q are precisely the tiling complements of Q, namely the translation sets Λ ⊂ Rd

such that {Q+ λ}, λ ∈ Λ, constitutes a tiling [LRW00], [IP98], [Kol00b].
For any set Ω ⊂ Rd the two exponentials e2πi⟨λ,x⟩ and e2πi⟨µ,x⟩ are easily seen to be

orthogonal in L2(Ω) if and only if 1̂Ω(λ− µ) = 0, where 1̂Ω(ξ) =
∫
Ω
e−2πi⟨ξ,x⟩dx is the

Fourier transform of the indicator function 1Ω. Since the unit cube Q is a product
set, we can easily compute 1̂Q and find that its zero set is

G = {(ξ1, ξ2, . . . , ξd) ∈ Rd : there is j such that ξj ∈ Z \ {0}}. (1.2)

At the same time a collection of translates {Q + t}, t ∈ T , forms a packing (i.e.
the translates overlap at measure zero only) if and only if (T − T ) ∩ (−1, 1)d = {0}.
Hence if Λ is an orthogonal set for the cube Q then Λ− Λ ⊂ G ∪ {0}, which in turn
implies, via the characterization (1.2), that {Q + λ}, λ ∈ Λ, is a packing. In short,
any orthogonal set for Q is also a packing set for Q (note, however, that the converse
is not true).

1.2. We now come to the question of maximality. A packing of Q is called maximal
if it is not possible to add another translated copy of Q so that it remains a packing.
Clearly every tiling is a maximal packing. It is easy to see though that there exist
maximal packings ofQ by a set of translates T which are not tilings. For instance, in
dimension one, consider T to contain all numbers of the form ±(n− 1

4
), n = 1, 2, 3, . . . .

The same is true in all dimensions.
An orthogonal set of frequencies Λ is similarly called maximal if it is not possible

to add another point to it so that it remains orthogonal. Any spectrum of Q (i.e.
an orthogonal and complete set of frequencies) is of course maximal. But now it is
not clear whether maximality fails to imply completeness, just as maximality of a
packing fails to imply tiling.

In fact, it is easy to see that in dimension one, the maximality of an orthogonal
set of frequencies does imply completeness. Indeed, if the exponential system E(Λ)
is orthogonal in L2([−1

2
, 1
2
]) then Λ − Λ ⊂ Z. Fix λ0 ∈ Λ. It follows that Λ ⊂ λ0 + Z

and, since all frequencies in λ0 + Z are orthogonal to each other, maximality of Λ
implies that Λ = λ0 + Z, that is, Λ is a spectrum of [−1

2
, 1
2
].

Is the same still true in higher dimensions? That is, if Λ is a maximal orthogonal
set for the unit cube in Rd, must it be also complete? In §2 we show that every
maximal orthogonal set for the square in 2 dimensions is also complete, just as in
dimension 1. Then in §3 we show that this is not the case in dimension 3. The
maximal incomplete set we find there has the maximum possible density. In §4 we
give an alternative construction, again in dimension 3, where our maximal set is
now much thinner, almost a finite union of planes. We then show in §5 how we can
extend the results from dimension 3 to higher dimensions. In §6 we examine some
general properties that maximal orthogonal sets for the cube must have. Closing,
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in §7 we show that if we are willing to examine spectral sets other than the cube
then even in dimension 1 we can find an example of a spectral set which has a
maximal incomplete set of exponentials.

2. Maximal orthogonal sets in two dimensions

First we show that in two dimensions, the maximality of an orthogonal set for
the unit square implies completeness, similar to the one-dimensional case.
Theorem 2.1. Any maximal orthogonal set for the unit square in R2 is also complete,
i.e. it is a spectrum. More generally, any orthogonal set for the unit square can be
embedded as a subset of some spectrum.

The proof will require a lemma which can be found in [Kol00a, Observation 1] as
well as in [GL17, Lemma 11.4].
Lemma 2.2. Let X be a subset of an abelian group H, and let H1 and H2 be two
subgroups of H. Assume that X −X ⊂ H1 ∪H2. Then X −X ⊂ H1 or X −X ⊂ H2.

Now let Λ ⊂ R2 be an orthogonal set for the unit square. Then Λ − Λ ⊂ G ∪ {0},
where G is the zero set from (1.2) (with d = 2). It follows that if we define H1 = Z×R
and H2 = R×Z, which are both subgroups of R2, then Λ−Λ ⊂ H1 ∪H2. Lemma 2.2
then implies that Λ− Λ ⊂ Z× R or Λ− Λ ⊂ R× Z.

Let us consider the case where Λ − Λ ⊂ Z × R (the other case is similar). By
translating the set Λ we may assume that it contains the origin, so this implies
that Λ ⊂ Z×R. We now observe that if (n, t) and (n, s) are two distinct points in Λ,
then orthogonality implies that t− s must be an integer. Hence Λ is contained in a
set of the form

{(n, k + t(n)) : n, k ∈ Z} (2.1)
where t(n) are real numbers. But it is known, see [JP99, Theorem 5], that any set
of the form (2.1) is a spectrum of the unit square. Hence Λ can be embedded as a
subset of a spectrum. In particular, Λ is maximal if and only if it coincides with a
spectrum.

3. A maximal incomplete orthogonal set in three dimensions

3.1. Next we show that Theorem 2.1 does not extend to three dimensions. Namely,
we will prove the following result.
Theorem 3.1. There exists an orthogonal set Λ ⊂ R3 for the unit cube, which is
maximal but incomplete.

Our strategy is to start from the integer lattice Z3 which is a spectrum for the
unit cube. We then remove a small part of this spectrum, contained in the union of
the three coordinate planes, which leaves us with a subset B of the integer lattice.
The set B is still orthogonal, but of course it is not maximal as it embeds in a
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spectrum. However, we will show that one can add a small set A to B such that the
orthogonality is still preserved, but at the same time it eliminates the possibility
of further extending A∪B to a spectrum, or stronger, to any larger orthogonal set.

3.2. We now turn to the details of the construction. Fix three real numbers α, β, γ
such that none of them is an integer. Let A be the set in R3 consisting of all points
that have one of the following forms:

(0, β − k, γ), (α, 0, γ − k), (α− k, β, 0) (3.1)
where k is a nonzero integer. Notice that A is contained in the union of three lines.

Let B be the set of all vectors in R3 whose coordinates are nonzero integers. This
set contains all integer vectors except those lying in a union of three planes.

The sets A and B are disjoint. Let Λ = A∪B be their union. It is straightforward
to check that Λ−Λ ⊂ G∪{0}, where G is the zero set from (1.2) (with d = 3). Hence
Λ is an orthogonal set for the unit cube Q in R3. In particular, Q+ Λ is a packing.

On the other hand we claim that Λ is not a complete set of frequencies. Indeed,
if it was complete then Q+Λ would be a tiling, see [LRW00], [IP98], [Kol00b]. But
notice that each one of the three slabs

[−1
2
, 1
2
]× R× R, R× [−1

2
, 1
2
]× R, R× R× [−1

2
, 1
2
] (3.2)

is scarcely covered by the cubes in the packing Q+Λ, so this packing is not a tiling.

3.3. To continue we need the following lemma.

Lemma 3.2. Let s ∈ R3 and suppose that s − B ⊂ G. Then at least one of the
coordinates of s is zero.

Proof. Let s = (u, v, w) and suppose to the contrary that all the coordinates u, v, w
are nonzero. Since we have (u, v, w)−(1, 1, 1) ∈ G then at least one of the coordinates
u, v, w must be an integer. Hence, say, u = j for some nonzero integer j. Next, since
we also have (u, v, w) − (j, 1, 1) ∈ G, then at least one of the other two coordinates
v, w must be an integer. Hence, say, v = k for some nonzero integer k. Finally, since
(u, v, w)− (j, k, 1) ∈ G, then w must be an integer, so w = l for some nonzero integer
l. But this implies that the zero vector (u, v, w)− (j, k, l) is in G, a contradiction. □

3.4. Finally we show that Λ is a maximal orthogonal set for the unit cube Q. Sup-
pose to the contrary that this is not the case, and let s = (u, v, w) ∈ R3 be a point
not belonging to Λ, such that Λ ∪ {s} is still an orthogonal set. In other words, this
means that we have s− Λ ⊂ G.

In particular, we have s−B ⊂ G, hence by Lemma 3.2 at least one of the coordi-
nates u, v, w is zero. Let us consider the case where u = 0 (the other two cases are
similar). We then have (0, v, w)− (0, β − k, γ) ∈ G for every nonzero integer k. This
implies that either w − γ is a nonzero integer, or that v = β.
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If v = β, then s = (0, β, w). We now have (0, β, w) − (α, 0, γ − k) ∈ G for every
nonzero integer k. This implies that w = γ. We thus obtain s = (0, β, γ), but this
contradicts the condition that s− (α− k, β, 0) ∈ G for every nonzero integer k. This
case cannot therefore happen.

Hence we must have w = γ − l where l is a nonzero integer. Then s = (0, v, γ − l).
The condition s− (α, 0, γ − l) ∈ G now implies that v = m for some nonzero integer
m. We therefore obtain that s = (0,m, γ−l), but this again contradicts the condition
that s− (α−k, β, 0) ∈ G for every nonzero integer k. Hence this case cannot happen
either.

This shows that Λ is indeed a maximal orthogonal set for the unit cube.

4. A “thin” maximal set in three dimensions

4.1. The maximal incomplete orthogonal set constructed in Section 3 is, in a sense,
almost as large as a spectrum. Indeed, this set contains all integer vectors except
those lying in the union of the three coordinate planes, and in particular, the set
has the maximum possible density.

In this section we give an alternative construction which, somewhat surprisingly,
produces a much thinner set.

Theorem 4.1. There is an orthogonal set Λ ⊂ R3 for the unit cube, which is maximal
but contained in a finite union of planes (and, as a consequence, is incomplete).

4.2. Fix again three real numbers α, β, γ such that none of them is an integer. Let
Λ be the set in R3 consisting of all points that have one of the following forms:

(0, 0, 0), (n, β − k, γ), (α, n, γ − k), (α− k, β, n) (4.1)
where n and k are nonzero integers.

It is straightforward to check that Λ− Λ ⊂ G ∪ {0}, hence Λ is an orthogonal set
for the unit cube Q in R3. On the other hand, Λ is contained in the union of three
planes plus the origin, hence Q+ Λ is not a tiling and Λ is not a spectrum for Q.

4.3. On the other hand we now claim that Λ is a maximal orthogonal set for the
unit cube. Indeed, if not then there is a point s = (u, v, w) ∈ R3 not belonging to
Λ, such that Λ ∪ {s} is still an orthogonal set. In other words, this means that
s− Λ ⊂ G.

The condition (u, v, w)−(0, 0, 0) ∈ G implies that at least one of u, v, w is a nonzero
integer. Let us consider the case where u = j for some nonzero integer j (the other
two cases are similar). We then have (j, v, w) − (j, β − k, γ) ∈ G for every nonzero
integer k. This implies that either w − γ is a nonzero integer, or that v = β.

If v = β, then s = (j, β, w). We have (j, β, w) − (α, n, γ − k) ∈ G for every two
nonzero integers n and k. This implies that w = γ. We thus obtain s = (j, β, γ),
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but this contradicts the condition that s − (α − k, β, n) ∈ G for every two nonzero
integers n and k. So this case cannot happen.

Hence we must have w = γ − l where l is a nonzero integer. Then s = (j, v, γ − l).
The condition s−(α, n, γ− l) ∈ G for every nonzero integer n now implies that v = 0.
We therefore obtain that s = (j, 0, γ − l), but this again contradicts the condition
that s− (α− k, β, n) ∈ G for every two nonzero integers n and k. It follows that this
case cannot happen either.

This shows that Λ is indeed a maximal orthogonal set for the unit cube.

4.4. We leave open the following question, which arises naturally.
Problem 4.2. Does there exist a maximal orthogonal set Λ ⊂ R3 for the unit cube,
such that Λ is contained in a union of finitely many lines?

5. Extensions to higher dimensions

We will now use the results of Sections 3 and 4 in order to construct examples of
maximal incomplete orthogonal sets for the cube also in dimensions greater than
3. We will present two methods that allow us to use lower-dimensional examples in
order to produce examples in higher dimensions.

5.1. Suppose that Λ ⊂ Rn is a maximal and incomplete orthogonal set for the unit
cube in Rn. We will show how to use this set Λ in order to construct a set Γ ⊂ Rn×Rm

which is a maximal and incomplete orthogonal set for the unit cube in Rn × Rm.
We take Γ = A∪B to be the union of two disjoint sets A and B, defined as follows.

Let A be the set of all vectors in Rn × Rm of the form (λ, 0) where λ ∈ Λ. We also
let B be the set of vectors (p, q) ∈ Zn × Zm such that the vector q has at least one
nonzero coordinate, i.e. q is not the zero vector.

It is clear that A and B are indeed two disjoint sets. It is also straightforward to
check that their union Γ = A ∪B is an orthogonal set for the unit cube in Rn ×Rm.
Theorem 5.1. If Λ ⊂ Rn is a maximal and incomplete orthogonal set for the unit
cube in Rn, then the set Γ constructed above is a maximal and incomplete orthogonal
set for the unit cube in Rn × Rm.

Proof. Let us first show that Γ is maximal. Suppose to the contrary that this is not
the case, so there is a point (u, v) ∈ Rn×Rm which is orthogonal to both A and B. If
v is the zero vector, then orthogonality to A implies that the vector u is orthogonal
to Λ (with respect to the unit cube in Rn) which contradicts the maximality of Λ.
Hence this cannot happen, so v must be a nonzero vector. We now define a vector q =
(q1, . . . , qm) by taking the coordinate qj to coincide with the corresponding coordinate
vj of v if it is an integer, and otherwise we let qj be an arbitrary nonzero integer.
This implies that q is a nonzero vector in Zm which is not orthogonal to v (with
respect to the unit cube in Rm). But now (u, v) is orthogonal to all vectors of the
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form (p, q), p ∈ Zn, since these vectors are in B. However this is possible only if
u is orthogonal to all vectors p ∈ Zn, which contradicts the completeness of the
spectrum Zn of the unit cube in Rn. This shows that Γ is indeed maximal.

It remains to show that Γ is not complete. Indeed, if it was complete then Γ would
be a tiling set for the unit cube in Rn × Rm, again due to the result in [LRW00],
[IP98], [Kol00b]. In turn this would imply that Λ is a tiling set for the unit cube in
Rn. As a consequence, Λ would be a spectrum, contrary to our assumption. □

5.2. Another possibility for using lower-dimensional examples in order to con-
struct examples in higher dimensions, is to utilize cartesian products.
Theorem 5.2. Let A ⊂ Rn and B ⊂ Rm be two maximal orthogonal sets for the unit
cubes in Rn and Rm respectively. Then the cartesian product A × B is a maximal
orthogonal set for the unit cube in Rn ×Rm. Moreover, A×B is a complete set if and
only if both A and B are complete sets.

Proof. It is straightforward to check that A × B is an orthogonal set for the unit
cube in Rn × Rm. Suppose to the contrary that A × B is not maximal, and let
(u, v) ∈ Rn × Rm be orthogonal to all the points of A × B. The maximality of A
implies the existence of a point a ∈ A which is not orthogonal to u. Similarly, by the
maximality of B there is b ∈ B which is not orthogonal to v. It follows that (u, v)
is not orthogonal to the point (a, b) which belongs to A×B, a contradiction. Hence
A× B must be a maximal set.

Finally, it is well known, see e.g. [JP99, Theorem 4], that if both A and B are
complete sets, then also A × B is complete. The converse is also true, see [JP99,
Lemma 2]. □

5.3. It is natural to pose the following question, which generalizes Problem 4.2.
Let us define the affine dimension of a discrete set Λ ⊂ Rd to be the smallest in-
teger k such that Λ can be covered by a finite number of translated k-dimensional
subspaces.
Problem 5.3. How small can be the affine dimension of a maximal orthogonal set
for the unit cube in Rd?

If we write d = 3q + r where r ∈ {0, 1, 2}, then the set Γ = Λ × · · · × Λ × Zr is a
maximal incomplete orthogonal set for the unit cube in Rd, where Λ ⊂ R3 is the set
from Theorem 4.1, which appears q times in the product. We observe that this set
Γ is contained in a finite union of translated subspaces of dimension k = 2q + r.

6. Some general properties of maximal orthogonal sets

6.1. In the previous sections, we have constructed examples of maximal incom-
plete orthogonal sets for the unit cube in Rd, d ⩾ 3. Moreover, we have seen exam-
ples of rather “thin” maximal orthogonal sets. A natural question arises as to how
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small can these sets be. The following proposition gives a necessary condition on a
maximal set, which in particular shows that it cannot be “too small” in a sense.

Theorem 6.1. Let Λ ⊂ Rd be a maximal orthogonal set for the unit cube. Then for
every point (λ1, λ2, . . . , λd) ∈ Λ and for every integer n, the number λ1+n must appear
as the first coordinate of some point from Λ. Similarly, λ2 + n must appear as the
second coordinate of some point from Λ, and so on.

Proof. By translating the set Λ we may assume that the point (λ1, λ2, . . . , λd) lies at
the origin. By symmetry it also suffices to prove that every integer n must appear
as the first coordinate of some point from Λ.

Suppose to the contrary that n is an integer which does not appear as the first
coordinate of any point from Λ. We then claim that the point ξ = (n, 0, 0, ..., 0) is
orthogonal to all points of Λ, which contradicts the maximality of Λ. Indeed, n
must be a nonzero integer and hence ξ is orthogonal to the origin. Now let µ be any
point of Λ other than the origin. Then µ is orthogonal to the origin and so at least
one of the coordinates of µ is a nonzero integer. If this coordinate is not the first
one then ξ is orthogonal to µ and we are done. Otherwise the first coordinate of µ
is a (nonzero) integer, which cannot be equal to n by assumption. This once again
implies that ξ is orthogonal to µ, and so the assertion is established. □

As an immediate consequence of Theorem 6.1 we obtain:

Corollary 6.2. Any maximal orthogonal set for the unit cube must be an infinite
set.

Moreover, it follows that a maximal orthogonal set cannot be “too localized” in
space. Specifically, consider an axis-aligned slab of width one, i.e. a set of the form

Sj(a) = {(x1, x2, . . . , xd) : a ⩽ xj ⩽ a+ 1}, 1 ⩽ j ⩽ d, a ∈ R. (6.1)
Since any closed interval of length 1 contains an integer, Theorem 6.1 implies:

Corollary 6.3. A maximal orthogonal set for the unit cube must intersect any axis-
aligned slab of width one.

6.2. Assume now that Λ is a finite orthogonal set for the unit cube in Rd. Then Λ
is not maximal (Corollary 6.2). A standard application of Zorn’s lemma shows that
Λ can always be embedded as a subset of a maximal orthogonal set. Is it always
possible to embed Λ as a subset of an orthogonal and complete set (i.e. a spectrum)
of the cube?

Theorem 2.1 tells us that the answer is ‘yes’ in two dimensions. Let us show that
it is ‘no’ in dimensions 3 and higher:

Theorem 6.4. There exists a finite orthogonal set for the unit cube in Rd, d ⩾ 3,
which cannot be embedded as a subset of any spectrum of the cube.
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Proof. By our previous results there exists a maximal but incomplete orthogonal
set Λ for the unit cube. For each n define Λn := Λ ∩ [−n, n]d. The set Λn is finite
for every n. We claim that there is n such that the set Λn cannot be embedded as a
subset of any spectrum. Indeed, if this is not the case then each Λn is contained in
some spectrum Γn of the cube. It is known, see [GL16, Section 3], [Kol16], that there
exists a weakly convergent subsequence Γnj

whose weak limit Γ is also a spectrum
for the cube. We have Λm ⊂ Λnj

⊂ Γnj
for nj > m, and letting j → +∞ it follows that

the weak limit Γ contains the set Λm. Since m is arbitrary we conclude that Λ ⊂ Γ,
that is, Λ can be embedded in a spectrum, in contradiction to its maximality and
incompleteness. □

7. Spectral sets other than the cube

As we saw in the introduction, in the case of the cube in dimension 1 (i.e. the unit
interval), any maximal orthogonal set of frequencies necessarily forms a spectrum.
A natural question arises whether this is true for any spectral set Ω ⊂ R. Below,
we utilize an idea of the previous sections to show that this is not the case.
Theorem 7.1. There exists a spectral set H ⊂ R (a union of finitely many intervals
with integer endpoints) which admits a maximal but incomplete orthogonal set.

We motivate the concrete example given below by a short informal discussion.
We are looking for a set H ⊂ R such that H is spectral, but there exists a maximal
orthogonal set of exponentials in L2(H) which is not complete. As Fuglede’s con-
jecture is still open in R, we may as well assume that H tiles R by translations. If
so, it is known that any tiling of R by a bounded region H is periodic and is essen-
tially equivalent to a tiling of Z (see [LW96]). Furthermore, any tiling of Z is known
to arise as a periodic extension of a tiling of a finite cyclic group ZN = Z/NZ (see
[New77]). It is therefore natural to look for the set H in the form H = ∪k

j=1[hj, hj+1),
where the set H0 = {h1, . . . , hk} ⊂ {0, 1, 2, . . . , N − 1} is a tile (and a spectral set) in
the group ZN (where we have identified ZN with the set {0, 1, 2, . . . , N − 1} in the
natural way).

However, we note that if the cardinality of the set H0 is a prime number, then
the structure theory of tiling of finite abelian groups indicates that any maximal
orthogonal set for H0 is necessarily a spectrum. Presumably the same holds if the
number of elements of the set H0 is a prime power, or even a product of two prime
powers, see [CM99]. This suggests that we should be looking for a more complicated
example.

In the concrete choice of N and the set H0 ⊂ ZN we shall therefore mimic the
“thin” example of Section 4, given in dimension 3 for the cube. Let p < q < r be
distinct odd primes, and let N = p2q2r2. Then ZN is isomorphic to the product group
Zp2×Zq2×Zr2, with a group isomorphism being the mapping ϕ : Zp2×Zq2×Zr2 → ZN

given by
ϕ(a, b, c) = q2r2a+ p2r2b+ p2q2c (7.1)
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(clearly this mapping is a homomorphism, and one can easily check that it has a
trivial kernel, hence it is an isomorphism).

Let us now consider the “discrete cube” H0 ⊂ Zp2 × Zq2 × Zr2 given by
H0 = {(a, b, c) : 0 ⩽ a ⩽ p− 1, 0 ⩽ b ⩽ q − 1, 0 ⩽ c ⩽ r − 1}. (7.2)

The Fourier transform 1̂H0 is a function on the dual group, which we can also iden-
tify with Zp2 ×Zq2 ×Zr2. The zeros of 1̂H0 are then the vectors whose first coordinate
is a nonzero multiple of p, or the second coordinate is a nonzero multiple of q, or
the third coordinate is a nonzero multiple of r. As a consequence, H0 is a spectral
set in the group Zp2 × Zq2 × Zr2 and the set Γ0 = {(u, v, w) : p|u, q|v, r|w} serves as
a spectrum for H0. Indeed, Γ0 is an orthogonal set of frequencies for H0 and it has
the same cardinality as H0 (see also [AGK18]).

We will now exhibit a maximal but incomplete set of frequencies for H0. We let
Λ0 ⊂ Zp2 × Zq2 × Zr2 be the set of all vectors that have one of the following forms:

(0, 0, 0), (n, 1− k, 1), (1, k, 1−m), (1− n, 1,m) (7.3)
where n is a nonzero multiple of p, k is a nonzero multiple of q and m is a nonzero
multiple of r. (Notice that these elements of Λ0 are analogous to those in (4.1).) It
is then straightforward to check that Λ0 forms an orthogonal set of frequencies for
H0, and one can repeat the proof of Section 4 verbatim to show that Λ0 is maximal.
It is also clear that Λ0 is not a spectrum of H0, since we have |H0| = pqr while

|Λ0| < pq + qr + rp < 3qr ⩽ pqr. (7.4)

Via the isomorphism (7.1) we deduce that ϕ(H0) ⊂ ZN is a spectral set which has
a maximal, incomplete set of frequencies Λ′

0. We view Λ′
0 as a subset of ZN via the

identification of ZN with its dual group.
Finally, let H ⊂ R be the set defined by H = ∪h∈ϕ(H0)[h, h + 1), or equivalently,

1H = 1ϕ(H0) ∗ 1[0,1). This implies that the zero set of the Fourier transform 1̂H

satisfies (
{1̂H = 0} ∪ {0}

)
∩ 1

N
Z =

1

N

(
{1̂ϕ(H0) = 0} ∪ {0}

)
+ Z, (7.5)

where we view {1̂ϕ(H0) = 0} as a subset of {0, 1, 2, . . . , N − 1}. Define also

Λ =
1

N
Λ′

0 + Z (7.6)

and observe that this is an orthogonal set for H because of (7.5). For the same
reason we have that if Γ′

0 is a spectrum of ϕ(H0) in ZN then Γ = 1
N
Γ′
0+Z is a spectrum

of H in R. The orthogonality of Γ follows from (7.5) and the completeness follows
from (a) having the right density and (b) being periodic, as (a) and (b) together imply
that the “packing” |1̂H |2 + Γ is actually a tiling (see [Kol24, Section 2]).

It remains to show the maximality of Λ (the incompleteness of Λ is guaranteed
since its density is too small). Assume that Λ∪ {x} is an orthogonal set of frequen-
cies for H, where x ∈ R \Λ. By the Z-periodicity of Λ we may assume that x ∈ [0, 1).
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Now, if we knew that x = k/N for some k ∈ {0, 1, 2, . . . , N − 1} \ Λ′
0, then again by

(7.5) this would imply that Λ′
0 ∪ {k} is an orthogonal set of frequencies for ϕ(H0)

in ZN , which contradicts the maximality of Λ′
0. To conclude the proof we therefore

need to rule out the possibility that x is a real number in [0, 1) which is not of the
form k/N .

To this end we will need the following lemma.

Lemma 7.2. If H0 ⊂ Zp2 ×Zq2 ×Zr2 is the set defined by (7.2) and ϕ is given by (7.1)
then, viewing the set ϕ(H0) ⊂ {0, 1, 2, . . . , N−1} as a subset of the integer group Z, the
Fourier transform of its indicator function (viewed as a function on the dual group
T = R/Z) has no zeros outside the set

1

p2q2r2
Z. (7.7)

Proof. We must show that if ξ ∈ R and 1̂ϕ(H0)(ξ/N) = 0 then ξ ∈ Z.
Let A = {0, 1, . . . , p−1}, B = {0, 1, . . . , q−1} and C = {0, 1, . . . , r−1} viewed as sub-

sets of the integers. We make the following observation: if we interpret the expres-
sion (7.1) as an integer (and not as an element of ZN ), then all the values attained
by this expression for a ∈ A, b ∈ B and c ∈ C lie in the subset {0, 1, 2, . . . , N − 1} of
the integers. Indeed, all these values are nonnegative and not greater than

q2r2p+ p2r2q + p2q2r = pqr(qr + pr + pq) < pqr(3qr) ⩽ p2q2r2 = N. (7.8)

This means that as the triple (a, b, c) goes through the elements ofA×B×C, then the
expression (7.1) not only goes through the elements of ϕ(H0) viewed as congruence
classes modulo N , but it also goes through the representatives in {0, 1, 2, . . . , N −1}
(as a subset of Z) of the elements of the set ϕ(H0).

This observation allows us to compute the Fourier transform 1̂ϕ(H0)(ξ/N). As-
sume that ξ ∈ R is not an integer, then we have

1̂ϕ(H0)(ξ/N) =
∑
a∈A

∑
b∈B

∑
c∈C

exp(−2πiϕ(a, b, c)ξ/N) (7.9)

=
∑
a∈A

∑
b∈B

∑
c∈C

exp(−2πi(q2r2a+ p2r2b+ p2q2c)ξ/N) (7.10)

=

p−1∑
a=0

e−2πiaξ/p2
q−1∑
b=0

e−2πibξ/q2
r−1∑
c=0

e−2πicξ/r2 (7.11)

=
1− e−2πiξ/p

1− e−2πiξ/p2
· 1− e−2πiξ/q

1− e−2πiξ/q2
· 1− e−2πiξ/r

1− e−2πiξ/r2
, (7.12)

where the observation made above was used in (7.9) and (7.10). It remains to notice
that the quantity in (7.12) is nonzero, as otherwise ξ would have to be an integer
divisible by p, q or r. Hence the lemma is established. □
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Finally, we use the lemma to finish the proof of the maximality of Λ. Recall that
we have assumed that Λ∪{x} is an orthogonal set of frequencies for H, where x is a
real number in [0, 1)\Λ. Since 0 ∈ Λ, Lemma 7.2 allows us to conclude that x = k/N
for some k ∈ {1, 2, . . . , N − 1} \Λ′

0. As we have seen, this implies that Λ′
0 ∪ {k} is an

orthogonal set of frequencies for ϕ(H0) ⊂ ZN , contradicting the maximality of Λ′
0.
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