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AsstracT. We use the measurable Hall’s theorem due to Ciesla and Sabok to prove
that (i) if two measurable sets A, B ¢ IR of the same measure are bounded remainder
sets with respect to a given irrational d-dimensional vector «, then A, B are equi-
decomposable with measurable pieces using translations from Za+27¢; and (ii) given
a lattice I' ¢ R™ x R" with projections p; and p, onto R™ and IR” respectively, if two
cut-and-project sets in R” obtained from Riemann measurable windows W, W’ c R"
are bounded distance equivalent, then W, W’ are equidecomposable with measurable
pieces using translations from p,(I'). We also prove by a different method that for
one-dimensional cut-and-project sets the pieces can be chosen Riemann measurable.
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1. INTRODUCTION

Let X be a set endowed with a group of transformations G. Two subsets A,B ¢ X
are called G-equidecomposable if they can be partitioned into the same finite num-
ber of pieces A = |Ji_; A;, B = Ui, B;, which can be pairwise matched via elements
of G,i.e. B; = gj-Aifor some g; € G,i=1,2,...,n, where ¢- denotes the group action.

A famous example of equidecomposability is the so-called Tarski circle squaring
problem, which was posed by Tarski (1925) [TW16]: is a square of area 1 equide-
composable to a disk of area 1 via plane isometries? This was answered in the
affirmative by Laczkovich [Lac90]: the square of unit area can be partitioned into
a finite number of pieces which can then be translated to form a partition of a disk
of unit area (thus the group of transformations of the plane used is not the whole
group of isometries but merely the group of translations). Moreover, it was proved
by Grabowski, Mathé and Pikhurko [GMP17] that the pieces in this result can be
chosen Lebesgue measurable.

In the present paper we consider the case where G is a finitely generated group
of translations of R, usually dense in the group of all translations. We also relax
the concept of equidecomposability to ignore sets of Lebesgue measure zero: two
sets A, B are called G-equidecomposable up to measure zero if we can remove from
them a set of measure zero such that the remaining sets are G-equidecomposable.
This relaxation is particularly natural if one is to impose the requirement of mea-
surability on the pieces of the equidecomposition. This relaxation does not usually
cause any problems in applications of equidecomposability, e.g. to tilings [GK25].
Subject to these assumptions and demands, our goal in this paper is generally to
achieve equidecomposability with measurable pieces.

One can think of the equidecomposability of A and B as a problem of finding a
perfect matching in a bipartite graph. Take the bipartite graph with the points of
A on one side and the points of B on the other. Then A, B are G-equidecomposable if
and only if there exists a finite set F C G such that the bipartite graph whose edges
are all pairs of the form (a, f -a) witha € A, f-a € B, f € F, has a perfect matching.
Recall that a perfect matching is a collection of disjoint edges that touch all points
of A and B. Let us call such a perfect matching a G-matching.

Our main tool in the effort to produce measurable pieces in an equidecomposition
is the measurable Hall’s theorem due to Ciesla and Sabok [CS22] (see Theorem 2.4
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below), which uses an appropriately mixing group action on the ambient space in
order to deduce the existence of a measurable G-matching between two sets A, B
from the existence of an arbitrary (not necessarily measurable) G-matching. By
a measurable G-matching we mean a G-matching for which the set A, = {a € A :
(a, g - a) is part of the matching} is measurable for each g € G.

The structure of the rest of this paper is as follows.

In the preliminary Section 2 we review the equidecomposability concepts that will
be used in the paper and formulate the measurable Hall’s theorem due to Ciesla
and Sabok [CS22].

In Section 3 we discuss bounded remainder sets, and we show that if two mea-
surable sets A, B of the same measure are bounded remainder sets with respect
to a given irrational d-dimensional vector a, then A, B are equidecomposable with
measurable pieces using translations from Za + Z°.

In Section 4 we show that if two model sets defined by two different Riemann mea-
surable windows W and W’ are bounded distance equivalent then (and only then,
see [FG18, Theorem 6.1]) the two windows are equidecomposable up to measure
zero with measurable pieces using translations from p,(I'), where I is the lattice
defining the model sets and p, is its projection onto the subspace containing the
windows W, W’. This bridges a gap that has arisen in the proof of [Gre25a, Theo-
rem 1.1], see [Gre25b].

The results in Sections 3 and 4 rely on the measurable Hall’s theorem [CS22].
This is not the case in Section 5, where we prove by a different method that in the
special case of one-dimensional model sets, if two model sets are bounded distance
equivalent then the corresponding Riemann measurable windows are equidecom-
posable with Riemann measurable pieces using translations from p,(I').

2. EQUIDECOMPOSABILITY AND HALL'S coNDITION

In this preliminary section we review the connection between equidecomposabil-
ity and Hall’s condition, and state the measurable Hall’s theorem due to Ciesla and
Sabok [CS22] that will be used later on.

2.1. Equidecomposability. Let X be a set endowed with an action of a group G.
We use g - x to denote the action of an element ¢ € G on a point x € X.

We say that two sets A, B C X are G-equidecomposable if there exist finitely many
sets Aj,..., A, C X and elements g1,..., g, € G such that {Aj}7:1 forms a partition of
A, while {g; -Aj}’]f‘:1 forms a partition of B.

We say that A, B C X satisfy Hall’s condition with respect to G, if there exists a
finite set F C G such that

(i) |S| < |(F - S) N B| for every finite set S C A;

(ii) |T| < |(F7!- T) N A| for every finite set T C B.

To motivate this definition, consider A, B as two disjoint vertex sets of a bipartite

graph, where two vertices a € A and b € B are connected by an edge if and only if
b = g-afor some ¢ € F. The conditions (i) and (ii) then say that the size of every
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finite set of vertices in A or in B does not exceed the size of the set of its neighbors
in the graph.

The following proposition clarifies the connection between the notions of equide-
composability and Hall’s condition.

Proposition 2.1. Two sets A,B C X are G-equidecomposable if and only if A and B
satisfy Hall’s condition with respect to G.

Proof. We first prove the ‘if’ part. Suppose that there is a finite set F C G such that
(i) and (ii) hold. By the classical Hall’s marriage theorem, the condition (i) implies
that for every finite set S C A there exists an injective map ¢s : S — B satisfying
@s(a) € F-aforalla € S. By an application of Tychonoff’'s theorem, see [HV50], there
is an injective map ¢ : A — B such that ¢(a) € F-a for all a € A. In a similar way, we
deduce from (ii) that there is an injective map ¢ : B —> A such that y(b) € F' - b for
all b € B. In turn, the proof of the Cantor-Schroder-Bernstein theorem (see [TW16,
Theorem 3.6]) yields a bijection y : A — B such that yx(a) € F-a for all a € A. This
implies that A and B are equidecomposable using only actions of the finite set F.
Next we prove the ‘only if’ part. Suppose that {A f}?ﬂ forms a partition of A and
that {g; - A;}7_, forms a partition of B, where g,..., 8, € G. This allows us to define
a bijection y : A — B given by x(a) = g;-aif a € A;. By the necessity part of the
classical Hall’s marriage theorem, this implies that both conditions (i) and (ii) are
satisfied with the finite set F = {g1,..., gu}. O

Remarks. 1. The proof shows that if A, B satisfy Hall’s condition with a given finite
set F C G, then A, B are equidecomposable using only actions of the same finite set
F, and also the converse it true.

2. In the case where the sets A, B are countable, the application of Tychonoff’s
theorem can be replaced by a standard diagonalization argument.

2.2. Equidecomposability up to measure zero. Let (X, 1) be a measure space,
either finite or infinite, endowed with a measure preserving action of a countable
group G.

We say that two measurable sets A, B C X are G-equidecomposable up to measure
zero, if there exist finitely many sets A;,...,A, C X, elements g;,...,¢, € G and
a full measure subset X’ C X, such that {4; N X’}']?:1 forms a partition of A N X/,

while {(g;-Aj))N X’}’]?:1 forms a partition of BN X’. If the sets Ay, ..., A, can be chosen

measurable, then we say that A, B are G-equidecomposable up to measure zero with
measurable pieces.

Following [CS22, Definition 1] we say that two measurable sets A, B C X satisfy
Hall’s condition a.e. with respect to G, if there is a finite set F C G and a full measure
subset X’ C X, such that for every x € X’ we have

(i) |S| < |(F - S) N B for every finite set S ¢ AN (G - x);
(ii’) |T| < |(F7- T) N A| for every finite set T ¢ BN (G - x).

Y/ ARAN
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In other words, for almost every x € X the two sets AN (G-x) and BN (G- x) satisfy
Hall’s condition with the same finite set F C G.

Proposition 2.2. Let (X, 1) be a measure space endowed with a measure preserving
action of a countable group G. Two measurable sets A, B C X are G-equidecomposable
up to measure zero (with possibly non-measurable pieces) if and only if A, B satisfy
Hall’s condition a.e. with respect to G.

Proof. We first prove the ‘if’ part. Assume that there is a finite set F ¢ G and a full
measure subset X’ C X such that (i’) and (ii’) hold for every x € X’. Since the group
G is countable, then by replacing X’ with (1 .c(¢-X’) we may assume that G-X" = X,
that is, X’ is a G-invariant set. It follows that the two sets A’ = AnX"and B’ = BNnX’
satisfy Hall’s condition with the finite set F, hence A’, B’ are G-equidecomposable
by Proposition 2.1. As a consequence, A, B are G-equidecomposable up to measure
Zero.

To prove the converse ‘only if” part, suppose now that {A; ﬁX’}’]?:1 forms a partition

of ANX" and {(g;-A)) ﬁX’}’]?:1 forms a partition of BNX’, where g1, ..., g, € Gand X’ is
a full measure subset of X. Again by replacing X’ with (,.c(g - X") we may assume
that X’ is a G-invariant set. This implies that the two sets A N X’ and B N X’ are
G-equidecomposable considered as subsets of the set X’. Hence by Proposition 2.1

there is a finite set F C G such that (i’) and (ii’) hold for every x € X’. O

2.3. The measurable Hall’s theorem. Next we state the measurable Hall’s the-
orem proved in [CS22]. The theorem gives conditions guaranteeing that two mea-
surable sets A, B C X satisfying Hall’s condition are equidecomposable with mea-
surable pieces.

Assume now that (X, u) is a standard Borel probability space, endowed with a free
pmp (probability measure preserving) action of a finitely generated abelian group
G. We recall that the action of G on X is called free if ¢ - x # x for every nontrivial
element ¢ € G and every x € X.

By the structure theorem for finitely generated abelian groups, we may assume
that G = Z x A where d is a nonnegative integer and A is a finite abelian group.

Definition 2.3 (see [CS22, Definition 5]). A measurable set A C X is called G-
uniform if there exist positive constants ¢ and ny, such that for almost every x € X
and for every n > ny we have |A N (F, - x)| > cn?, where F, :== {0,1,...,n - 1}* X A.

The measurable Hall’s theorem due to Ciesla and Sabok states the following:
Theorem 2.4 ([CS22, Theorem 2]). Let (X, u) be a standard Borel probability space,

endowed with a free pmp action of a finitely generated abelian group G, and let A,B C
X be two measurable G-uniform sets. Then the following conditions are equivalent:

(a) A and B satisfy Hall’s condition a.e. with respect to G;

(b) Aand Bare G-equidecomposable up to measure zero (with possibly non-measurable

pieces);

(c) A and B are G-equidecomposable up to measure zero with measurable pieces.
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The equivalence of (a) and (b) was given in Proposition 2.2. Theorem 2.4 asserts
that these conditions are also equivalent to (¢). This result will be used below.

3. BOUNDED REMAINDER SETS

3.1. If A c RY is a bounded measurable set, we use 14 to denote its indicator
function, and we let

Xa() =) Talx+k), xeR’, (3.1)

kezd

be the multiplicity function of the projection of A onto T = R?/Z4.

Let a = (a1, ay, ..., a,) be a fixed real vector such that the numbers 1,ay,a,,..., a4
are linearly independent over the rationals. A bounded measurable set A C R is
called a bounded remainder set (BRS) if there is a constant C = C(A, a) such that

n—1
‘Z){A(x+ka)—nmesA <C n=1,23,...) a.e. (3.2)
k=0

Bounded remainder sets form a classical topic in discrepancy theory, see [GL15]
for an overview of the subject and a survey of basic results.

3.2. It is easy to show that if two bounded measurable sets A, B ¢ R? are equide-
composable up to measure zero using only translations by vectors in Za + Z¢, and
if A is a bounded remainder set, then so is B, see [GL15, Proposition 4.1].

A question posed in [GL15, Section 7.2] asks whether a converse statement holds
in the following sense: Let A,B c RY be two bounded remainder sets of the same
measure. Is it true that A and B must be equidecomposable (up to measure zero,
with measurable pieces) using translations by vectors in Za + Z? only?

It was proved in [GL15, Theorem 2] that the answer is affirmative if the sets A, B
are assumed to be Riemann measurable, and moreover, in this case there exists an
equidecomposition with Riemann measurable pieces.

However, the question has remained open in the general case. Our goal here is
to answer this question affirmatively.

Theorem 3.1. Let A,B C R? be two bounded remainder sets of the same measure.
Then A and B are equidecomposable up to measure zero with measurable pieces,
using translations by vectors in Za + Z°.

It follows that equidecomposability provides a method for constructing all bounded
remainder sets. We also note that, as mentioned in [GL15, Section 7.2], this result
allows to extend [GL15, Theorem 5] to all bounded remainder sets.

We now turn to the details of the proof. In what follows, we assume that the sets
A and B both have positive measure (otherwise we have nothing to prove).
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3.3. Since A, B are bounded subsets of RY, we can choose a sufficiently large posi-
tive integer q and vectors ry,...,7, € Z¢ such that, if we denote Q = [0, 1)?, then the
union of cubes Q+7y,...,Q+r, covers both A and B. This induces a partition of each
set A and B into subsets A; :=AN(Q+r)and B;:==BN(Q+r),1<i<q.

Let Z, := Z/qZ be the cyclic group of order g, endowed with its probability Haar
measure assigning the mass 1/q to each element.

Now consider the product space X = T xZ, and denote by 1 the product probabil-
ity measure on X. We also consider the finitely generated abelian group G = ZxZ,.
It induces a free pmp action on X, where the action of the element (1,0) € G on the
point (x, 7) € X is given by (n,0) - (x,7) = (x + na, 0 + 7).

Next, we define two measurable sets A’, B’ C X by

q q
A = QAZ- x{il, B = L_JBI- x {il. (3.3)

Here we identify the sets A; and B; with their projections on T¢, which we may do
since both A; and B; are contained in the cube Q + 7;.

We claim that the sets A’ and B’ are G-equidecomposable up to measure zero,
with possibly non-measurable pieces. It suffices to show that there is a finite set
F C G and a full measure subset X’ ¢ X, such that for every point (x,7) € X’ there
exists a bijection from A’ N (G- (x, 7)) onto B’ N (G- (x, 7)) that moves elements using
only actions of the set F.

To prove this, we will use a technique similar to [GL18, Section 6.2].

3.3.1. Since A is a bounded remainder set, it follows from [GL15, Proposition 2.3]
that there is a constant C and a full measure subset ) ¢ T“ such that

j+n
sup sup ' Z Xa(x +ka)—nmesA|<C, xeQ. (3.4)
n>0 jezZ k=j+1

The set X’ = Q X Z, is a full measure subset of X. We now fix a point (x,7) € X’
and consider the set A’ N (G- (x,7)). We construct an enumeration of the elements
of this set in the following way. Define

A"=AN(x+na+2%, nez, (3.5)
and let {s,,}, n € Z, be a sequence of integers such that
So =0, Su41—s5, =#A" (3.6)

(we note that each A” is a finite set, and that some of the sets A” may be empty).
For each n € Z we then choose some enumeration {4;}, s, < j < s,+1, of the points
in the set A". We also observe that, since A, ..., A, form a partition of A, for each
j there is a unique element o; € {1,..., 4} such that a; € A,,. It is now easy to check
that the sequence {(a;,0)}, j € Z, forms an enumeration of the set A’ N (G - (x, 7)).
We now claim that
|s, —nmesA|<C, neZ. (3.7)
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Indeed, by (3.5), (3.6) we have the equality si;1 — sk = xa(x + ka). If we sum this
equality over 0 < k < n — 1 and use (3.4), we obtain that (3.7) holds for #n > 0. In the
case n < 0 we establish (3.7) similarly, by summing the equality over n < k < —1.

3.3.2. In a similar way, we define

B"=BNx+ma+27Z", mecZ, (3.8)
and let {t,,}, m € Z, be a sequence of integers such that
to = O, tm+1 - tm = #Bm (39)

We choose an enumeration {b;}, t,, < j < t,+1, of the points in the set B”, and let 7; €
{1,...,q} be the unique element such that b; € B;,. We thus obtain an enumeration
{(bj,T))}, j € Z, of the set B’ N (G - (x, 7)).

Moreover, since B is a bounded remainder set, we may assume that the constant
C and the full measure subset O ¢ T¢ have been chosen such that we have

|t,, —mmesB|<C, meZ. (3.10)

3.3.3. We now claim that there exists a finite set E C Z, which does not depend on
the point (x, 7), such that

bi—a;eEa+Z', jeZ. (3.11)
Indeed, given j there exist n,m such that a; € A" and b; € B". Hence
bj—a;€(m-n)a+2Z° (3.12)
which follows from (3.5), (3.8). We now write
tm tm Sn Sn
m_n_<m_mesB)+(mesB mesA)+(mesA n). (8.13)

Due to (3.7) and (3.10), the first and third terms on the right hand side are bounded
in modulus by a certain constant K; = K;(A, B). To estimate the second term, note
that s, <j <s,41 and s,41 — s, = #A" which cannot exceed g, hence 0 < j—s, <g. In
a similar way, 0 < j —t,, < 4. As a consequence, |t,, — s,| < g. Since A and B have
the same measure, it then follows that also the second term on the right hand side
of (3.13) is bounded in modulus by some constant K, = K,(A, B). We conclude that
m — n lies in some finite set E C Z that does not depend on the point (x, 7). Hence,
(3.12) implies (3.11).

3.3.4. We now define F := E X Z,, which is a finite subset of G. It follows from
(3.11) that for each j € Z, the two points (a;,0;) and (b;, 7;) of the space X differ by
an element of the set Ea X Z,. In other words, this means that (b;, 7)) € F - (a;,0).
As the sequence {(a;,0)} is an enumeration of A’ N (G - (x, 7)), while the sequence
{(bj, 7))} is an enumeration of B’ N (G - (x, 7)), this shows that there exists a bijection
from A’ N (G- (x, 7)) onto B'N (G- (x, 7)) that moves elements using only actions of the
set F. As this holds for every (x,7) € X’ = QO X Z, which is a full measure subset of
X, and since the finite set F does not depend on the point (x, 7), it follows that A’, B’
are G-equidecomposable up to measure zero, with possibly non-measurable pieces.
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3.4. We now wish to invoke Theorem 2.4 in order to conclude that the two sets A’
and B’ are G-equidecomposable up to measure zero with measurable pieces. To this
end, we need to verify that the sets A’ and B’ are G-uniform.

Let F, :={0,1,...,n -1} xZ,. To prove that A’ is G-uniform, we need to show that
there are positive constants ¢ and ny, such that for all (x, 7) in some full measure
subset of X and for every n > ny, we have

A" O (E, - (x,7))| > cn. (3.14)

We check that this holds for all (x,7) € X’ = Q x Z,. Indeed, observe that the
elements of the set A’N(F,-(x, 7)) are given in our enumeration as {(a;,0;)}, 50 < j < s,
and therefore this set contains exactly s, elements. In turn, it follows from (3.7) that
we have s, > nmes A — C. Hence, we can choose ¢ > 0 small enough and n, large
enough, not depending on the point (x, 7), such that (3.14) holds for every n > n.
This shows that A’ is a G-uniform set.

In a similar way, it can be shown that also the set B’ is G-uniform.

3.5. We can therefore apply Theorem 2.4 and conclude that the two sets A’ and B’
are G-equidecomposable up to measure zero with measurable pieces. Finally, we
need to show that this implies that A, B ¢ R? are equidecomposable up to measure
zero with measurable pieces, using only translations by vectors in Za + Z°.

First, by refining the pieces in the equidecomposition if needed, we may assume
that each piece of A’ is entirely contained in one of the sets A; x {i}, 1 < i < 4. Hence,
if P’ is one of the pieces of A’, then P’ = P X {i} for some i € {1,...,q} and for some
measurable set P ¢ A, = AN (Q + r;). The piece P’ is carried by some element
(n,0) € G onto a piece R’ of the set B’. If we choose j € {1,...,q} suchthat j=i+o0
(mod g), then R” = R X {j} for some measurable set R C B; = BN (Q + rj). The fact
that (n,0) - P’ = R’ implies that P and R are equidecomposable using translations
by vectors from na + Z¢. It remains to note that as P’ goes through all the pieces
of A’, the corresponding sets {P} and {R} form partitions of A and B respectively, up
to measure zero. It thus follows that A and B are equidecomposable up to measure
zero with measurable pieces, using translations by vectors in Za + Z°.

4. BOUNDED DISTANCE EQUIVALENT CUT-AND-PROJECT SETS

4.1. Two discrete point sets A, A’ C IR™ are said to be bounded distance equivalent
with constant K > 0 if there exists a bijection y : A — A’ satisfying

Ix(A)—Al<K, AeA. (4.1)
We indicate this using the shorthand notation A b A
Let I be a lattice in R” X R". Denoting the projections from IR” X IR"” onto R” and

R" by p1 and p, respectively, we assume that p;|r is injective, and that the image
p2(I) is dense in R". If W € R" is a bounded set (called a “window”) then the set

ATCW) ={p1(y):y €T, pay) € W) (4.2)
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is called the cut-and-project set, or the model set, in R™ obtained from the lattice I'
and the window W.

There is an intimate relation between bounded remainder sets and one-dimensional
model sets, in the sense that a one-dimensional model set with a Riemann measur-
able window W is bounded distance equivalent to an arithmetic progression if and
only if a linear image of W is a bounded remainder set with respect to a certain
irrational vector, see [HK16], [HKK17], [GL18, Section 6], [FG18, Theorem 4.5].

It follows that certain results on bounded remainder sets have natural analogs,
or extensions, to model sets. For instance, [GL15, Theorem 1] states that any par-
allelepiped in R? spanned by linearly independent vectors in Za + Z? is a bounded
remainder set; this can be seen as a special case of [DO90, Theorem 3.1] providing
a sufficient condition on a parallelepiped window W in order for the corresponding
model set to be bounded distance equivalent to a lattice.

The relation between bounded remainder sets and model sets prompts the ques-
tion as to whether Theorem 3.1 admits (at least, for Riemann measurable sets)
an extension to higher-dimensional model sets. The next result provides such an
extension.

Theorem 4.1. Let W,W’ C IR" be two bounded Riemann measurable sets of positive
measure. If the model sets A(I’, W) and A(I', W) are bounded distance equivalent,
then W, W’ are equidecomposable up to measure zero with measurable pieces, using
only translations by vectors from p,(I).

This result was previously announced in [Gre25a, Theorem 1.1] but the original
proof turned out to contain a gap, see [Gre25b]. The remainder of the section is
devoted to a new proof of Theorem 4.1 which bridges this gap.

4.2. 'We now turn to the proof of Theorem 4.1. By assumption, the two model sets
AT, W) and A(I', W) are bounded distance equivalent. As in the original proof given
in [Gre25a, Section 3] this implies, using the assumption that p;|r is injective, that
the “lifted” sets

I'w={yel:pmy)eW}, Tw={yel :p(y) eW} (4.3)

are also bounded distance equivalent.

Let us denote N = {y € I' : po(y) = 0}. Then N is a sublattice of I' (remark that if
p2Ir is injective, then N = {0}). In turn, there is a sublattice L of I such that we have
the direct sum decomposition

'=LeN (4.4)
(see [Cas97,1.2.2, Corollary 3]). Then p,|; is injective, and p,(L) = p,(I'). Define
LW = {’)/ eLl: pg(')/) € W}, LW/ = {')/ eLl: pz(’)/) € W/}, (45)

then it follows that
I'w=Lw®N, Tw =Lw @®N. (4.6)
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4.3. We wish to prove that L,y and Ly~ are bounded distance equivalent. We will
obtain this as a consequence of the following lemma.

Lemma 4.2. Let A,B C Z" and suppose that A X Z? * B x Z° with constant K. Then
also A % B with the same constant K.

Proof. By assumption there exists a bijection y : A X Z° — B X Z° that moves points
by distance at most K. We consider A, B as subsets of Z" viewed as a group acting
on itself by translations. To prove the claim it suffices to show that A, B are equide-
composable using only actions of the finite set F = {j € Z' : |j| < K}. In turn, by
Proposition 2.1 it suffices to check that A, B satisfy Hall’s condition with the finite
set F. That is, we need to show that |S| < |(S+F) N B| for any finite set S C A, and that
IT| < |(T — F) N A] for any finite set T C B. We will only check that the first condition
holds, as the second condition can be established similarly.

Let S ¢ A be a finite set. Then for any positive integer R, the bijection y maps
the set S x{0,...,R — 1} injectively into ((S + F) N B) X {-K,...,R+ K- 1}°. Hence

IS|- R® < |(S+ F)N B|- (R + 2K)*, (4.7)
and letting R — +oc0 we conclude that |S| < |(S + F) N B|, as we had to show. O

Since 'y and I'yy are bounded distance equivalent, it follows from (4.6) that after
applying a suitable invertible linear transformation, we may use Lemma 4.2 in
order to conclude that also Ly and Ly are bounded distance equivalent.

4.4. Let K be the bounded distance equivalence constant of Ly and Ly.

Lemma 4.3. Ly_, % Ly _, with the same constant K for every x € R" satisfying
(OW —x) N pa(T) = (@W' —x) N pa(T) = 0. (4.8)

Proof. Let F = {y € L : |y| < K} which is a finite subset of L. Since Ly bd Ly with
constant K, there is a bijection x : Lw — Ly and a function f : Ly — F such that
X(t) = v+ f(1) for all 7 € L. Fix a point x € R" satisfying (4.8), and consider the
sets A = Lw_, and B = Ly _, as subsets of L viewed as a group acting on itself by
translations. It suffices to show that A, B are equidecomposable using only actions
of the finite set F.

In turn, by Proposition 2.1 it suffices to check that A, B satisfy Hall’s condition
with the finite set F. We will do this by showing that given a finite set S C A there
is an injective map ¢ : S — B satisfying ¢(y) € y + F for all y € S; and given a finite
set T C B there is an injective map ¢ : T — A satisfying )(y) e y—Fforall y € T.
We will only prove the first claim, as the second claim can be proved similarly.

Let S ¢ A = Ly_, be a finite set. Since the image p,(L) = p»(I') is dense in R",
we may choose a sequence y; € L such that x; = p»(y;) — x. The assumption that
dW — x does not intersect p,(I') implies that the elements of the finite set p,(S) lie in
the interior of W — x. Hence, there is j; such that p,(S) ¢ W — x; for all j > j,. This
means that

ScC LW—x]- =Ly — Vi (4.9)
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and therefore for each y € S there is 7/(y) € Lw such that y = 7;(y) — ;. Since both
S and F are finite sets, then by passing to a subsequence if needed we may assume
that for each y € S the value f(7;(y)) does not depend on j, so there is a function
h:S — F such that f(7;(y)) = h(y) for every j and every y € S. Define ¢(y) =y + h(y)
for each y € S. It remains to show that ¢ is an injective map from S into B.

We first check that ¢ indeed maps S into B. Let y € S, then

p(y) =y +h(y) =7,(y) - v+ f(T;(y) = x(7j(y) - y;. (4.10)
Since y maps Ly into Ly then
p2Ap()) = p2(x(7j(y))) —x; € W —x;, (4.11)

and letting j — oo we obtain that p,(¢(y)) lies in the closure of W’ —x. In turn, using
the assumption that W’ —x does not intersect p,(I'), we conclude that p,(¢(y)) must
in fact lie in the interior of W’ — x. As a consequence, ¢(y) € Ly, = B.

Lastly, we show that ¢ is injective. Indeed, let y,)’ € S, then by (4.10) we have

e =xT() =y 90 =x(T() -y (4.12)
Hence, if we assume that ¢(y) = ¢()’) then x(t,(y)) = x(7;()’)). Since x is an in-
jective map, it follows that 7,(y) = 7;()’). But recalling that y = 7;(y) — y; and
Yy’ = 1i(y’) -y, this implies that y = y’. Hence ¢ is an injective map, and the lemma
is proved. O

4.5. Since W and W’ are bounded sets in R", and since the image p,(I') is dense
in R", we may choose a system of n linearly independent vectors vy,...,v, € p(I)
which are large enough for W and W’ to be contained in the parallelepiped

Q={to1+ - +t,v,: ty,... t, €[-1, D) (4.13)

Let H be the subgroup of IR” generated by the vectors v, ...,v,. Then H is a lattice
in R" and a subgroup of p,(I'), and Q is a fundamental domain of H in R".

We now consider the quotient space X = R"/H, and let u be the Lebesgue mea-
sure on X normalized such that y(X) = 1. Then G = p,(I')/H is a finitely generated
abelian group which induces a free pmp action on (X, u) by translations. Since W, W’
are contained in the fundamental domain Q of H, we may also view W, W’ as mea-
surable subsets of X, and we observe that W, W’ are G-equidecomposable (up to mea-
sure zero) considered as subsets of X, if and only if W, W’ are p,(I')-equidecomposable
(up to measure zero) as subsets of IR".

We now wish to prove that W, W’ (as subsets of X) satisfy Hall’s condition a.e.
with respect to G. It suffices to show that there is a finite set F c I" and a full
measure subset X’ C X, such that for every point x € X’ there exists a bijection
from W N (G + x) onto W N (G + x) that moves elements using only actions of the set
p2(F).

We choose F := {y € L : |y| < K} where K is the bounded distance equivalence
constant of Ly and Ly, and we let X’ be the set of points x € X satisfying the
condition (4.8) (note that this condition is invariant under translations by vectors
in H, so it may be viewed as a condition on elements of X). Since W and W’ are
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Riemann measurable sets, their boundaries dW and dW’ are both sets of measure
zero, which implies that X’ is a full measure subset of X.

Fix x € X’, and denote A = WN (G + x) and B = W N (G + x). We observe that
the mapping y — p2(y) + x (mod H) defines a bijection ¢ : Liy_, — A, as well as
a bijection ¢ : Ly, — B. We also recall that by Lemma 4.3 there is a bijection
X : Lw—x = Ly, such that x(y) —y € F for all y € Ly_,. Hence ¢ o x o ¢! defines a
bijection from A onto B that moves points using only actions of the finite set p,(F).
We conclude that W, W’ satisfy Hall’s condition a.e. with respect to G.

4.6. We now wish to invoke Theorem 2.4 in order to conclude that the two sets
W, W are G-equidecomposable up to measure zero with measurable pieces (as sub-
sets of X). To this end, we need to verify that W, W’ are G-uniform sets.

By the structure theorem for finitely generated abelian groups, there exists a
direct sum decomposition G = M & A where M is a free abelian group of rank d,
and A is a finite abelian group. We observe that since p,(I') is dense in R", then G
is dense in X. In turn, this implies that also M must be dense in X (see [Rud62,
Section 2.1]).

Let ey, ..., e; be some basis for M, and denote

d
Fe=Pe@A, Po={) mpejim,...,mge(0,1,... k=1}}, (4.14)
=1
To prove that W is a G-uniform set, we must show that there exist positive constants
¢ and ky such that for almost all x € X and every k > ky; we have

IW N (Fe + %)| > ki, (4.15)

Since W is a Riemann measurable set of positive measure, there is ¢ > 0 such
that W contains some open ball U of radius 2¢. Since M is dense in X, there is a
positive integer kj such that the set Py, forms an e-net in X. This implies that also
any translate of Py, is an ¢-net in X. Now observe that for every x € X and every
k > ko, the set Py + x contains at least |k/ko]? disjoint translated copies of Py, and
each one of these translated copies must intersect the ball U. It follows that

W N (Fe +x)| > U N (P + x)| > Lk/ko)? > K, (4.16)

which verifies condition (4.15) and shows that W is a G-uniform set. In a similar
way, one can show that also the set W’ is G-uniform.

Finally, by an application of Theorem 2.4 we conclude that the two sets W, W’
are G-equidecomposable up to measure zero with measurable pieces as subsets of
X. This implies that W, W’ are p,(I')-equidecomposable up to measure zero with
measurable pieces as subsets of IR”, and completes the proof of Theorem 4.1.

5. ONE-DIMENSIONAL CUT-AND-PROJECT SETS

5.1. Notice that in the statement of Theorem 4.1, the sets W, W’ are assumed
to be Riemann measurable, yet the result only guarantees their p,(I')-equidecom-
posability with measurable pieces. One may therefore ask whether the pieces in the
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equidecomposition may be chosen to be also Riemann measurable. One may also
consider a variant of this question, which appears to be of practical importance: if
the sets W, W’ in Theorem 4.1 are assumed to be polytopes, can the pieces in the
equidecomposition be chosen to be also polytopes?

Note that by a “polytope” in RY we mean any finite union of d-dimensional sim-
plices with disjoint interiors. Thus a polytope may be non-convex, or even discon-
nected.

In this section we establish a result which gives an affirmative answer to both
questions above for one-dimensional cut-and-project sets.

Let T be a lattice in R X R?, such that if p; and p, denote the projections from
R x R? onto R and R’ respectively, then p;[r is injective, while p,(T) is dense in R?,
If W c IR? is a bounded set, then again we consider the model set in R defined by

AT W) ={pi(y): y €T, pa(y) € W (5.1)

Theorem 5.1. Let W, W’ C IR? be two bounded Riemann measurable sets (resp. two
polytopes). If the one-dimensional model sets A(I', W) and A(I', W) are bounded dis-
tance equivalent, then W, W’ are equidecomposable up to measure zero with Riemann
measurable pieces (resp. with polytope pieces) using translations from p,().

The proof below does not rely on the measurable Hall’s theorem which only gives
equidecomposability with measurable pieces. It is rather based on the connection of
the problem to bounded remainder sets and the results obtained in [GL15], [GL18].

5.2. Lattices in general position. We say that a lattice I' in R x R? is in general
position if the restriction of p; to I is injective, and the image p,(T) is dense in R”.

In [GL18] the term “general position” was used to indicate that the restrictions
of both p; and p, to I are injective, and both their images p;(I') and p,(I') are dense
in R and R? respectively. These two definitions are in fact equivalent:

Lemma 5.2. If T ¢ R x R? is a lattice in general position, then also the restriction
of p2 to I is injective, and the image p1(T') is dense in R.

Proof. Let vy,...,v41 be a basis for the lattice I The assumption that p,(I) is
dense in R? implies that p2(v1), ..., p2(vs) must be linearly independent vectors in
R?. Hence the vector p,(v;,1) admits a unique expansion py(vs1) = Z;’-lzl a;pa(v)).
Using again the assumption that p,(I') is dense in R? implies that the numbers
1,a1,..., a4 are rationally independent. As a consequence, the restriction of p, to T’
is injective.

Since the restriction of p; to I is injective, the numbers p1(v1), ..., p1(v4+1) must
be rationally independent. Hence these numbers generate a dense subgroup of R.
But this subgroup coincides with the image p;(I'), so this image is densein R. O

5.3. Lattices in special form. Following [GL.18, Section 4] we define the notion
of a lattice of special form.
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Definition 5.3. We say that a lattice I' in R X R? is of special form if
T={(n+p (na+m),na+m):neZmeZ (5.2)

where a, B are column vectors in R? satisfying the following conditions:

(i) The vector & = (a1, y,...,a4)" is such that the numbers 1,a;, a,,...,a,; are
linearly independent over the rationals;

(ii) The vector B = (B1,B2,.-.,B4)" is such that the numbers f1,f,, ..., B4, 1+p a are
linearly independent over the rationals.

It is easy to check that the conditions imposed on the vectors o and f are precisely
those necessary and sufficient for I' to be in general position.

Let a be a nonzero real scalar and B be a d X d invertible real matrix. We consider
a linear and invertible transformation T from R x IR? onto itself given by

T(x,y) = (ax,By), (x,y) € Rx R (5.3)

Lemma 5.4 (see [GL18, Lemma 4.3]). Assume that L ¢ RxR?is a lattice in general

position. Then there exist a lattice T of special form (5.2) and an invertible linear
transformation T of the form (5.3) such that T(L) =T.

We argue that by Lemma 5.4 it suffices to consider lattices of special form. For
suppose Theorem 5.1 holds in this case, and suppose A(L, W) and A(L, W) are bounded
distance equivalent. Then so are the “lifted” sets

Ly = {f eL: pz(f) S W}, Ly = {5 eL: pQ(f) € W’},
and thus also the sets
T(Lw) = {(ap1(€), Bp2(£)) : p2(£) € W} =Ty
and
T(Lw) = {(ap1(€), Bpa(£)) : pa(£) € W'} =Ty,

It follows that the projected sets p;(I'sw) = A(I, BW) and p;(I'sw) = A, BW’) are
bounded distance equivalent in IR. Since we assume that Theorem 5.1 holds for the
lattice I of special form, this implies that the sets BW and BW’ are equidecompos-
able up to measure zero using translations from p,(I') = Bp,(L). It follows that W
and W’ are equidecomposable up to measure zero using translations from p,(L). Fi-
nally, since B is a linear and invertible map, properties of the pieces in the partition

(such as Riemann measurability or them being polytopes) are preserved.
In what follows we will thus assume that I' is a lattice of the special form (5.2).

5.4. Point counting function. If A is a uniformly discrete set in R, then we define
its point counting function v(A, x) as

N {#(Am [0,x), x>0, (5.4)
I #AN[x,0), x<O0. (5.5)

Lemma 5.5. If two uniformly discrete sets A, A’ C R are bounded distance equiva-
lent, then there is a constant C such that [v(A,x) —v(A,x)| < C forall x e R.



16 M. ETKIND, S. GREPSTAD, M. KOLOUNTZAKIS, AND N. LEV
This is obvious and so the proof is omitted.

5.5. Cut-and-project sets. Let W be a bounded set in R?, and
AT W) :={pi(y): y €T, pa(y) € W} (5.6)
be the model set in R generated by the lattice I' of special form (5.2) and the window
W. It is well-known that A(I', W) is a uniformly discrete set. We recall that
xw(x) = Z Tw(x+m), xeRR, (5.7)
mezZ4
denotes the multiplicity function of the projection of W onto T = R%/Z".
Lemma 5.6. The counting function of A(I', W) satisfies
N-1

VAT, W), N) = Z ywna) + 0(1), N — +oo. (5.8)

n=0

Proof. Indeed, due to the special form (5.2), the elements y € ' may be parametrized
by the vectors (n,m) € Z x Z* in such a way that

pi(y) =n+ B (na+m), piy)=na+m. (5.9)

Now the point p1(y) belongs to A(T', W) if and only if na + m € W. In this case
pi(y) —n =B (na+m)epW, (5.10)

and "W is a bounded subset of R. Hence there is C = C(I', W) such that

() —nl<C (5.11)

whenever p;(y) is a point in A(T', W). It follows that v(A(I', W), N) differs from
#H(n,m) e ZxZ":0<n<N-1,na+meW) (5.12)
by a bounded magnitude, which is equivalent to (5.8). O

Lemma 5.7. Let W, W’ be two bounded, Riemann measurable sets in RY. If A(T, W)
and A(I', W’) are bounded distance equivalent, then there is a constant C such that

N-1 N-1
' 3wl +na) = Y xw(x+ na)| <C ae (5.13)
n=0 n=0

holds for every N.

Proof. Define f(x) = xw(x) — xw(x) and Sy(x) = ZnNz_Ol f(x + na). Lemmas 5.5 and 5.6
imply the existence of a constant C such that |Sy(0)| < C for every N. We now use
an argument from [GL15, Proposition 2.2]. The function Sy is Z?-periodic and we
have Sy(x + ja) = Sn4j(x) — Sj(x), hence |Sy| < 2C on the set {joc}]f"’:1 which is dense

in T¢ = RY/Z¢. Since W and W’ are Riemann measurable sets, the function Sy is
continuous at almost every point, so it follows that |Sy| < 2C a.e. O
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5.6. Bounded distance equivalence and equidecomposability. We can now
use the observations made above in order to prove Theorem 5.1. Indeed, due to
Lemma 5.4 we may assume that I is a lattice of the special form (5.2). By Lemma 5.7
there exists a constant C such that the estimate (5.13) holds for every N. We now
invoke [GL15, Theorem 7.1] which asserts that the condition (5.13) is satisfied if
and only if W, W’ are equidecomposable up to measure zero with Riemann measur-
able pieces, using only translations by vectors in Za + Z? = p,(I'); and moreover, if
W, W’ are two polytopes in R? then the pieces in the equidecomposition be chosen
to be also polytopes. This completes the proof of Theorem 5.1.
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