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ABstracT. We use the measurable Hall’s theorem
due to Ciesla and Sabok to prove that (i) if two mea-
surable sets A,B ¢ RY of the same measure are
bounded remainder sets with respect to a given ir-
rational d-dimensional vector «a, then A, B are equi-
decomposable with measurable pieces using trans-
lations from Za + Z¢; and (ii) given a lattice I' C
R™ xIR" with projections p; and p, onto R” and R” re-
spectively, if two cut-and-project sets in IR obtained
from Riemann measurable windows W, W’ c R" are
bounded distance equivalent, then W, W’ are equide-
composable with measurable pieces using transla-
tions from p,(I'). We also prove by a different method
that for one-dimensional cut-and-project sets the
pieces can be chosen Riemann measurable.
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1. InTRODUCTION

Let X be a set endowed with a group of transformations
G. Two subsets A,B C X are called G-equidecomposable
if they can be partitioned into the same finite number of
pieces A = J., A;, B = U, Bi, which can be pairwise
matched via elements of G, i.e. B; = g; - A; for some g, € G,
i=1,2,...,n, where g- denotes the group action.

A famous example of equidecomposability is the so-
called Tarski circle squaring problem, which was posed
by Tarski (1925) [TW16]: is a square of area 1 equide-
composable to a disk of area 1 via plane isometries? This
was answered in the affirmative by Laczkovich [Lac90]:
the square of unit area can be partitioned into a finite
number of pieces which can then be translated to form a
partition of a disk of unit area (thus the group of transfor-
mations of the plane used is not the whole group of isome-
tries but merely the group of translations). Moreover, it
was proved by Grabowski, Mathé and Pikhurko [GMP17]
that the pieces in this result can be chosen Lebesgue mea-
surable.

In the present paper we consider the case where G
is a finitely generated group of translations of R?, usu-
ally dense in the group of all translations. We also re-
lax the concept of equidecomposability to ignore sets of
Lebesgue measure zero: two sets A, B are called G-
equidecomposable up to measure zero if we can remove
from them a set of measure zero such that the remaining
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sets are G-equidecomposable. This relaxation is particu-
larly natural if one is to impose the requirement of mea-
surability on the pieces of the equidecomposition. This re-
laxation does not usually cause any problems in applica-
tions of equidecomposability, e.g. to tilings [GK25]. Sub-
ject to these assumptions and demands, our goal in this
paper is generally to achieve equidecomposability with
measurable pieces.

One can think of the equidecomposability of A and B
as a problem of finding a perfect matching in a bipartite
graph. Take the bipartite graph with the points of A on
one side and the points of B on the other. Then A,B are
G-equidecomposable if and only if there exists a finite set
F c G such that the bipartite graph whose edges are all
pairs of the form (2, f -a) witha € A, f-a € B, f € F, has
a perfect matching. Recall that a perfect matching is a
collection of disjoint edges that touch all points of A and
B. Let us call such a perfect matching a G-matching.

Our main tool in the effort to produce measurable
pieces in an equidecomposition is the measurable Hall’s
theorem due to Ciesla and Sabok [CS22] (see Theorem
2.4 below), which uses an appropriately mixing group ac-
tion on the ambient space in order to deduce the exis-
tence of a measurable G-matching between two sets A, B
from the existence of an arbitrary (not necessarily mea-
surable) G-matching. By a measurable G-matching we

mean a G-matching for which the set A, = {a € A :
(a,g - a) is part of the matching} is measurable for each
g€G.

The structure of the rest of this paper is as follows.

In the preliminary Section 2 we review the equidecom-
posability concepts that will be used in the paper and for-
mulate the measurable Hall’s theorem due to Ciesla and
Sabok [CS22].

In Section 3 we discuss bounded remainder sets, and we
show that if two measurable sets A, B of the same measure
are bounded remainder sets with respect to a given irra-
tional d-dimensional vector «, then A,B are equidecom-
posable with measurable pieces using translations from
Za+7Z°.

In Section 4 we show that if two model sets defined by
two different Riemann measurable windows W and W’
are bounded distance equivalent then (and only then, see
[FG18, Theorem 6.1]) the two windows are equidecom-
posable up to measure zero with measurable pieces using
translations from p,(I'), where I' is the lattice defining the
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model sets and p; is its projection onto the subspace con-
taining the windows W, W’. This bridges a gap that has
arisen in the proof of [Gre25a, Theorem 1.1], see [Gre25b].

The results in Sections 3 and 4 rely on the measurable
Hall’s theorem [CS22]. This is not the case in Section 5,
where we prove by a different method that in the special
case of one-dimensional model sets, if two model sets are
bounded distance equivalent then the corresponding Rie-
mann measurable windows are equidecomposable with
Riemann measurable pieces using translations from p,(T').

2. EQUIDECOMPOSABILITY AND HALL'S cONDITION

In this preliminary section we review the connection
between equidecomposability and Hall’s condition, and
state the measurable Hall’s theorem due to Ciesla and
Sabok [CS22] that will be used later on.

2.1. Equidecomposability. Let X be a set endowed
with an action of a group G. We use g - x to denote the
action of an element ¢ € G on a point x € X.

We say that two sets A, B C X are G-equidecomposable if
there exist finitely many sets Ay, ..., A, C X and elements
Q1,---,8n € Gsuch that {Aj};‘:1 forms a partition of A, while
(8- AL, forms a partition of B.

We say that A, B C X satisfy Hall’s condition with re-
spect to G, if there exists a finite set F ¢ G such that

(i) |S| < |(F - S) N B| for every finite set S C A;

(ii) |T| < |(F7- T) N A| for every finite set T C B.

To motivate this definition, consider A, B as two disjoint
vertex sets of a bipartite graph, where two vertices a € A
and b € B are connected by an edge if and only if b = g-a
for some ¢ € F. The conditions (i) and (ii) then say that
the size of every finite set of vertices in A or in B does not
exceed the size of the set of its neighbors in the graph.

The following proposition clarifies the connection be-
tween the notions of equidecomposability and Hall’s con-
dition.

Proposition 2.1. Two sets AL B C X are G-
equidecomposable if and only if A and B satisfy Hall’s
condition with respect to G.

Proof. We first prove the ‘if’ part. Suppose that there is a
finite set F C G such that (i) and (ii) hold. By the classical
Hall’s marriage theorem, the condition (i) implies that for
every finite set S C A there exists an injective map ¢s :
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S — B satisfying ¢s(a) € F-aforalla € S. By an application
of Tychonoff’s theorem, see [HV50], there is an injective
map ¢ : A — B such that p(a) € F-aforalla € A. Ina
similar way, we deduce from (ii) that there is an injective
map ¢ : B — A such that ¢(b) € F-!-bfor all b € B. In turn,
the proof of the Cantor-Schroder-Bernstein theorem (see
[TW16, Theorem 3.6]) yields a bijection y : A — B such
that x(a) € F-afor all a € A. This implies that A and B are
equidecomposable using only actions of the finite set F.
Next we prove the ‘only if’ part. Suppose that {Aj};?zl

forms a partition of A and that {g; - A]-}’;:1 forms a parti-

tion of B, where g1,..., g, € G. This allows us to define a
bijection y : A — B given by x(a) = g;-aifa € A;. By the
necessity part of the classical Hall’s marriage theorem,
this implies that both conditions (i) and (ii) are satisfied
with the finite set F = {g1,..., g} O

Remarks. 1. The proof shows that if A, B satisfy Hall’s
condition with a given finite set F C G, then A,B are
equidecomposable using only actions of the same finite
set F, and also the converse it true.

2. In the case where the sets A, B are countable, the
application of Tychonoff's theorem can be replaced by a
standard diagonalization argument.

2.2. Equidecomposability up to measure zero. Let
(X, u) be a measure space, either finite or infinite, en-
dowed with a measure preserving action of a countable
group G.

We say that two measurable sets A,B C X are G-
equidecomposable up to measure zero, if there exist
finitely many sets Ay,..., A, C X, elements g1,...,9, € G
and a full measure subset X’ C X, such that {A; N X’}’]?:1
forms a partition of AN X’, while {(g;-A;) N X’}’]?:1 forms a
partition of BNX’. Ifthe sets Ay,..., A, can be chosen mea-
surable, then we say that A, B are G-equidecomposable up
to measure zero with measurable pieces.

Following [CS22, Definition 1] we say that two measur-
able sets A, B ¢ X satisfy Hall’s condition a.e. with respect
to G, if there is a finite set F C G and a full measure subset
X’ c X, such that for every x € X’ we have

(@) |S| < |(F - S) N B for every finite set S ¢ AN (G - x);
(i) |T| < |(F71- T) N A| for every finite set T ¢ BN (G - x).
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In other words, for almost every x € X the two sets AN
(G-x) and BN (G- x) satisfy Hall’s condition with the same
finite set F C G.

Proposition 2.2. Let (X, u) be a measure space endowed
with a measure preserving action of a countable group G.
Two measurable sets A, B C X are G-equidecomposable up
to measure zero (with possibly non-measurable pieces) if
and only if A, B satisfy Hall’s condition a.e. with respect to
G.

Proof. We first prove the ‘if’ part. Assume that there is
a finite set F ¢ G and a full measure subset X’ c X such
that (i’) and (ii’) hold for every x € X’. Since the group G is
countable, then by replacing X" with (,c(g - X’) we may
assume that G- X’ = X’, that is, X’ is a G-invariant set. It
follows that the two sets A’ = ANX’ and B’ = BN X’ satisfy
Hall’s condition with the finite set F, hence A’, B’ are G-
equidecomposable by Proposition 2.1. As a consequence,
A, B are G-equidecomposable up to measure zero.

To prove the converse ‘only if’ part, suppose now that
{A;N X’}’;=1 forms a partition of AN X’ and {(g;-Aj) N X’};?=1
forms a partition of B N X’, where g1,...,¢, € G and X’
is a full measure subset of X. Again by replacing X’
with (,c(g - X’) we may assume that X’ is a G-invariant
set. This implies that the two sets A N X’ and BN X’ are
G-equidecomposable considered as subsets of the set X'.
Hence by Proposition 2.1 there is a finite set F C G such
that (i’) and (ii’) hold for every x € X'. O

2.3. The measurable Hall’s theorem. Next we state
the measurable Hall’s theorem proved in [CS22]. The the-
orem gives conditions guaranteeing that two measurable
sets A,B C X satisfying Hall’s condition are equidecom-
posable with measurable pieces.

Assume now that (X, u) is a standard Borel probability
space, endowed with a free pmp (probability measure pre-
serving) action of a finitely generated abelian group G. We
recall that the action of G on X is called free if g - x # x for
every nontrivial element g € G and every x € X.

By the structure theorem for finitely generated abelian
groups, we may assume that G = Z? x A where d is a
nonnegative integer and A is a finite abelian group.

Definition 2.3 (see [CS22, Definition 5]). A measurable
set A C X is called G-uniform if there exist positive con-
stants ¢ and ny, such that for almost every x € X and
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for every n > ny we have |A N (F, - x)] > cn’, where
F,:={0,1,...,n =1} x A.

The measurable Hall’s theorem due to Cie$la and
Sabok states the following:

Theorem 2.4 ([CS22, Theorem 2]). Let (X, 1) be a stan-
dard Borel probability space, endowed with a free pmp
action of a finitely generated abelian group G, and let
A, B C X be two measurable G-uniform sets. Then the fol-
lowing conditions are equivalent:

(a) A and B satisfy Hall’s condition a.e. with respect to
G;

(b) A and B are G-equidecomposable up to measure zero
(with possibly non-measurable pieces);

(c) A and B are G-equidecomposable up to measure zero
with measurable pieces.

The equivalence of (a) and (b) was given in Proposi-
tion 2.2. Theorem 2.4 asserts that these conditions are
also equivalent to (c). This result will be used below.

3. BOUNDED REMAINDER SETS

3.1. IfA c R%is a bounded measurable set, we use 1, to
denote its indicator function, and we let

xa(x) = Z Ta(x+k), xeRRY, (3.1)
kezd
be the multiplicity function of the projection of A onto
T = RY/Z°.
Let a = (a1,a2,...,a4) be a fixed real vector such that
the numbers 1, a1, a5y, ..., a, are linearly independent over
the rationals. A bounded measurable set A c R? is called

a bounded remainder set (BRS) if there is a constant C =
C(A, a) such that

n—1
‘Z){A(x+ka)—nmesA <C (n=1,2,3,...) ae. (3.2
k=0

Bounded remainder sets form a classical topic in dis-
crepancy theory, see [GL15] for an overview of the subject
and a survey of basic results.

3.2. It is easy to show that if two bounded measurable
sets A,B c R are equidecomposable up to measure zero
using only translations by vectors in Za + Z¢, and if A is
a bounded remainder set, then so is B, see [GL15, Propo-
sition 4.1].
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A question posed in [GL15, Section 7.2] asks whether
a converse statement holds in the following sense: Let
A,B c R? be two bounded remainder sets of the same
measure. Is it true that A and B must be equidecompos-
able (up to measure zero, with measurable pieces) using
translations by vectors in Za + Z? only?

It was proved in [GL15, Theorem 2] that the answer
is affirmative if the sets A, B are assumed to be Riemann
measurable, and moreover, in this case there exists an
equidecomposition with Riemann measurable pieces.

However, the question has remained open in the gen-
eral case. Our goal here is to answer this question affir-
matively.

Theorem 3.1. Let A,B c R? be two bounded remainder
sets of the same measure. Then A and B are equidecom-
posable up to measure zero with measurable pieces, using
translations by vectors in Za + Z°.

It follows that equidecomposability provides a method
for constructing all bounded remainder sets. We also note
that, as mentioned in [GL15, Section 7.2], this result al-
lows to extend [GL15, Theorem 5] to all bounded remain-
der sets.

We now turn to the details of the proof. In what fol-
lows, we assume that the sets A and B both have positive
measure (otherwise we have nothing to prove).

3.3. Since A,B are bounded subsets of RY, we can
choose a sufficiently large positive integer g and vectors
r1,...,7; € Z such that, if we denote Q = [0,1)?, then
the union of cubes Q +r4,...,Q + r, covers both A and B.
This induces a partition of each set A and B into subsets
A; I:AQ(Q-F]"Z') andBi I:BQ(Q-FTi),l <l<q

Let Z, := Z/qZ be the cyclic group of order g, endowed
with its probability Haar measure assigning the mass 1/g
to each element.

Now consider the product space X = T¢ x Z, and de-
note by u the product probability measure on X. We also
consider the finitely generated abelian group G = Z X Z,.
It induces a free pmp action on X, where the action of
the element (1,0) € G on the point (x,7) € X is given by
(n,0)-(x,7) = (x + na, 0 + 7).

Next, we define two measurable sets A’, B’ C X by

q q

A = UAi x i), B = U B; x {i). (3.3)



BOUNDED REMAINDER SETS, CUT-AND-PROJECT SETS AND EQUIDE

Here we identify the sets A; and B; with their projections
on T¢, which we may do since both A; and B; are contained
in the cube Q + ;.

We claim that the sets A’ and B are G-
equidecomposable up to measure zero, with possibly
non-measurable pieces. It suffices to show that there is
a finite set F C G and a full measure subset X’ C X, such
that for every point (x, 7) € X’ there exists a bijection from
A" N (G- (x,7)) onto B' N (G - (x, 7)) that moves elements
using only actions of the set F.

To prove this, we will use a technique similar to [GL18,
Section 6.2].

3.3.1. Since A is abounded remainder set, it follows from
[GL15, Proposition 2.3] that there is a constant C and a
full measure subset Q ¢ T such that

j+n
sup sup | Z xax+ka)—-nmesA|<C, xe€Q. (3.4)

n>0 ]GZ k:j+1

The set X’ = Q) X Z, is a full measure subset of X. We
now fix a point (x, 7) € X’ and consider the set A’N(G-(x, 7)).
We construct an enumeration of the elements of this set
in the following way. Define

A"=AN(x+na+2%, nez, (3.5)
and let {s,,}, n € Z, be a sequence of integers such that
So=0, S,41—5,=#A" (3.6)

(we note that each A" is a finite set, and that some of the
sets A" may be empty). For each n € Z we then choose
some enumeration {a;}, s, < j < 5,41, of the points in the set
A". We also observe that, since Ay, ..., A, form a partition
of A, for each j there is a unique element o; € {1,..., g} such
that a; € A;,. It is now easy to check that the sequence
{(aj,0))}, j € Z, forms an enumeration of the set A’ N (G -
(x, 7))

We now claim that
|s, —nmesA|<C, neZ. (3.7)

Indeed, by (3.5), (3.6) we have the equality s;,1—s = ya(x+
ka). If we sum this equality over 0 < k < n — 1 and use
(3.4), we obtain that (3.7) holds for n > 0. In the casen <0
we establish (3.7) similarly, by summing the equality over
n<k<-1.
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3.3.2. In a similar way, we define

B"=BNx+ma+2Z%, meZ, (3.8)
and let {t,,}, m € Z, be a sequence of integers such that
t() = 0, tm+1 - tm = #Bm (39)

We choose an enumeration {bj}, t,, < j < t,.1, of the points
in the set B”, and let 7; € {1,...,q} be the unique ele-
ment such that b; € B.,. We thus obtain an enumeration
{(bj,T))}, j € Z, of the set B’ N (G - (x, 7)).

Moreover, since B is a bounded remainder set, we may
assume that the constant C and the full measure subset
Q) c T? have been chosen such that we have

lt,, —mmesB|<C, meZ. (3.10)

3.3.3. We now claim that there exists a finite set E C Z,
which does not depend on the point (x, 7), such that

bi—a;eEa+Z', jeZ. (3.11)

Indeed, given j there exist ,m such that a; € A" and
b; € B". Hence

bj—a; € (m—n)a+2Z° (3.12)

which follows from (3.5), (3.8). We now write
tm tm Sn Si’l

men= (m— mesB)+(mesB B mesA)+<mesA —n). (3.13)
Due to (3.7) and (3.10), the first and third terms on the
right hand side are bounded in modulus by a certain con-
stant K; = K;(A,B). To estimate the second term, note
that s, < j <s,;1 and s,41 — s, = #A" which cannot exceed
g, hence 0 < j -5, < g4. In a similar way, 0 < j - t,, < g.
As a consequence, |t,, —s,| < g. Since A and B have the
same measure, it then follows that also the second term
on the right hand side of (3.13) is bounded in modulus by
some constant K, = K;(A, B). We conclude that m — n lies

in some finite set E C Z that does not depend on the point
(x, 7). Hence, (3.12) implies (3.11).

3.3.4. We now define F := E X Z,, which is a finite subset
of G. It follows from (3.11) that for each j € Z, the two
points (a;,0;) and (b;,7;) of the space X differ by an ele-
ment of the set Ea X Z,. In other words, this means that
(bj,7j) € F-(aj,0/). As the sequence {(2;,0;)} is an enumer-
ation of A’ N (G - (x, 7)), while the sequence {(b, 7;)} is an
enumeration of B'N (G- (x, 7)), this shows that there exists
a bijection from A’N(G-(x, 7)) onto B'N(G-(x, 7)) that moves
elements using only actions of the set F. As this holds for
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every (x,7) € X’ = QX Z, which is a full measure subset of
X, and since the finite set F does not depend on the point
(x, 1), it follows that A’, B’ are G-equidecomposable up to
measure zero, with possibly non-measurable pieces.

3.4. We now wish to invoke Theorem 2.4 in order to con-
clude that the two sets A’ and B’ are G-equidecomposable
up to measure zero with measurable pieces. To this end,
we need to verify that the sets A’ and B’ are G-uniform.

Let F, := {0,1,...,n — 1} X Z,. To prove that A’ is G-
uniform, we need to show that there are positive con-
stants c and 1y, such that for all (x, 7) in some full measure
subset of X and for every n > ny, we have

A" N (F, - (x,7))| > cn. (3.14)

We check that this holds for all (x,7) € X’ = Q x Z,. In-
deed, observe that the elements of the set A’ N (F,, - (x, 7))
are given in our enumeration as {(a;, o)}, so < j < s,,, and
therefore this set contains exactly s, elements. In turn, it
follows from (3.7) that we have s, > nmesA — C. Hence,
we can choose ¢ > 0 small enough and 7, large enough,
not depending on the point (x, 7), such that (3.14) holds
for every n > ny. This shows that A’ is a G-uniform set.

In a similar way, it can be shown that also the set B’ is
G-uniform.

3.5. We can therefore apply Theorem 2.4 and conclude
that the two sets A’ and B’ are G-equidecomposable up to
measure zero with measurable pieces. Finally, we need to
show that this implies that A, B ¢ R? are equidecompos-
able up to measure zero with measurable pieces, using
only translations by vectors in Za + Z°.

First, by refining the pieces in the equidecomposition if
needed, we may assume that each piece of A’ is entirely
contained in one of the sets A;x{i}, 1 <i < g. Hence, if P’ is
one of the pieces of A’, then P’ = Px{i} for somei € {1,...,q}
and for some measurable set P ¢ A; = AN (Q +r;). The
piece P’ is carried by some element (1,0) € G onto a piece
R’ of the set B’. If we choose j € {1,...,gq} suchthat j =i+0
(mod g), then R” = RX{j} for some measurable set R C B; =
BN(Q+r)). The fact that (n,0)-P’ = R’ implies that P and R
are equidecomposable using translations by vectors from
na + Z%. It remains to note that as P’ goes through all
the pieces of A’, the corresponding sets {P} and {R} form
partitions of A and B respectively, up to measure zero.
It thus follows that A and B are equidecomposable up to
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measure zero with measurable pieces, using translations
by vectors in Za + Z°.

4. BOUNDED DISTANCE EQUIVALENT CUT-AND-PROJECT SETS

4.1. Two discrete point sets A, A’ C R™ are said to be
bounded distance equivalent with constant K > 0 if there
exists a bijection y : A — A’ satisfying

Ix(A) = Al<K, AeA (4.1)

We indicate this using the shorthand notation A b A,

Let T be a lattice in R” X R". Denoting the projections
from R” X R" onto R" and IR” by p; and p, respectively, we
assume that p;|r is injective, and that the image p,(I) is
dense in R". If W c IR" is a bounded set (called a “win-
dow”) then the set

ATLW) ={pi(y):y €T, pa(y) € W) 4.2)

is called the cut-and-project set, or the model set, in R”
obtained from the lattice I' and the window W.

There is an intimate relation between bounded remain-
der sets and one-dimensional model sets, in the sense
that a one-dimensional model set with a Riemann mea-
surable window W is bounded distance equivalent to an
arithmetic progression if and only if a linear image of W
is a bounded remainder set with respect to a certain ir-
rational vector, see [HK16], [HKK17], [GL18, Section 6],
[FG18, Theorem 4.5].

It follows that certain results on bounded remainder
sets have natural analogs, or extensions, to model sets.
For instance, [GL15, Theorem 1] states that any paral-
lelepiped in IR? spanned by linearly independent vectors
in Za + Z* is a bounded remainder set; this can be seen
as a special case of [DO90, Theorem 3.1] providing a suf-
ficient condition on a parallelepiped window W in order
for the corresponding model set to be bounded distance
equivalent to a lattice.

The relation between bounded remainder sets and
model sets prompts the question as to whether Theorem
3.1 admits (at least, for Riemann measurable sets) an ex-
tension to higher-dimensional model sets. The next result
provides such an extension.

Theorem 4.1. Let W, W’ C R" be two bounded Riemann
measurable sets of positive measure. If the model sets
A, W) and A, W) are bounded distance equivalent,
then W, W’ are equidecomposable up to measure zero with
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measurable pieces, using only translations by vectors from
pa(T).

This result was previously announced in [Gre25a, The-
orem 1.1] but the original proof turned out to contain a
gap, see [Gre25b]. The remainder of the section is de-
voted to a new proof of Theorem 4.1 which bridges this

gap.

4.2. We now turn to the proof of Theorem 4.1. By as-
sumption, the two model sets A(I', W) and A(I, W’) are
bounded distance equivalent. As in the original proof
given in [Gre25a, Section 3] this implies, using the as-
sumption that p|r is injective, that the “lifted” sets

T'w= {)/ el: ]92(7/) € W}, T'w = {)/ el: pz()/) S W,}(, )
4.3
are also bounded distance equivalent.

Let us denote N = {y € T : po(y) = 0}. Then N is a
sublattice of I' (remark that if p,|r is injective, then N =
{0}). In turn, there is a sublattice L of T such that we have
the direct sum decomposition

I'=LeN (4.4)

(see [Cas97,1.2.2, Corollary 3]). Then p,|; is injective, and
pa(L) = pa(D). Define

Lw={yeL:p(y)e W}, Lw ={yeL:py)e W},
(4.5)
then it follows that

FW . LW @N, FW/ = wa @N (46)

4.3. We wish to prove that Ly and Ly are bounded dis-
tance equivalent. We will obtain this as a consequence of
the following lemma.

Lemma 4.2. Let A,B C Z" and suppose that AXZ? °d Bx 7

with constant K. Then also A bd B with the same constant
K.

Proof. By assumption there exists a bijection y : AXZ’ —
B X Z° that moves points by distance at most K. We con-
sider A, B as subsets of Z" viewed as a group acting on it-
self by translations. To prove the claim it suffices to show
that A, B are equidecomposable using only actions of the
finite set F = {j € Z" : |j| < K}. In turn, by Proposition 2.1 it
suffices to check that A, B satisfy Hall’s condition with the
finite set F. That is, we need to show that |S| < |[(S+ F) N B|
for any finite set S C A, and that |T| < |(T — F) n A| for
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any finite set T ¢ B. We will only check that the first con-
dition holds, as the second condition can be established
similarly.

Let S C A be a finite set. Then for any positive integer
R, the bijection y maps the set Sx{0,...,R—1}° injectively
into (S+F)NB)x{-K,...,R+ K—-1}°. Hence

IS|- R* < |(S+ F) N B|- (R + 2K)*, 4.7)
and letting R — +0c0 we conclude that |S| < |(S+ F)N B|, as
we had to show. O

Since I'iy and 'y are bounded distance equivalent, it
follows from (4.6) that after applying a suitable invertible
linear transformation, we may use Lemma 4.2 in order
to conclude that also Ly and Ly are bounded distance
equivalent.

4.4. Let Kbe the bounded distance equivalence constant
of LW and LW/ .

Lemma 4.3. Ly_, bd Ly _, with the same constant K for
every x € R" satisfying

(AW =x) N pa(I) = (W' —x) N po(T) = 0. (4.8)
Proof. Let F = {y € L : |y| < K} which is a finite subset

of L. Since Ly bd Ly with constant K, there is a bijection
X :Lw — Ly and a function f : Ly — F such that x(7) =
T+ f(7) for all T € Lyy. Fix a point x € IR” satisfying (4.8),
and consider the sets A = Ly_, and B = Ly _, as subsets
of L viewed as a group acting on itself by translations.
It suffices to show that A, B are equidecomposable using
only actions of the finite set F.

In turn, by Proposition 2.1 it suffices to check that A, B
satisfy Hall’s condition with the finite set F. We will do
this by showing that given a finite set S C A there is an
injective map ¢ : S — B satisfying ¢(y) € y + F for all
y € S; and given a finite set T C B there is an injective
map ¢ : T — A satisfying (y) € y—Fforall y € T. We
will only prove the first claim, as the second claim can be
proved similarly.

Let S ¢ A = Ly, be a finite set. Since the image p,(L) =
p2(I') is dense in IR", we may choose a sequence y; € L such
that x; = p»(y;) — x. The assumption that JW —x does not
intersect p,(I') implies that the elements of the finite set
p2(S) lie in the interior of W — x. Hence, there is j, such
that p,(S) € W —x; for all j > jo. This means that

Sc LW—xj = LW Vi (4.9)
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and therefore for each y € S there is 7(y) € Ly such that
y = 1,(y) — 7. Since both S and F are finite sets, then by
passing to a subsequence if needed we may assume that
for each y € S the value f(7;(y)) does not depend on j, so
there is a function i : S — F such that f(t;(y)) = h(y) for
every j and every y € S. Define ¢(y) = y + h(y) for each
y € S. It remains to show that ¢ is an injective map from
S into B.

We first check that ¢ indeed maps S into B. Let y € S,
then

p(y) =y +h(y) = 7(y) —yj+ f(tj(y)) = x(7j(y)) - ). (4.10)
Since y maps Ly into Ly then

p2(p() = p2(x(7;(y) —x; € W’ —xj, (4.11)

and letting ; — oo we obtain that p,(¢(y)) lies in the clo-
sure of W/ —x. In turn, using the assumption that JW’ —x
does not intersect p,(I'), we conclude that p,(p(y)) must
in fact lie in the interior of W' — x. As a consequence,
¢(y) € Ly _ = B.

Lastly, we show that ¢ is injective. Indeed, let y,)” € S,
then by (4.10) we have

o) = x(t(N v, O =x(r;,() -y  (412)
Hence, if we assume that ¢(y) = ¢()’) then x(7;(y)) =
x(ti(y")). Since x is an injective mabp, it follows that 7;(y) =
7;(y’). But recalling that y = 7;(y) —y; and )" = 7;()) — y;
this implies that y = )’. Hence ¢ is an injective map, and
the lemma is proved. O

4.5. Since W and W’ are bounded sets in IR”, and since
the image p,(I') is dense in IR”, we may choose a system of
n linearly independent vectors vy, ..., v, € p»(I') which are
large enough for W and W’ to be contained in the paral-
lelepiped

Q={toi+ - +tv,: t,... bt €[-1, D) (4.13)

Let H be the subgroup of R" generated by the vectors
v1,...,0,. Then H is a lattice in R” and a subgroup of
p2(I), and Q is a fundamental domain of H in R".

We now consider the quotient space X = IR"/H, and
let u be the Lebesgue measure on X normalized such
that u(X) = 1. Then G = p(I')/H is a finitely gen-
erated abelian group which induces a free pmp action
on (X,u) by translations. Since W,W’ are contained
in the fundamental domain Q of H, we may also view
W, W’ as measurable subsets of X, and we observe that
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W, W’ are G-equidecomposable (up to measure zero) con-
sidered as subsets of X, if and only if W, W’ are p,(I')-
equidecomposable (up to measure zero) as subsets of IR".

We now wish to prove that W, W’ (as subsets of X) satisfy
Hall’s condition a.e. with respect to G. It suffices to show
that there is a finite set F C I' and a full measure subset
X" c X, such that for every point x € X’ there exists a
bijection from W N (G + x) onto W’ N (G + x) that moves
elements using only actions of the set p,(F).

We choose F := {y € L : |y| < K} where K is the bounded
distance equivalence constant of Ly and Ly, and we let
X’ be the set of points x € X satisfying the condition (4.8)
(note that this condition is invariant under translations
by vectors in H, so it may be viewed as a condition on el-
ements of X). Since W and W’ are Riemann measurable
sets, their boundaries dW and dW’ are both sets of mea-
sure zero, which implies that X’ is a full measure subset
of X.

Fix x € X’, and denote A = WN(G+x)and B= W' N(G+
x). We observe that the mapping y — pa(y) + x (mod H)
defines a bijection ¢ : Ly_, — A, as well as a bijection
Y : Lyw_, — B. We also recall that by Lemma 4.3 there
is a bijection x : Lw_y — Lw/—y such that x(y) —y € F for
all y € Ly_,. Hence ¢ o y o ¢! defines a bijection from A
onto B that moves points using only actions of the finite
set po(F). We conclude that W, W’ satisfy Hall’s condition
a.e. with respect to G.

4.6. We now wish to invoke Theorem 2.4 in order to con-
clude that the two sets W, W’ are G-equidecomposable up
to measure zero with measurable pieces (as subsets of X).
To this end, we need to verify that W, W' are G-uniform
sets.

By the structure theorem for finitely generated abelian
groups, there exists a direct sum decomposition G = M®A
where M is a free abelian group of rank d, and A is a finite
abelian group. We observe that since p,(I') is dense in R”,
then G is dense in X. In turn, this implies that also M
must be dense in X (see [Rud62, Section 2.1]).

Let ey, ..., e; be some basis for M, and denote

d
Fr=P,®A, P;= {Zm]-e]- tMmq,...,my € {O,l,...,k—l}}.
j=1
(4.14)
To prove that W is a G-uniform set, we must show that
there exist positive constants c and k; such that for almost
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all x € X and every k > ky we have
W N (Fr + x)| > k. (4.15)

Since W is a Riemann measurable set of positive mea-
sure, there is ¢ > 0 such that W contains some open ball
U of radius 2¢. Since M is dense in X, there is a positive
integer k; such that the set Pj, forms an e-net in X. This
implies that also any translate of Py, is an ¢-net in X. Now
observe that for every x € X and every k > ko, the set P, +x
contains at least |k/ko]? disjoint translated copies of Py,
and each one of these translated copies must intersect the
ball U. It follows that

W N (Fx+x)| = [UN P+ 2) > Lk/ko)? > ck?,  (4.16)

which verifies condition (4.15) and shows that W is a G-
uniform set. In a similar way, one can show that also the
set W’ is G-uniform.

Finally, by an application of Theorem 2.4 we conclude
that the two sets W, W’ are G-equidecomposable up to
measure zero with measurable pieces as subsets of X.
This implies that W, W’ are p,(I')-equidecomposable up to
measure zero with measurable pieces as subsets of R”,
and completes the proof of Theorem 4.1.

5. ONE-DIMENSIONAL CUT-AND-PROJECT SETS

5.1. Notice that in the statement of Theorem 4.1, the
sets W,W’ are assumed to be Riemann measurable,
yet the result only guarantees their p,(I')-equidecom-
posability with measurable pieces. One may therefore
ask whether the pieces in the equidecomposition may be
chosen to be also Riemann measurable. One may also
consider a variant of this question, which appears to be
of practical importance: if the sets W, W’ in Theorem 4.1
are assumed to be polytopes, can the pieces in the equide-
composition be chosen to be also polytopes?

Note that by a “polytope” in R? we mean any finite union
of d-dimensional simplices with disjoint interiors. Thus a
polytope may be non-convex, or even disconnected.

In this section we establish a result which gives an
affirmative answer to both questions above for one-
dimensional cut-and-project sets.

Let I be a lattice in RXRY, such that if p; and p, denote
the projections from R x R? onto R and RY respectively,
then p|r is injective, while p,(T) is dense in R?. If W c R
is a bounded set, then again we consider the model set in
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R defined by
AT, W) =1{pi(y): y €T, pa(y) € W} (5.1)

Theorem 5.1. Let WW' c R? be two bounded Rie-
mann measurable sets (resp. two polytopes). If the one-
dimensional model sets A(I', W) and A(I', W) are bounded
distance equivalent, then W,W’ are equidecomposable up
to measure zero with Riemann measurable pieces (resp.
with polytope pieces) using translations from p,(I).

The proof below does not rely on the measurable Hall’s
theorem which only gives equidecomposability with mea-
surable pieces. It is rather based on the connection of the
problem to bounded remainder sets and the results ob-
tained in [GL15], [GL18].

5.2. Lattices in general position. We say that a lattice
'in R X R? is in general position if the restriction of p; to
T is injective, and the image p,(T) is dense in RY.

In [GL18] the term “general position” was used to in-
dicate that the restrictions of both p; and p, to I are in-
jective, and both their images p1(I') and p,(I') are dense in
R and R respectively. These two definitions are in fact
equivalent:

Lemma 5.2. If T ¢ R x R? is a lattice in general position,
then also the restriction of p> to I is injective, and the image
p1(T') is dense in R.

Proof. Let vy,...,v;41 be a basis for the lattice I. The
assumption that p,(I) is dense in R? implies that
p2(v1), ..., p2(vs) must be linearly independent vectors in
R?. Hence the vector p,(v4,1) admits a unique expansion
P2(Vas1) = Z;l:l a;p>(v;). Using again the assumption that
p2(I) is dense in R? implies that the numbers 1,a, ..., a,
are rationally independent. As a consequence, the restric-
tion of p, to I' is injective.

Since the restriction of p; to I' is injective, the numbers
p1(v1),...,p1(va1) must be rationally independent. Hence
these numbers generate a dense subgroup of R. But this
subgroup coincides with the image p;(I'), so this image is
dense in R. O

5.3. Lattices in special form. Following [GL18, Sec-
tion 4] we define the notion of a lattice of special form.
Definition 5.3. We say that a lattice I' in R x R? is of
special form if

T={n+p (na+m)na+m):neZ meZ" (5.2)
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where a, § are column vectors in R satisfying the follow-
ing conditions:
(i) The vector a = (a1, a3, ...,a,;)" is such that the num-
bers 1,a;,a»,...,a; are linearly independent over
the rationals;

(ii) The vector g = (B1,B2,.-.,Ba4)" is such that the num-
bers fi1,B2,...,B4,1 + BT are linearly independent
over the rationals.

It is easy to check that the conditions imposed on the
vectors o and f are precisely those necessary and suffi-
cient for I to be in general position.

Let a be a nonzero real scalar and B be a d Xd invertible
real matrix. We consider a linear and invertible transfor-
mation T from R x R? onto itself given by

T(x,y) = (ax,By), (x,y) e Rx R, (5.3)

Lemma 5.4 (see [GL18, Lemma 4.3]). Assume that L C
R x R? is a lattice in general position. Then there exist

a lattice T of special form (5.2) and an invertible linear
transformation T of the form (5.3) such that T(L) =T.

We argue that by Lemma 5.4 it suffices to consider lat-
tices of special form. For suppose Theorem 5.1 holds in
this case, and suppose A(L, W) and A(L, W’) are bounded
distance equivalent. Then so are the “lifted” sets

Lyw={CeL:py(€) e W}, Lw ={Le€L:py(f) e W},
and thus also the sets
T(Lw) = {(ap1(€), Bpa(0)) : p2(€) € W} = T'pw
and
T(Lw-) = {(ap1(€), Bpa(0)) : p2(£) € W'} = T'pwr.

It follows that the projected sets p1(I'sw) = A(I', BW) and
p1(Tsw) = A(I',BW’) are bounded distance equivalent in
R. Since we assume that Theorem 5.1 holds for the lattice
I' of special form, this implies that the sets BW and BW’
are equidecomposable up to measure zero using transla-
tions from p,(I) = Bp,(L). It follows that W and W’ are
equidecomposable up to measure zero using translations
from p,(L). Finally, since B is a linear and invertible map,
properties of the pieces in the partition (such as Riemann
measurability or them being polytopes) are preserved.

In what follows we will thus assume that I' is a lattice
of the special form (5.2).
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5.4. Point counting function. If A is a uniformly dis-
crete set in R, then we define its point counting function
V(A x) as

#(A N0, x)), x>0, (5.4)
- #AN|x,0), x<0. (5.5)

Lemma 5.5. If two uniformly discrete sets A, A\’ C R are
bounded distance equivalent, then there is a constant C
such that [v(A, x) —v(N,x)| < C for all x e R

V(A x) = {

This is obvious and so the proof is omitted.

5.5. Cut-and-project sets. Let W be a bounded set in
RY, and
A, W) = {pi(y) : y €T, pa(y) € Wi (5.6)

be the model set in R generated by the lattice I" of spe-
cial form (5.2) and the window W. It is well-known that
AT, W) is a uniformly discrete set. We recall that

xw(x) = Z Tw(x+m), xeRY, (5.7)
meZ4
denotes the multiplicity function of the projection of W
onto T = RY/Z°.

Lemma 5.6. The counting function of A(I', W) satisfies
N-1

VAT, W), N) = Z xw(na)+0(1), N — +co. (5.8)
n=0

Proof. Indeed, due to the special form (5.2), the elements
y € I may be parametrized by the vectors (n,m) € Z x Z*
in such a way that

pi(y)=n+pT(na+m), p(y)=na+m.  (5.9)

Now the point p;(y) belongs to A(I', W) if and only if na +
m € W. In this case

pi(y) —n =B (na+m)ep'W, (5.10)

and "W is a bounded subset of R. Hence there is C =
C(T’, W) such that

Ip1(y) —nl < C (5.11)

whenever p;(y) is a point in A(I, W). It follows that
v(A(l, W), N) differs from

#H(n,m eZxZ:0<n<N-Lna+meW} (512)

by a bounded magnitude, which is equivalent to (5.8). O
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Lemma 5.7. Let W, W’ be two bounded, Riemann mea-
surable sets in R*. If A(T, W) and A, W’) are bounded
distance equivalent, then there is a constant C such that

N-1 N-1
‘ Z xw(x + na) — Z Xwr(x + na)‘ <C a.e. (5.13)
n=0 n=0

holds for every N.

Proof. Define f(x) = xw(x) — xw (x) and Sy(x) = L5 f(x +
na). Lemmas 5.5 and 5.6 imply the existence of a constant
C such that |Sy(0)| < C for every N. We now use an argu-
ment from [GL15, Proposition 2.2]. The function Sy is
Z"-periodic and we have Sy(x + jor) = S4(x) — S;(x), hence
ISy| < 2C on the set {ja}}?il which is dense in T¢ = R?/Z*.
Since W and W’ are Riemann measurable sets, the func-

tion Sy is continuous at almost every point, so it follows
that |Sy| < 2C a.e. O

5.6. Bounded distance equivalence and equide-
composability. We can now use the observations made
above in order to prove Theorem 5.1. Indeed, due to
Lemma 5.4 we may assume that I is a lattice of the spe-
cial form (5.2). By Lemma 5.7 there exists a constant C
such that the estimate (5.13) holds for every N. We now
invoke [GL15, Theorem 7.1] which asserts that the condi-
tion (5.13) is satisfied if and only if W, W’ are equidecom-
posable up to measure zero with Riemann measurable
pieces, using only translations by vectors in Za + Z° =
po(T'); and moreover, if W, W’ are two polytopes in R? then
the pieces in the equidecomposition be chosen to be also
polytopes. This completes the proof of Theorem 5.1.
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