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Abstract. In this paper we go over the history of the
Fuglede or Spectral Set Conjecture as it has devel-
oped over the last 30 years or so. We do not aim to
be exhaustive and we do not cover important areas
of development such as the results on the problem
in classes of finite groups or the version of the prob-
lem that focuses on spectral measures instead of sets.
The selection of the material has been strongly influ-
enced by personal taste, history and capabilities. We
are trying to be more descriptive than detailed and
we point out several open questions.

For Bent Fuglede. Who started all this.
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1. Fourier Analysis on domains

1.1. Sets with orthogonal bases of exponentials.
Fourier Analysis allows us to decompose a function on
a (locally compact) abelian group, say Rd, T = R/Z, or
ZN = Z/(NZ), as a linear combination of characters of
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the group. For instance, when we decompose functions
on the torus T (which we may view as the interval [0, 1))
each function is written as a Fourier series

(1) f (x) =
∞∑

n=−∞
f̂ (n)e2πinx.

The characters here (continuous homomorphisms from
the group to the multiplicative group C) are the functions
e2πinx defined for x ∈ T and indexed by n ∈ Z. Thus we
view Z as the dual group of T, the group of the charac-
ters (or frequencies) on T. Of course, one must be more
precise about which functions on T are to be expanded
and how the series is understood to converge, and clas-
sical Fourier Analysis is all about subtle questions aris-
ing from this expansion [ Zyg02 ,  Kat04 ,  Wol03 ], questions
that have driven the development of Mathematical Anal-
ysis and other branches of Mathematics from 1900 and
even earlier.

But the most useful and best understood such expan-
sion is when f is in the Hilbert space L2(T) and the se-
ries is understood as convergent in the L2 norm. In this
case we have the huge advantage that the characters e2πinx

are orthogonal, and all the conveniences that arise from
orthogonal expansions in Hilbert space, such as Parse-
val’s formula

∥∥∥ f
∥∥∥2

2
=

∑
n∈Z

∣∣∣∣ f̂ (n)
∣∣∣∣2. This is by far the part

of Fourier Analysis most used in applications, either in
pure or applied Mathematics or in other sciences. And
orthogonality is critical.

What happens though when we restrict our functions’
support to be a subset of our group? To stay in the con-
text of the torus T, assume, for example, that we have a
function f ∈ L2([0, 1

2 ]) and want to expand it as in ( 1 ). Of
course we can extend f to be zero on the rest of T and use
the original expansion (  1 ) in T, but then the constituent
parts of f , the characters e2πinx are no longer orthogonal
in L2([0, 1

2 ]). What is more, by doing this extension by zero
to the rest of T, we end up using a lot more frequencies
(characters) than we actually need (exactly twice more in
this case, in a very well defined sense). This is not unex-
pected since this extension by zero to the whole group is
certainly wasteful. Clearly the ideal situation here would
be to have an expansion like (  1 ) in which the summands
are orthogonal in our domain, [0, 1

2 ].
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In this particular case we are lucky. It is enough to
take all even frequencies n ∈ 2Z in order to be able to
orthogonally expand every f ∈ L2([0, 1

2 ]) and in a unique
way. Writing eλ(x) = e2πiλ·x and observing that ∥eλ∥L2([0, 12 ] =

2−1/2 we have
f (x) =

∑
n∈2Z
⟨ f ,
√

2 e2n⟩e2n(x).

With half as many frequencies as before we have our or-
thogonal expansion. Let us call the set of frequencies we
used

Λ = {2n : n ∈ Z}
a spectrum of the set E = [0, 1

2 ] (see Fig.  1 ).
It is precisely this question that we deal with in this

paper.

Main Question: If E is a subset of the lo-
cally compact abelian group G of finite Haar
measure, when can we find a set of charac-
ters Λ ⊆ Ĝ (here Ĝ is the dual group of G
[ Rud62 ], the group of continuous characters
on G) such that Λ is orthogonal on E and
complete on L2(E)?

If we can find such a Λ we call it a spec-
trum of E and E itself is called a spectral set.

0

0 2 4 6−2 8

E

Λ
1/2 1

Figure 1. The set E = [0, 1/2] and its spec-
trum Λ = 2Z. This set 2Z is not the only
spectrum of E. Any translate of it is also a
spectrum and this is generally true in all
groups.

It should be clear that the spectrum Λ of E, when it
exists, is generally not unique: any translate (in Ĝ) of Λ
is again a spectrum of E.

Let us now change the group and work in R instead of
T (note: T is not a subgroup of R!). Consider the unit
interval I = [0, 1] ⊆ R. By (  1 ) we immediately get that
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Z ⊆ R̂ ≃ R is a spectrum of I, and so is any translate
of Z. Similarly viewing E = [0, 1/2] as a subset of R now
we again get that 2Z and any of its translates are spectra
of E. And in the group Rd the unit cube Id = [0, 1]d is
again a spectral set one of whose spectra is Zd (this is
the L2 theory of multivariable Fourier series). But Id has
many more spectra than the translates of Zd for d ≥ 2
[ IP98 ,  LRW00 ,  Kol00c ] or see §  3.5 . One spectrum of the
unit square I2 is shown in Fig.  2 which is not a translate
of Z2.

ΛE = I2

1

1

1

1

R2 R̂2

Figure 2. The unit square I2 in the plane
and one of its spectra, which consists of Z2

but with one of the columns shifted arbitrar-
ily in the vertical direction. There is a com-
plete description of all spectra of I2 in § 3.5 .

A more interesting example of a spectral set in R and
its spectrum (again in R) is the set E = [0, 1/2] ∪ [1, 3/2]
one of whose spectra is the set Λ = 2Z∪ (2Z− 1

2 ) (see Fig.
 3 ).

0 1/2

0 4 6 8

E

Λ
1 3/2

2

Figure 3. The union of two intervals
[0, 1/2] ∪ [1, 3/2] is a spectral set in R and
Λ = 2Z ∪ (2Z − 1

2 ) is its spectrum.
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1.2. The Fuglede or Spectral Set conjecture. It was
Fuglede [  Fug74  ] who first posed the question of spectral-
ity posing a conjecture.

Fuglede conjecture or Spectral Set
Conjecture: A set E ⊆ Rd is spectral if and
only if E can tile Rd by translations.

For E to be able to tile Rd by translations means that it
is possible to translate E to some locations T ⊆ Rd so that
almost all points inRd (in the sense of Lebesgue measure)
belong exactly to one T-translate of E.

The reason Fuglede was interested in spectral sets
is that he had proved spectrality of a set E ⊆ Rd

to be equivalent to the possibility of restricting to
L2(E) the distributional-sense partial differentiations
−i∂x1 , . . . ,−i∂xd so that they become commuting self-
adjoint operators on L2(E) (this was a question of Segal).

Fuglede himself proved in [  Fug74  ] that if one adds the
word lattice to both sides of the conjecture then it becomes
true:

Theorem 1.1 ([ Fug74 ]). Suppose E ⊆ Rd has finite mea-
sure. Then E tiles Rd when translated by the lattice L if
and only if the dual lattice L∗ of L is a spectrum of E.

A lattice L in Rd is a subgroup of Rd generated by d
linearly independent vectors. In other words L = AZd

where the d × d matrix A is non-singular. Then L∗, the
dual lattice of L, is the lattice A−⊤Zd. So (L∗)∗ = L.

We will see the proof of Theorem  1.1 in §  2.8 .
Fuglede also proved that the conjecture is true in the

case of a triangle or a disk in the plane: since they clearly
do not tile by translations, they are also not spectral. (See
also [  Fug01  ,  IKT01 ,  Kol04c ,  Kol04a ] for the case of the
ball.) In Fig.  4 we show some spectral and some non-
spectral domains which satisfy the Spectral Set Conjec-
ture.

Theorem  1.1 immediately furnishes us with further ex-
amples of spectral sets: all fundamental domains of lat-
tices have a lattice spectrum. A lattice is a subgroup of
Rd and any selection of one element from each of its cosets
makes up a fundamental domain of a lattice. For the lat-
tice L = AZd the fundamental parallelepiped A[0, 1)d is
such a fundamental domain, but we can construct many
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Figure 4. Some domains in R2 and R which
are and are not spectral.

others as follows: start with a fundamental domain Ω,
cut off a piece of it and move it by an element of L. This
motion does not change the coset where each moved ele-
ment of Ω belongs, so it remains a fundamental domain.
A fundamental domain does not have to be bounded as
this process can be repeated infinitely often. So, a funda-
mental domain E of a lattice L, is exactly what we call a
lattice tile: the translates E + ℓ, ℓ ∈ L, are such that al-
most all points in Rd are covered by exactly one of them.
We emphasize that we only demand this exact covering
almost everywhere, so a fundamental domain, for us, can
be altered on a set of measure zero and it still remains a
fundamental domain.

0 1

1

Figure 5. Shaded region is a fundamental
domain of Z2 in R2. It arises by cutting off a
piece of the unit square and moving it by an
integer vector.

Orthogonality of the exponentials eλ(x) and eµ(x) on
L2(E) is easy to describe. Since

⟨eλ, eµ⟩ =
∫

E
eλ(x)eµ(x) dx =

∫
1E(x)e2πi(λ−µ)x dx

it follows that the frequencies λ and µ are orthogonal on
E (meaning eλ and eµ are orthogonal in L2(E)) if and only
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if
(2) 1̂E(λ − µ) = 0.

Here 1̂E is the Fourier Transform of 1E, the indicator func-
tion of E. In general our Fourier transform on Rd is de-
fined with the normalization

f̂ (t) =
∫
Rd

f (x)e−2πit·x dx,

for f ∈ L1(Rd).

1.3. What this survey is not about. In this paper,
which is some sort of continuation of [  Kol04c ], I have em-
phasized the areas of the problem that I am most familiar
with and that I have worked on most. It is inevitable that
some areas are neglected.

The most important omission is the part of the theory
that has been developed, and is still developing ever more
intensely, around finite abelian groups. As explained be-
low in §  4.1 the notions of tiling and spectrality make per-
fect sense in all locally compact abelian groups. This is
not a generalization for its own sake. A very big part
of the development of the Fuglede conjecture, including
its disproofs presented in §  4.2 and § 4.3 , are first done
in finite abelian groups, then are pulled on to Zd and
Rd. There are many established reductions of both direc-
tions of the Fuglede Conjecture from one group to another
[ DL14 ].

A lot of work has been done on classes of cyclic groups
ZN, usually restricted by how many prime factors are al-
lowed into N and to what exponents [  ŁL24 ,  ŁL22b ,  ŁL23 ,

 ŁL22a ,  Mal22 ,  MK17 ,  KMSV22 ,  KMSV20  ,  Łab02 ,  Zha24 ]
with many of them based on the influential paper [  CM99 ].
There are also several results concerning products of
cyclic groups with few factors [ IMP17 ,  FMV19 ,  FKMS23 ,

 FKS22 ,  KS21  ,  Mal24 ,  Zha23 ,  AAB+17 ,  FS20 ,  KMMS24 ,
 Mat20 ,  Shi20 ]

The other major omission of this survey is the work that
has been done on a natural generalization of spectral sets:
spectral measures. Given a measure µ on a locally com-
pact abelian group G, when can we find a collection of
characters Λ ⊆ Ĝ that form an orthogonal basis of L2(µ).
Connections with tiling are weaker here and the main
question is which measures are spectral or not, meaning
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for which measures such a set Λ of characters exists that
forms an orthogonal basis of L2(µ).

It was first pointed out in [ JP98 ,  Str00 ] who pointed out
several examples of Cantor-type sets which are spectral
and which are not. It was shown, for example, that the
usual ternary Cantor set with its natural measure (start
with Lebesgue measure on [0, 1] and each time you throw
out an interval from the middle of another redistribute
its measure equally to its two neighbors) is not spectral,
while a variant (at each stage split each interval intro
4 equal intervals then keep only the first and third) is
spectral. There has been a huge number of papers since
then such as [ ŁW02 ,  DHL19 ,  Dai12 ,  AFL19 ,  DHL13 ].

When one leaves orthogonality of the exponentials be-
hind, but still requires a collection of exponentials that
form a basis of some sort (a Riesz basis or a frame, typ-
ically) the problem’s nature changes completely (and in
some sense it becomes more interesting as it concerns
many more domains). It loses, to a great but not com-
plete extent, the algebraic or number theoretic charac-
ter which arises from the identities that guarantee the
orthogonality and becomes a more quantitative subject,
whose results do not resemble much those in the Spectral
Set problem. Still there are some borderline similarities
as evidenced by some papers [ GL14 ,  Kol15 ,  LS23 ]. But for
the most part it is a different subject. It took decades, for
example, to find a bounded measurable set in R of pos-
itive measure that does not have a Riesz basis of expo-
nentials [ KNO23 ]. It was not much easier to show that
finite unions of intervals do have a Riesz basis of exponen-
tials [ KN15 ,  KN16 ] or to prove that unbounded sets of fi-
nite measure inR have a frame of exponentials [ NOU16 ].
Other interesting results concern measures that are mix-
tures of different dimensions or linear but embedded in
higher dimension [  Lev18 ,  LLP21 ,  ILLW22 ]. When one
restricts the frequencies or demands that, say, a basis for
a union is a union of the individual bases new interesting
phenomena arise [ PRW19 ,  PRW24 ,  LPW24 ].

2. Tiling by translation

2.1. Tiling by a function. So far we have dealt with a
set E tiling Rd, say, by translations at a set T ⊆ Rd. Since
we are only going to deal with sets E of positive measure
it follows that T is a countable, discrete set. An easy way
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to define translational tiling by E is to demand that∑
t∈T

1E(x − t) = 1, for almost every x ∈ Rd.

This description of tiling makes the notion of tiling more
amenable to manipulation and analysis.

Once we write this it begs for generalization. Let f :
Rd → R be a measurable function (in most cases we will
deal with functions in L1(Rd), often nonnegative). We say
it tiles at level ℓ ∈ R when translated at T if
(3)

∑
t∈T

f (x − t) = ℓ,

for almost all x ∈ Rd and with the sum converging abso-
lutely. We do allow T to be a multiset: some t ∈ T may
appear more than once. See Fig.  6 for an example.

f

Figure 6. The function f with the shaded
triangle graph tiles R when translated at
the locations shown by black dots. The level
of the tiling is the height of the triangle.

It makes sense to restrict T to be of bounded density
(the ratio |T ∩Q|/vol (Q) is bounded, for all cubes Q ⊆ Rd),
a condition that is automatic in several natural cases, the
most important of which is the case f ≥ 0 and 0 <

∫
f < ∞

[ KL96 ].
By the bounded density of T it follows that the measure

δT =
∑
t∈T
δt

which consists of one unit point mass at each point of T
(or, if T is a multiset, a point mass at t equal to the mul-
tiplicity of t ∈ T) is a tempered distribution [ Str03 ]. In-
formally speaking (see [  KL96 ] for all the details) we can
rewrite ( 3 ) as the convolution
(4) f ∗ δT = 1.

2.2. Tiling seen on the Fourier side. Taking the
Fourier Transform of ( 4 ) we obtain

(5) f̂ · δ̂T = ℓδ0.
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Let is remark here that f̂ is continuous function onRd (be-
ing the Fourier Transform of an integrable function) but
δ̂T is, again, a tempered distribution, and not necessarily
locally a measure.

Comparing the supports of the two sides of (  5 ) we see
that the supports of f̂ and δ̂T are disjoint [  KL96 ] apart
from the origin. Wherever δ̂T lives f̂ must kill it, except
at the origin. Thus the following is a necessary condition
for tiling ( 3 ) to happen:

(6) supp δ̂T ⊆
{
ξ ∈ Rd : f̂ (ξ) = 0

}
∪ {0}.

tempered distribution δ̂T

zeros of f̂

Figure 7. The sero set of f̂ , denoted by Z( f ),
supports the tempered distribution δ̂T, the
Fourier Transform of the measure δT which
encodes the translation multiset.

Condition ( 6 ) is almost a sufficient condition for tiling
as well. If we somehow know that δ̂T is locally a measure
then (  6 ) implies (  3 ): roughly any zero of f̂ is enough to kill
a measure, but if f̂ has to kill a higher order tempered
distribution then its zeros must be deeper. The textbook
example of this situation is that x · δ′0 is not the 0 distri-
bution, but x2 · δ′0 = 0. Here δ′0 is the derivative of the
measure δ0, which is a distribution of first order, not lo-
cally a measure. The simple zero of x at 0 is not enough
to kill δ′0 but the deeper zero of x2 at 0 is enough.

In almost all work that deals with translational tilings
using the Fourier Transform condition (  6 ) is the start-
ing point, which makes clear the fact that the shape of
Fourier zeros of a function

(7) Z( f ) =
{
ξ ∈ Rd : f̂ (ξ) = 0

}
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is of great importance in all problems concerning tilings
by f but in other geometric problems too, such as the Pom-
peiu problem [ KS24 ,  MR23 ].

2.3. An example from the Scottish book. It is inter-
esting to see by an example how pointing out a simple
condition such as (  6 ) can make a big difference in our un-
derstanding of a problem. In the famous Scottish book
[ Mau81 ], which was the notebook used at the Scottish
café in Lviv (then Lwów) in the 1930s and 1940s by some
of the well known heros of Mathematical Analysis (Stefan
Banach, Mark Kac, Kazimierz Kuratowski, Hugo Stein-
haus, Stanisaw Ulam among them) to write down prob-
lems and solutions that they talked about while drinking
coffee or liquor, one can find the following problem posed
by H. Steinhaus.

Problem 181: Find a continuous function
(or perhaps an analytic one) f (x), positive
and such that one has

∞∑
n=−∞

f (x + n) = 1

(identically in x in the interval −∞ < x <
+∞); examine whether (1/

√
π)e−x2 is such a

function; or else prove the impossibility; or
else prove uniqueness.

The condition asked to be satisfied by f is of course the
condition that it tiles the real line when translated by
Z. In light of (  6 ) and the very well known fact that the
Fourier Transform of the gaussian e−x2 is a multiple of it-
self (and has thus no zeros at all) the power of notation,
the right context and the era one lives in becomes clear,
when one thinks that a giant such as Steinhaus posed
this question without seeing the obvious negative answer
for the gaussian (he did prove that the gaussian does not
work in another way though [ Mau81 ]).

We can easily solve this problem if we take as f the
Fourier Transform of a function which has compact sup-
port (this ensures analyticity for f ), is positive definite (a
function is positive definite for us if its Fourier Transform
is non-negative) and we manage to ensure f > 0. The
Fourier Transform f̂ must vanish on Z \ {0}, the support
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f̂

0−1 1

Figure 8. The Fourier Transform of the sum
of two triangles functions of incommensu-
rable bases is always positive.

of δ̂Z minus the point 0, according to the Poisson Sum-
mation Formula (see §  2.4 ), but this is easy to achieve by
taking f̂ to be supported inside (−1, 1). We use the well
known fact that the triangle function

S(x) = (1 − |x|)+

is a positive definite function. To see this observe that
S(x) = 1[− 1

2 ,
1
2 ] ∗ 1[− 1

2 ,
1
2 ](x)

and therefore

Ŝ(ξ) =
(

sin(πξ)
ξ

)2

≥ 0

and the zeros of Ŝ are exactly at the integers apart from
0. We can then define f̂ (ξ) = S(2ξ) + S(

√
2ξ) as shown in

Fig.  8 to obtain a function f̂ , supported in (−1, 1), which
is positive definite and with f > 0 always, due to the fact
that the only way a zero of f could arise would be if both
Ŝ(2·) and ̂S(

√
2·) vanished at the same time, which cannot

happen because
√

2 is irrational.

0T : 0T ∗:

Figure 9. A lattice T and its dual lattice T∗.
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2.4. Lattices and the Poisson Summation Formula.
In the very important case when T is a lattice AZd the
Poisson Summation Formula in distributional form is

(8) δ̂T =
1

vol T
δT∗ .

That is, the Fourier Transform of unit point masses on a
lattice T are again point masses on the dual lattice T∗ of
size (vol T)−1 (see Fig.  9 . Here vol T is the volume of the
fundamental domain of the lattice and vol T = |det A| if
T = AZd. In this case, therefore, (  6 ) is a sufficient condi-
tion and we have the equivalence:
(9) f ∗ δT = const. ⇐⇒ f̂ = 0 on T∗ \ {0}.
It should be clear of course that the same conclusion as (  9 )
can be drawn simply by the usual theory of multivariate
Fourier series (followed perhaps by a linear transforma-
tion that will map Zd to our lattice T). In the case T = Zd

the function
(10) F = f ∗ δT =

∑
t∈Zd

f (x − t)

is the so-called periodization of f and and is aZd-periodic
function, so it is constant if and only if all its non-constant
Fourier coefficients F̂(n) = f̂ (n) are 0. This is precisely ( 9 ).

2.5. Structure results about tilings via the Fourier
Transform. This Fourier view of translational tiling has
yielded many results both in the subject of tiling itself and
in the Spectral Set problem.

One set of results (the first of which, due to D. New-
man [ New77 ], about tilings of the integers by finite
sets, was proved using an easy combinatorial argument)
is that one-dimensional tilings are essentially periodic
and higher-dimensional tilings also have structure. In
[ LM91 ,  LW96 ,  KL96 ] it was proved that whenever 0 ,
f ∈ L1(R) is a function of compact support and f ∗ δT is a
tiling of the real line at some level, then T is a finite union
of complete arithmetic progressions

T =
J⋃

j=1

(a jZ + b j),

for some positive a j. If the tiling of f by T is indecompos-
able (that is, it cannot be written as a superposition of
tilings) then all the a j are commensurable (they are ratio-
nal multiples of each other) and the tiling is periodic. The
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same conclusion holds if f = 1E is an indicator function of
a set of positive and finite measure.

Where does the structure of T (periodicity) come from?
Newman’s argument in [  New77 ] is essentially an appli-
cation of the pigeon-hole principle and the fact that any
tiling of the integers by a finite set is completely deter-
mined if we know it in a finite window (whose length de-
pends on the tile). In [ LW96 ] this argument was general-
ized to measurable sets in the line, a much more compli-
cated case. Finally in [  KL96 ] the problem was reduced to
the so-called idempotent theorem in Harmonic Analysis
[ Hel53 ,  Rud59 ,  Coh60 ] which greatly restricts the func-
tions and measures whose Fourier Transform takes only
the values 0 or 1 (or some finite set of values more gener-
ally). (The paper [ LM91 ], also solving the same problem
with the use of the idempotent theorem, predated the pa-
pers [ LW96 ,  KL96 ] but had gone unnoticed.)

The idempotent theorem, valid in any locally compact
abelian group [ Coh60 ] is probably best understood in the
case of the torus T [ Hel53 ].
Theorem 2.1. If µ ∈ M(T) is a measure on T whose
Fourier coefficients µ̂(n), n ∈ Z, are either 0 or 1, then the
set {

n ∈ Z : µ̂(n) = 1
}

can be written as

F△
J⋃

j=1

(a jZ + b j)

for a finite set F ⊆ Z and for some positive a j ∈ Z (here △
denotes symmetric difference of sets).

Equivalently, the set {
n ∈ Z : µ̂(n) = 1

} is periodic even-
tually.

We call such measures idempotent because all their
convolution powers µ∗n = µ ∗ · · · ∗ µ (n times) are identi-
cal to µ (equivalently their Fourier coefficients take the
values 0 or 1 only).

For an idempotent measure µ in a general locally com-
pact abelian group G the set of characters{

γ ∈ Ĝ : µ̂(γ) = 1
}

is in the so-called coset ring of Ĝ: this is the smallest al-
gebra of subsets of Ĝ that contains all open cosets of Ĝ,
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or, anything you can construct starting from some open
cosets and performing finitely many set-theoretic opera-
tions.

To use the idempotent theorem in the study of tilings
we use it in the form of the following theorem of Meyer
[ Mey70 ].

Theorem 2.2. Let A ⊆ R be a set of bounded density and
µ =

∑
a∈ caδa be a measure, with ca ∈ S ⊆ C \ {0}, a finite set.

If µ̂ is locally a measure and∣∣∣µ̂([−R,R])
∣∣∣ = O(R), as R→ +∞,

then

(11) A = F△
J⋃

j=1

(α jZ + β j),

for some positive α j and a finite set F ⊆ R.

It is worth noting that to prove Meyer’s theorem (ver-
sions of which hold in any dimension) we use the idempo-
tent theorem on R̂d, the group of continuous characters
(dual group) of Rd, the real line R equipped with the dis-
crete topology. This is the so-called Bohr group or Bohr
compactification of the real line, which we can view as
an augmentation of R which is such that the continuous
functions on it are uniform limits of the usual trigono-
metric polynomials. This group is central in the theory of
almost periodic functions [ Bes54 ,  Kat04  ].

Assume now that f is integrable and has compact sup-
port. (See also [  KL16 ,  KL21 ,  Lev22 ] for subtleties that
may arise if the tile f is not of compact support and also
[ KW19 ] for an analysis of the structure of multilpicative
tilings of the real line.) Compact support of f implies that
its Fourier Transform f̂ is analytic and therefore the set
of Fourier zeros of f

Z( f ) =
{

f̂ = 0
}

is a discrete set in R. Elementary complex analysis in
the form of Jensen’s formula implies that the number of
zeros of f̂ in [−R,R] grows at most linearly in R. So we
know that in a tiling of f with T, from (  6 ), δ̂T is a sum
of distributions of point support at the points comprising
Z( f ). By the growth of T (bounded density) and a simple
duality argument it follows that these distributions are
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actually point masses at Z( f ), uniformly bounded, so we
can apply Theorem  2.2 to the measure µ = δT and obtain
the promised structure of T. The finite set F in  11 is easily
seen to be empty (otherwise the support of δ̂T could not
possibly be a discrete set).

2.6. Structure of tilings in higher dimension. The
use of the idempotent theorem has led to structural
results about translational tilings also in dimension 2
[ Kol00b ] and dimension 3 [  GRS11 ,  GKRS12 ] when the
tile is a polygon or a polytope. In dimension d ≥ 2 the situ-
ation becomes much more complicated than in dimension
1. The main reason is that the set of Fourier zeros Z( f ) of
a function f ∈ L1(Rd) is no more a discrete set but rather
a set of codimension 1. This allows for a much greater va-
riety of tempered distributions to be supported on it (ac-
cording to (  6 )) so new tricks are needed to derive structure
of tilings. This structure is naturally much more flexible
than the rigid situation we face in dimension 1.

+

−

Figure 10. The indicator function of the
polygon on the left has many Fourier zeros.
If tiling occurs then also the edge measures
that charge a pair of parallel edges with plus
and minus their arc-length also tile, for ev-
ery edge direction. Thus δ̂T lives on the in-
tersection, as the direction of parallel edges
changes, of all their Fourier zeros, typically
a much smaller set.

Suppose for instance we are trying to decide if a poly-
gon E in the plane can tile by translations, at any (neces-
sarily) integer level (see Fig.  10 ). To use condition (  6 ) we
should know about what tempered distributions are sup-
ported on the Fourier zeros Z(1E). This is a union of some
curves in the plane, and these support a great variety of
tempered distributions, unlike the case of dimension 1,
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where the Fourier zeros were isolated points, and points
can only support point masses and their derivatives.

The following observation saves us, at least in some
nice cases in dimension 2. If E tiles when translated by T,
and E contains only edges that come in parallel pairs (for
instance, if E is a symmetric convex polygon), then, it is in-
tuitively clear, in the tiling of E by T each edge can only be
“countered” in the tiling by its opposite edge (the one par-
allel to it and facing in the opposite direction) and these
two edges must have the same length (else the shorter
edges will not be able to counter the longer edge over a
large tiled area). Fixing such an edge pair we can look at
the measure µ in the plane which charges one edge by its
arc-length measure and the opposite edge by negative its
arc-length measure. See Fig.  10 . Then the translates of µ
along T completely kill each other. In other words µ tiles
with T at level 0, or µ ∗ δT = 0, which, like in (  6 ), leads us
to the condition

(12) supp δ̂T ⊆ Z(µ) =
{
µ̂ = 0

}
.

Z(µ)
+1

−1

P

edge measure µ

Figure 11. The Fourier zeros of the edge
measure µ defined on two opposite edges of
the polygon P is shown on the right. It con-
sists of a union of two sets of parallel lines.

But, it is easy to see, Z(µ) consists of a two collections
of parallel lines, an easy set to work with. See Fig.  11 .
What is more important, (  12 ) must hold for all parallel
edge pairs in the polygon E, so that δ̂T is supported on
the intersection of all the Fourier zeros of edge measure
pairs, and, generically, even inresecting two of them (two
pairs of collections of parallel lines)) gives us a collection
of isolated points, so that Meyer’s theorem can now be
applied essentially as in the case of tiling in dimension 1.
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2.6.1. Tilings of the line by translation and reflection.
What if one allows not just translations but reflections
of A as well in the tiling of Z?

In [ LW96 ] it is pointed out that the set A = {0, 1, 5} can
give two different tilings of the set {0, 1, . . . , 8} if transla-
tions and reflections are allowed. Since we can tile Z by
translates of {0, 1, . . . , 8} and we can arbitrarily choose how
(in which of the two available ways) we tile each translate
with copies (translations and/or reflections) of A it follows
that we cannot expect such translation/reflection tilings
to be periodic.

The set A = {0, 1, 5}

Figure 12. The set A = {0, 1, 5} ⊆ Z
shown at the bottom, can tile using transla-
tions and reflections the interval {0, 1, . . . , 8}
in two different ways, shown in the middle
row above. Each copy used is drawn in a dif-
ferent color (in fact these two ways are re-
flections of each other). In the top row we
show two fragments of tilings of the line by
using one of the two tiled intervals of the
middle row at will. In the top left fragment
we have used the first tiled interval and then
the second, and in the top right fragment
we have used the first tiled interval twice.
Notice that these two fragments are indeed
different tilings of Z as they show different
patterns. In the top right fragment we only
observe two points of the same tile followed
by one point of another tile, while in the top
left we can also see a single point of one tile
followed by a single point of another tile.

But lack of periodicity does not necessarily mean lack
of structure.

Question 1. What kind of structure may we
expect from a translation/reflection tiling of
Z by a finite set A?
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In particular is it true that non-periodicity
implies that there is a translational tile A′ of
Z that can be tiled in two or more different
ways by copies (translations and reflections)
of A?

The set A′ here is the analogue of the set
{0, 1, . . . , 8}.

There are two ways to view this question:

(1) Every tiling has structure.
Fix a tiling T by A which uses translations and
reflections. Is it true that

Property S: there is a translational tile
A′ ⊆ Z which tilesZ by a set of translates
B′, such that every translate

A′ + b′, for some b′ ∈ B′,

is tiled (with translations and reflections)
by A in the tiling T ?

(2) Every tile has a structured tiling.
If A can tile Z using translations and reflections
then is there such a tiling T using A which has
Property S (as above)?

2.7. Spectrality as a tiling question. Having dis-
cussed translational tiling somewhat at length let us
know return to the Spectral Set question: why make the
conjecture that the spectral sets are precisely the sets
that can tile? What could possible connect the two con-
cepts?

Suppose f ∈ L2(E) and suppose also that the set of ex-
ponentials

E(Λ) = {eλ(x) : λ ∈ Λ},

for some Λ ∈ Rd, is orthogonal in E. Bessel’s inequality in
the Hilbert space L2(E) then becomes∑

λ∈Λ

∣∣∣⟨ f , eλ⟩∣∣∣2 ≤ vol (E)
∥∥∥ f

∥∥∥2

2

If E(Λ) is complete in L2(E) as well as orthogonal then
Bessel’s inequality becomes an equality, and this is equiv-
alent to completeness.
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Assuming completeness then apply this now to f (x) =
et(x) for an arbitrary frequency t ∈ Rd to get

(13)
∑
λ∈Λ

∣∣∣1̂E

∣∣∣2(t − λ) = vol (E)2.

But this equation precisely means that the integrable,
nonnegative function

∣∣∣1̂E

∣∣∣2 (the power spectrum of 1E) tiles
Rd when translated at the locations Λ at level vol (E)2.
And it is not hard to see, due essentially to the density
of trigonometric polynomials in L2(E), that (  13 ) implies∑
λ∈Λ

∣∣∣⟨ f , eλ⟩∣∣∣2 = vol (E)
∥∥∥ f

∥∥∥2

2
for any f ∈ L2(E) (complete-

ness).

1E 1E ∗ 1̃E |1̂E|2

Figure 13. The functions 1E, 1E ∗ 1−E,
∣∣∣1̂E

∣∣∣2
when E is an interval.

We may thus restate the Fuglede conjecture as follows:

Fuglede or Spectral Set conjecture: E
tiles ⇐⇒

∣∣∣1̂E

∣∣∣2 tiles.

In this new form we hope that the conjecture makes a
little more sense.

At this point, having interpreted spectrality as the
tiling ( 13 ), we can easily derive some properties that the
spectrum Λ must have if it exists. The first property is
that it must have a density and this density is equal to
vol (E). More precisely, we have that for any ϵ > 0 there
exists a R0 such that whenever R > R0 the number n of
points of Λ in any ball B of radius R satisfies

(vol (E) − ϵ) vol (B) ≤ n ≤ (vol (E) + ϵ) vol (B).

This is nice: the density of the spectrum of E is equal to
the volume of E.

Another property of Λ, easily derivable from orthog-
onality alone, is that the distance

∣∣∣λ − µ∣∣∣, λ, µ ∈ Λ, is
bounded below by a positive number. Indeed, we know
that orthogonality of eλ and eµ over E is equivalent to the
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vanishing
1̂E(λ − µ) = 0.

But 1̂E(0) = vol (E) > 0 and 1̂E is a continuous function,
so there is r > 0 such that 1̂E(x) is positive in {|x| ≤ r}, so∣∣∣λ − µ∣∣∣ > r.

We opten say that the spectrum is a well distributed
set: a set whose elements are at least a positive distance
apart and does not have arbitrarily large gaps: there is a
positive R such that every ball of radius R contains at at
least one point of the spectrum.

2.8. Proof of the lattice Fuglede Conjecture. Let us
now prove Theorem  1.1 : the set E lattice-tiles Rd if and
only if it has a lattice spectrum.

Let us assume for simplicity that vol (E) = 1 so that
spectrality is equivalent to the tiling

∣∣∣1̂E

∣∣∣2 ∗ δT∗ = 1, where
T∗ is a lattice. One immediate consequence of this is that
the density of T∗ (and, hence, also that of T) is 1. This
is intuitively obvious (in any tiling the product of the in-
tegral of the tile and the density of the translates must
equal the level of the tiling – compare the volume of a
large tiled ball with the sum of the volumes of the tiles
contributing to tiling that ball) but see also [ KL96 ].

Since, by the Poisson Summation Formula (  8 ), δ̂T∗ is a
measure we have that spectrality is equivalent, according
to (  6 ), to T ⊆ {0} ∪ Z(

∣∣∣1̂E

∣∣∣2). But the Fourier Transform of∣∣∣1̂E

∣∣∣2 is 1E ∗ 1−E, whose zero set is (E − E)c (it is easier to
think of the case of an open set E here, as this removes
some null-set considerations from the argument). So we
conclude that spectrality is equivalent to
(14) T ∩ (E − E) = {0}.
Since T is a lattice we have T = T − T and condition (  14 )
is easily seen to be equivalent to packing: the translates
E+ t, t ∈ T, are disjoint. If these translates failed to cover
everything and left some set of positive measure uncov-
ered, this “hole” would repeat itself indefinitely for this is
a periodic arrangement since T is a lattice. This in turn
would imply that vol (E)·dens (T) < 1, which clearly cannot
happen.

2.9. Filling a box with bricks of two types. Finally,
let us point to an amusing application of the Fourier
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method for tilings [  BM04 ,  Kol04b ]. Suppose we are given
a rectangular box in Rd and we are to fill it exactly (a
tiling) by using only two kinds of bricks of dimensions,
say, a1×· · ·×ad and b1×· · ·×bd. We have an infinite supply
of both kinds of bricks but we are only allowed to trans-
late them, not turn them in any way. In other words the
bricks we are using are always parallel to each other and
parallel to the box that is to be filled.

A

B

Figure 14. A box A can filled exactly with
two type of bricks, A and B, if and only if it
can be cut in two parts each of which can be
filled with bricks of one type only.

Using Fourier Analysis one can prove the following,
first shown without Fourier Analysis in [  BM04 ] (see Fig.

 14 ).

Theorem 2.3. A rectangular d-dimensional box can be
filled exactly with bricks of two different kinds A and B if
and only if the box can be but into two rectangular boxed
along one of its sides so that brick type A can fill exactly
one part and brick type B can fill exactly the other part.

As shown in Fig.  15 Theorem  2.3 fails if we allow for
three types of bricks, even in dimension 2.
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1

1

Figure 15. Theorem  2.3 fails if we are us-
ing three types of bricks in order to fill a
box, even in dimension 2. The 1 × 1 box on
the left can be filled with the three types
of bricks shown, but cannot be decomposed
into smaller boxes each of which can be filled
with fewer types of bricks (by inspection).

0

Figure 16. The Fourier zeros of the unit
square in the plane is two collections of par-
allel lines, parallel to the axes, of spacing 1.
The axes themselves are missing except for
the integer points.

The Fourier Transform of the indicator function of the
box

C =
(
−c1

2
,

c1

2

)
× · · · ×

(
−cd

2
,

cd

2

)
is easily seen to be the function

1̂C(ξ) =
sin(πc1ξ1)

ξ1
· · · sin(πcdξd)

ξd

so that the Fourier zeros of 1C are exactly the ξ ∈ Rd such
that for some j = 1, 2, . . . , d the coordinate ξ j is a non-zero
multiple of 1

c j
. This simple characterization is central to
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many results about rectangle tilings or rectangle spectra
[ Kol98 ,  LRW00 ,  IP98 ,  Kol00c ]. See [  Kol04b ] for the de-
tails of the proof of Theorem  2.3 .

3. Fuglede Conjecture prehistory

3.1. Non-symmetric convex bodies are not spectral.
In this section we describe several of the results that
were given before the Fuglede conjecture was disproved
in its generality in dimension at least 3 [  Tao04 ,  KM06b ,

 KM06a ,  FMM06 ,  FR06 ]. The exceptions are § 3.8 and § 3.9 

which refer to results obtained after the disproof in 2004.
All the results that we are describing here were in the di-
rection of supporting the conjecture. Most of them were
of the form: if sets that tile have a property P then so do
spectral sets, or vice versa.

Our first result has to do with convex sets. It was
known since the time of Minkowski that for a convex body
to tileRd it is necessary that it is symmetric about a point.
This point can be taken to be 0 ∈ Rd so in that case sym-
metric K means K = −K.

Let us see the proof. Suppose K is a convex body in Rd

and suppose also that K tiles when translated at the lo-
cations T ⊆ Rd. By just packing (non-overlapping copies)
we have (K − K) ∩ (T − T) = {0}. Since K − K is again a
convex body, symmetric this time about 0, it follows that
if L = 1

2K we have L − L = K − K hence L also packs when
translated at T.

By the Brunn-Minkowski inequality [  Gar02 ] we have
for the convex body K that

vol (
1
2

(K − K)) ≥ vol (K)

with equality if and only if K is symmetric.
Thus if K is non-symmetric it follows that vol (L) >

vol (K). But this makes the packing of L by translates at
T impossible: since K tiles with T we have that vol (K) ·
dens (T) = 1 and in the packing by L we must have
vol (L) · dens (T) ≤ 1, a contradiction, so K must be sym-
metric.

This is also true for spectral sets [ Kol00a ]:

Theorem 3.1. If E is bounded, open, convex and nonsym-
metric then it is not spectral.
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Proof. Suppose that K has measure 1 (this is no restric-
tion of course) is convex, non-symmetric and spectral,
with spectrumΛ ⊆ Rd. Then, from (  13 ), we have the tiling∑

λ∈Λ

∣∣∣1̂K

∣∣∣2(x − λ) = 1,

for almost all x ∈ Rd. By our condition (  6 ) and writing
f =

∣∣∣1̂K

∣∣∣2 we then have

supp δ̂Λ ⊆
{

f̂ = 0
}
∪ {0}.

But f̂ = 1K ∗ 1−K so that
{

f̂ = 0
}
= (K − K)c.

By the non-symmetry of K and writing H = 1
2 (K − K)

we have vol (H) > vol (K) = 1 by the equality case in the
Brunn-Minkowski inequality once again. But the support
of the function 1H ∗ 1H is H + H = K − K. Take a number
α < 1 very close to 1 and define ĝ = 1αH∗1αH which has sup-
port α(K−K) a set which a positive distance from (K−K)c,
the support of δ̂Λ. We claim that the function g tiles with
the translation set Λ. The reason is that (  6 ) holds in this
case with room to spare. Not only is supp δ̂Λ contained in{
ĝ = 0

} ∪ {0} but it is contained in its interior, so the tem-
pered distribution δ̂Λ is killed by ĝ, except at the origin,
and g tiles with Λ at level∫

g · densΛ = ĝ(0) · 1 = 1αH ∗ 1αH(0) = vol (αH).

But the value g(0) =
∣∣∣1̂αH

∣∣∣2(0) = vol (αH)2 can be made to
be > vol (αH) (remember vol (H) > 1) for some α < 1. This
is a contradiction as the value of the tile g at some point
cannot be higher than the level of the tiling.

□

3.2. The Turán extremal problem about positive
definite functions of given support. In the proof of
Theorem  3.1 the following was the key: we had a symmet-
ric convex set, namely K − K (K itself was not symmetric)
and the following two functions were supported in it:

α = 1K ∗ 1−K and β = 1H ∗ 1H

where H = 1
2 (K−K) (thus H is symmetric). It was essential

that both these functions were positive definite (i.e. had a
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nonnegative Fourier Transform) and what made the proof
work was the fact that∫

β >

∫
α,

by the Brunn-Minkowski inequality (or, rather, the equal-
ity case in that inequality).

This means that if we have a (symmetric) convex body
P and we manage to find a positive definite function γ
supported inside P whose integral

∫
γ is strictly larger

than the integral of the positive definite function

1 1
2 P ∗ 1 1

2 P,

which is also supported inside P, then we immediately
have that P cannot be spectral.

This maximization problem

Given Ω ⊆ Rd (containing 0 and symmetric
with respect to 0) maximize

∫
γ where γ is

a continuous positive definite function sup-
ported in Ω with γ(0) = 1.

is the so-called Turán extremal problem about positive
definite functions of given support [ Ste72 ]. The conjec-
ture for convex Ω is that the extremal function is indeed
the autoconvolution of the half-body 1 1

2Ω
∗ 1 1

2Ω
.

Our discussion implies that the Turán conjecture is
true for all spectral convex bodies [ KR03 ,  AB01 ,  AB02 ].
By the results described later in §  6.3 , the class of con-
vex spectral bodies is precisely the class of convex trans-
lational tiles.

The Turán extremal problem is still wide-open [  KR06 ],
even for the case of convex bodies. Besides convex tiles it
is also known for the Euclidean ball (quite far from be-
ing a tile) [ Gor01 ,  KR03 ], but it is not known for other
symmetric convex sets. See also [ GM04 ,  AKP96 ].

One case is easy to see. If every positive definite func-
tion, among those competing for the maximal integral,
can be written as a sum of convolution squares then we
can get the right bound. A function f is a sum of convolu-
tion squares if

f = g1 ∗ g̃1 + g2 ∗ g̃2 + · · · ,
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where g̃(x) = g(−x). If this happens then we have

f̂ =
∣∣∣ĝ1

∣∣∣2 + ∣∣∣ĝ2

∣∣∣2 + · · ·
so f is positive definite. If the gi are supported in the half
body 1

2K then the gi ∗ g̃i are supported in K. Then∫
f =

∑
j

∫
g j ∗ g̃ j

=
∑

j

∣∣∣∣∣∫ g j

∣∣∣∣∣2
≤

∑
j

∫ ∣∣∣g∣∣∣2 · 1
2d

vol (K) (Cauchy-Schwarz)

= f (0)
1
2d

vol (K),

which is precisely the conjectured inequality. This does
happen in dimension 1: every positive definite function on
the interval [−A,A] is the convolution square of a function
supported on [−A/2,A/2], so the Turán Conjecture holds
for an interval and the extremal function is the triangle
function

(1 − |x|/A)+

(whose Fourier Transform is the nonnegative, and very
important, Fejér kernel).

Question 2. Prove the Turán Conjecture for
the regular octagon, the simplest symmetric
convex set in the plane that does not tile.

Another interesting question that arose from the study
of positive definite functions with restricted support is
that of approximation by other positive definite functions
of even smaller support [ KR06 ].

Suppose that Ω is a bounded open set with a nice
boundary and that f is a smooth, say, function supported
in Ω (the support of a function is a closed set, so this
means that the function may be non-zero all the way up to
the boundary of Ω, where it has to vanish for continuity).
It is not hard to see that we can approximate f , say, uni-
formly in Ω, by another smooth function g whose support
is strictly insideΩ. In other words g is zero in a neighbor-
hood of ∂Ω (chop off f a little inside Ω and convolve the
resulting function with an appropriately narrow smooth
approximate identity to construct such a function g).



ORTHOGONAL FOURIER ANALYSIS ON DOMAINS 29

What if f is assumed to be positive definite and g is re-
quired to also be positive definite? The previous chopping
off by which we constructed g destroys the positive defi-
niteness so this method does not work. If Ω is convex, or
even strictly star-shaped (this means that for 0 < t < 1
we have tΩ ⊆ Ω) we can replace this brutal chopping off
by taking the function f (x/t) which is supported strictly
inside Ω, is still positive definite and is uniformly close
to f by the uniform continuity of f . But if the domain
is not strictly star shaped then we do not know if this is
possible.

Question 3. If 0 ∈ Ω ⊆ Rd is an open
set, symmetric about 0, and with a piecewise
smooth boundary and f is a positive defi-
nite function which is non-zero only inΩ and
ϵ > 0 can we always find a positive definite
function g which is non-zero only in the set
{x ∈ Ω : dist (x, ∂Ω) > δ} for some positive δ
and is such that

∣∣∣ f (x) − g(x)
∣∣∣ < ϵ for x ∈ Rd.

Few partial results exist for this problem. In [  Mav13 ] it
is shown that the answer to Question  3 is indeed affirma-
tive in dimension 1 when Ω is a finite union of intervals
symmetric about 0. This is really due to the fact that in
dimension 1 the boundary of such a set, a finite collec-
tion of points, is small enough compared to the set that
the chopping off followed by smoothing approach can in-
deed work. This method cannot be used in dimension 2
and higher. In the case when Ω ⊆ Rd has radial symme-
try and is a union of a ball centered at 0 and finitely many
annuli also centered at 0, the function f is also radial then
the answer is also shown to be affirmative in [ Mav13 ].

3.3. Unbalanced polytopes are not spectral. There
is a different proof of the necessity of symmetry for spec-
tral convex domains which are polytopes [ KP02 ].

It is intuitively clear that if we have a polytope P (not
necessarily convex) which tiles by translation, then, if we
look at its co-dimension 1 faces which are normal to a
given direction u then the total area of such faces whose
exterior normal vector points in the positive u direction
(call them u+ faces) must be the same as the total area
of those faces whose exterior normal vector points in the
negative u direction (the u− faces). The reason is that in
any tiling by translations of P the u+ faces can only be



ORTHOGONAL FOURIER ANALYSIS ON DOMAINS 30

countered from the outside by u− faces, so their total areas
must match. See Fig.  17 .

u+

u− u−

u

Figure 17. In a tiling polytope the total area
of the co-dimension 1 faces that point in the
positive u direction (u+ faces) must be the
same as that of those faces pointing in the
negative u direction (u− faces). The same is
true for spectral polytopes [  KP02 ].

It is proved in [  KP02 ] that if a polytope is unbal-
anced (different total areas for the u+ and u− faces, for
some direction u) then it cannot be spectral. To see why
this implies that non-symmetric convex polytopes can-
not be spectral we need to invoke a classical theorem of
Minkowski, which implies that a non-symmetric polytope
has a non-symmetric surface area measure. This is the
measure on the sphere Sd−1 which is defined by push-
ing the surface measure from the boundary of the poly-
tope onto the sphere via the Gauss map, which maps
(almost) every point on the polytope to its exterior unit
normal vector [  Sch13 ]. To have a non-symmetric surface
area measure, for a polytope, means precisely that it is
unbalanced, and Minkowski’s theorem says that a non-
symmetric polytope is unbalanced, thus non-spectral.

Let us indicate how we prove (for the details see [  KP02 ])
that unbalanced polytopes are not spectral. Say that
u ∈ Rd is a bad direction for the unbalanced polytope
E, that is the surface area of E pointing in the positive
u direction is different from that pointing in the −u direc-
tion. Differentiate the indicator function 1E of the poly-
tope along the direction u, in the sense of distributions.
The interior of E vanishes of course as the function is con-
stant there. All that remains is a measure supported on
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the boundary ∂E. This measure is constant on each co-
dimension 1 face since all that matters is the angle of u
and that face. It is 0 only on the faces parallel to u. On
the faces normal to u it is equal to 1 on those facing oppo-
site u and equal to −1 on those facing in the direction of
u. Call ν this measure on ∂E. Since ν = ∂u1E we have

(15) ν̂(ξ) = (2πi)(ξ · u)1̂E(ξ), (ξ ∈ Rd).

u+

u−

u−u

λ3

λ2

λ1

Figure 18. We project the surface measure
of our body onto a one-dimensional subspace
Ru. We obtain a measure on the line with
a continuous part and an atomic part sup-
ported on finitely many points λ j.

Project the measure ν onto the one-dimensional sub-
space Ru to obtain a measure µ on the line (see Fig.  18 ).
The parts of ν normal to u will give rise to an atomic part
µa of µ of the form

∑K
k=1 ckδλk for some λk ∈ R and some

coefficients ck ∈ R which are such that
∑K

k=1 ck , 0 (this is
a consequence of the polytope being unbalanced in the di-
rection u). The part of ν that is not normal to u contributes
a continuous part to µ, call it µc, so that µ = µa + µc.

It is a general and well known fact that if we project
a function or measure defined on Rd orthogonally onto a
subspace V of Rd and then take the Fourier Transform of
the projection on V we will read precisely the restriction
on V of the Fourier Transform of the original function or
measure on Rd. This is a simple consequence of Fubini’s
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theorem. Therefore, using ( 15 ), for all t ∈ R we have

µ̂(t) = ν̂(t u) = (2πi) t 1̂E(t u).

By the Riemann Lebesgue theorem applied to µc we have
that, as t→∞,

µ̂(t) = µ̂a(t) + o(1) =
K∑

k=1

cke2πiλkt

Let us now pretend that µ̂a(t) is periodic in t with pe-
riod, say, T. Of course this is not in general true, but
it is almost periodic [ Bes54 ] and this turns out to be suf-
ficient for the argument we are about to describe. Since
µ̂a(0) =

∑K
k=1 ck , 0 it follows that µ̂a is absolutely larger

than a positive constant in some interval (−δ, δ) and, by
periodicity, at all intervals (−δ, δ) + TZ.

Since µ̂c tends to 0 it follows that µ̂ is also non-zero
on that arithmetic progression of intervals, at least af-
ter some point nT. On the line Ru the functions µ̂ and
1̂E have the same zeros (except at 0), so 1̂E also does not
vanish on (−δ, δ)±TZ≥nu. By the uniform continuity of 1̂E

on Rd it follows that, possibly for a smaller positive δ, 1̂E
does not vanish on the union of balls (see Fig.  19 )

(16) U = Bδ(0) ± TZ≥nu.

Let us see now how this contradicts the fact that a spec-
trum Λ of E must have positive density. Assume for sim-
plicity that u = ed is the d-th coordinate unit vector and
view Rd as covered by a finite union of translates of the
lattice arrangement of balls

(TZ)d + Bδ.

At least one of them must contain a part of Λ that is of
positive density. However the presence of one point ofΛ in
one such ball implies that all balls above it (in the positive
d-th axis direction) above height nT are empty ofΛ-points:
any Λ-point in there would contradict the fact that there
are no zeros of 1̂E in U of ( 16 ). So a half-space of balls is
empty, contradicting that Λ has positive density in that
lattice arrangement of balls.

The fact that every spectral polytope must have bal-
anced area measure, as we showed, has been vastly ex-
tended in [ LL21 ], to include all facets of all co-dimensions,
not just of co-dimension 1. More precisely, they show that
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T δ

n T u

Figure 19. The function 1̂E is non-zero on
this arithmetic progression of δ-balls spaced
by T, after some initial point nTu.

all Hadwiger functionals of the polytope are 0. As a con-
sequence, it is proved in [ LL21 ] that spectral polytopes
are equidecomposable by translations to a cube, i.e., we
can cut them up into finitely many polytopes which can
then be rearranged by translations to form a cube.

3.4. Convex tiles are spectral. When we restrict our
attention to convex sets, regarding the validity of the Fu-
glede Conjecture, we, at last, have some good news: the
convex tiles are all spectral, so that one direction at least
of the Fuglede Conjecture holds. The reason feels like a
let-down though: there are no complicated convex tiles,
we know them all, to some extent, and they are all lat-
tice tiles as well. This, by Theorem  1.1 , implies that they
are also spectral, having as one of their spectra the dual
lattice of the lattice they tile with.

More precisely, it has long been known [ Ven54 ,  McM80 ]
that a convex body K tiles by translations if and only if all
the following conditions hold:

• K is a polytope
• K is symmetric
• K has symmetric co-dimension 1 faces
• Every co-dimension 2 face of K has a belt that con-

sists of four or six faces. The belt of a face is the col-
lection of all faces of the polytope which are trans-
lates of the given face.

For instance, in dimension 2, where the codimension 2
faces are just vertices of the polytope these conditions say
that a convex polygon tiles by translations if and only if it
is a parallelogram or a symmetric hexagon. See Fig.  20 .

It is also known that whenever a convex body can tile by
translations then it can also tile by lattice translations.

Early on the Fuglede Conjecture (both directions) was
settled for planar convex bodies [ IKT03 ]:
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Figure 20. The only planar convex sets that
tile by translation or are spectral are the
parallelograms and the symmetric
hexagons.

Theorem 3.2. A planar convex set is a translational tile
or a spectral set precisely when it is a parallelogram or a
symmetric hexagon (see Fig.  20 ).

We will see in §  6.3 that the other direction of the Fu-
glede Conjecture is also true for convex bodies. This is
one of the greatest developments in this area in the last
decades.

3.5. The spectra of the cube. In [  LRW00 ,  IP98 ,
 Kol00c ] the following rather idiosyncratic result was
proved for the cube in Rd.

Theorem 3.3. Let Q =
(
− 1

2 ,
1
2

)d
be the unit cube in Rd and

T ⊆ Rd. Then
T is a spectrum of Q ⇐⇒ Q tiles when translated by T.

It should be said here that the sets L the cube tiles with
(the “tiling complements” of the cube) can be quite exotic.
It used to be a conjecture of Keller [  Kel30 ] from the 1930s
that in any translational tiling by a cube one can find two
cubes which share a whole co-dimension 1 face.

3.5.1. The Minkowski Conjecture on lattice tilings. This
face-to-face property is in fact true if we restrict ourselves
to lattice tilings of the cube, and this was another conjec-
ture, of Minkowski [  Min10 ], that was eventually proved
by Hajós [  Haj42 ], a proof that was celebrated as it trans-
lated the problem to group theoretic language and pro-
ceeded to use group rings (the Fourier Transform, in our
language), a first in tiling [ SS94 ]. It is interesting to
see here two equivalent forms of Minkowski’s Conjecture
(Hajós’ theorem) [  Kol98 ] stated in the language of linear
forms.



ORTHOGONAL FOURIER ANALYSIS ON DOMAINS 35

Theorem 3.4. If A ∈ Rd×d has det A = 1 then there is
x ∈ Zd such that

∥Ax∥∞ < 1,
unless A has an integral row.

Theorem 3.5. Let B ∈ Rd×d have det B = 1 and the prop-
erty that for all x ∈ Zd \ {0} some coordinate of the vector
Bx is a non-zero integer. Then B has an integral row.

The Keller conjecture is also easily seen to be true in
low dimension but it turns out to be false when the di-
mension is high. The final dimension, 7, was recently
settled and we now know that Keller’s conjecture is true
in dimensions up to 7 and false in dimension 8 or higher
[ BHMN22 ,  Mac02 ,  LS92  ,  Per40 ].

Let us now return to sketch Theorem  3.3 and sketch
its proof following [  Kol00c ]. Observe, given (  13 ), that we
have to prove the equivalence, for any T ⊆ Rd,

(17) Q tiles with T ⇐⇒
∣∣∣1̂Q

∣∣∣2 tiles with T.

We will pretend that (  6 ) is also a sufficient condition for
tiling (if you do not like to pretend, please read the details
in [ Kol00c ]) so that we have to prove the equivalence

(18) supp δ̂T ⊆ Z(1Q) ∪ {0} ⇐⇒ supp δ̂T ⊆ Z(
∣∣∣1̂Q

∣∣∣2) ∪ {0}.

First of all we can easily compute the Fourier zeros of
1Q to be all points inRd with at least one non-zero integer
coordinate:

Z(1Q) =
{
(ξ1, . . . , ξd) ∈ Rd : some ξ j ∈ Z \ {0}

}
.

Next, the Fourier Transform of
∣∣∣1̂Q

∣∣∣2 is the convolution 1Q∗
1Q which is non-zero precisely in 2Q. The support of 1Q∗1Q

is the closure 2Q.
Observe that

(19) Z(1Q) ⊆ Z(
∣∣∣1̂Q

∣∣∣2).

Suppose now that Q tiles with T. Then, by (  6 ), we obtain

supp δ̂T ⊆ Z(1Q) ∪ {0}.
and by ( 19 ) we obtain

supp δ̂T ⊆ Z(
∣∣∣1̂Q

∣∣∣2) ∪ {0},
so we have proved the =⇒ direction of (  18 ).
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We now prove the other direction (⇐=) of (  17 ). Suppose
that

∣∣∣1̂Q

∣∣∣2 tiles with T. It follows from orthogonality then
that

T − T ⊆ Z(1Q) ∪ {0} ⊆ (2Q)c ∪ {0} = (Q −Q)c ∪ {0}.
It follows that the T translates of Q are packing (non-
overlapping).

To conclude the proof in this direction we need the fol-
lowing interesting result [  LRW00 ,  Kol00c ] which, in some
sense, says that tiling is a property more of the transla-
tion set (the tiling complement) rather than the tile itself.

This theorem is intuitively clear when T is a periodic
set but it is, perhaps, suprising that it holds without any
assumptions on the set T. Its proof is very simple.

Let us agree to say that f+T is a packing if
∑

t∈T f (x−t) ≤
1 for almost every x ∈ Rd. Similarly we say f +T is a tiling
if

∑
t∈T f (x − t) = 1 for almost every x ∈ Rd.

Theorem 3.6. If f , g ≥ 0,
∫

f (x) dx =
∫

g(x) dx = 1 and
both f + T and g + T are packings of Rd, then f + T is a
tiling if and only if g + T is a tiling.

Proof. We first show that, under the assumptions of the
Theorem,
(20) f + T tiles −supp g =⇒ g + T tiles −supp f .

Indeed, if f + T tiles −supp g then

1 =
∫

g(−x)
∑
t∈T

f (x − t) dx =
∑
t∈T

∫
g(−x) f (x − t) dx,

which, after the change of variable y = −x + t, gives

1 =
∫

f (−y)
∑
t∈T

g(y − t) dy.

This in turn implies, since
∑

t∈T g(y−t) ≤ 1 (from g packing
with T), that

∑
t g(y − t) = 1 for a.e. y ∈ −supp f .

To complete the proof of the theorem, notice that if f +T
is a tiling ofRd and a ∈ Rd is arbitrary then both f (x−a)+T
and g(x−a)+T are packings and f +T tiles −supp g(x−a) =
−supp g − a. We conclude that g(x − a) + T tiles −supp f ,
or g + T tiles −supp f − a. Since a ∈ Rd is arbitrary we
conclude that g + T tiles Rd.

□
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To complete the proof of the⇐= direction of (  17 ) we note
that we can apply Theorem  3.6 with f = 1Q and g =

∣∣∣1̂Q

∣∣∣2
to obtain that Q+T is a tiling from

∣∣∣1̂Q

∣∣∣2+T being a tiling.
See also [  AGK18 ] for a discrete version of the cube spec-

tra.

3.6. The ball and smooth convex bodies are not
spectral. Smooth convex bodies such as the Euclidean
ball are obviously not tiling. We shall see that they are
also non-spectral [ IKT01  ,  Kol04a ,  Fug01 ]. The proof we
will see is from [  Kol04a ] and it ties the spectrality prob-
lem to one of Geometric Ramsey Theory.

SupposeΛ is a spectrum of K, a smooth, symmetric con-
vex body in Rd. It is a well known fact proved using the
method of stationary phase (see, for example, [  Sog17 ])
that if ξ is a zero of 1̂K and ξ→∞ then

∥ξ∥Ko =

(
π
2
+

dπ
4

)
+ kπ + o(1), (ξ→∞),

where Ko is the dual body (which is also smooth) and k is
an integer. This estimate is common to all proofs that K
is not spectral.

Let R > 0 be such that any zero ξ of 1̂K, outside a cube
of side R centered at the origin, satisfies

∥ξ∥Ko =

(
π
2
+

dπ
4

)
+ kπ + θ, (k ∈ Z, |θ| < π/10).

We also take R to be large enough so as to be certain that
we find at least one Λ-point in any cube of side R. We can
do this since Λ is well-distributed.

Let now the set Λ′ arise by keeping only one point of
Λ in each cube of the type Rn + (−R/2,R/2)d, with n ∈ Zd

having all its coordinates even. We keep nothing outside
these cubes. It follows that Λ′ is also a well distributed
set and that for any two distinct points λ and µ of Λ′, µ is
not contained in the cube of side R centered at λ. From
the orthogonality of Λ we obtain that for any two distinct
points λ, µ ∈ Λ′ we have∥∥∥λ − µ∥∥∥

Ko = kπ + θ, (k ∈ Z, |θ| ≤ π/5).

This means that the set of Ko-distances defined by pairs
of points of Λ′ has infinitely many gaps of length at least
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K

Ko

zeros of 1̂K

Figure 21. The zeros of 1̂K, when K is a
smooth convex body with positive Gaussian
curvature come roughly at integer multiples
(plus an offset) of the dual body Ko.

3π/5. We will now see that this contradicts the following
result.

We call µ, a probability measure, ϵ-good if its Fourier
Transform, µ̂, satisfies, for some finite R > 0,∣∣∣µ̂(ξ)

∣∣∣ ≤ ϵ if |ξ| ≥ R.

Theorem 3.7. Suppose that A ⊆ Rd, d ≥ 2, has upper
Lebesgue density at least ϵ > 0 and that the 0-symmetric
convex body K affords (Cdϵ)-good probability measures
supported on its boundary (the constant Cd depends on
the dimension only). Then DK(A) contains all positive real
numbers beyond a point.

For a set A ⊆ Rd to have upper density at least ϵ means
that we can find arbitrarily large cubes in which A takes
up a fraction ϵ of their measure, at least. This does not
preclude A from having arbitrarily large gaps (large cubes
where it is completely absent).

Again, by the method of stationary phase [  Sog17 ] we
know that any smooth convex body with everywhere pos-
itive Gaussian curvature is such that its boundary area
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measure is ϵ-good for all ϵ > 0. In other words, if σ is the
area measure on ∂K then

σ̂(ξ)→ 0 as |ξ| → ∞.
It follows that if K is a smooth, symmetric convex body
with everywhere positive Gaussian curvature then, since
Ko is also such a set, the Ko-distances defined by any set
A ⊆ Rd contains an interval of the form [t0,∞) for some
finite t0.

An easy corollary of Theorem  3.7 is that the Ko-distance
set of a countable setΛwith positive counting density (for
some ϵ > 0 there are arbitrarily large balls B in which the
number of points of Λ is at least ϵvol (B)), itself a count-
able subset of R≥0, cannot have infinitely many gaps of
width δ > 0, no matter how small δ > 0 is. (Simply adjoin
a δ/3-ball, in the Ko-norm, to each point of Λ to obtain a
set A ⊆ Rd with positive Lebesgue density and apply The-
orem  3.7 to it, to derive a contradiction if infinitely many
gaps appear in the distance set.)

This concludes the proof that smooth, symmetric con-
vex bodies have no spectrum.

3.7. A few intervals. In this section we encounter a few
results specific to dimension one, and especially to a do-
main being a collection of a few intervals.

The following result [ Łab01 ] appears easier than it re-
ally is.

Theorem 3.8. The Fuglede Conjecture holds for unions
of two intervals on the real line. That is, if E ⊆ R is a
union of two intervals then E tiles R if and only if E has a
spectrum.

Recently, the proof of Theorem  3.8 has become easier
using the theory of weak tiling due to Lev and Matolcsi
[ LM22 ] (see §  6 ), which was not available at the time The-
orem  3.8 was proved in [ Łab01 ]. It is shown in [  Łab01 ]
that a union E of two intervals (say it has measure 1) is
a tile or spectral if and only if it is of one of the following
forms (see Fig.  22 )

(1)

E = [x, x +
1
2

] ∪ [x +
1
2
+ k/2, x + k + 1],

for some nonnegative integer k, or
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(2)
E = [x, x + a] ∪ [x + k + a, x + k + 1],

for some 0 < a < 1 and a nonnegative integer k.

Figure 22. The two cases when a union of
two intervals can tile or be spectral. In both
cases the tiling complement is shown under-
neath the set. In the upper case we have two
equal intervals if length 1/2 each, say. In
this case the gap between them must be a
half-integer. In the lower case the two inter-
vals can be an arbitrary subdivision of [0, 1],
one of whose intervals has been moved over
by an integer, thus remaining a fundamen-
tal domain of Z in R.

It is indicative of the hardness of even this problem
that the naturally next case, that of three intervals,
has not been resolved yet: For a union of three inter-
vals the “tiling =⇒ spectral” direction was established in
[ BAKM10 ]. But the other direction, “spectral =⇒ tiling”,
has not yet been proved in general [ BAKM10 ,  BM14 ].

A single interval of course satisfies the Fuglede Con-
jecture as it is both a tile and spectral. Perturbations of
intervals satisfy it too [ KŁ04 ].
Theorem 3.9. Suppose E ⊆ [0,L] is measurable with mea-
sure 1 and L = 3/2 − ϵ for some ϵ > 0.

Let Λ ⊂ R be a discrete set containing 0. Then

(1) if E + Λ = R is a tiling, it follows that Λ = Z.

(2) if Λ is a spectrum of E, it follows that Λ = Z.

Therefore E is a tile if and only if it is spectral.

That is, small perturbations of intervals that tile, are
lattice tiles, hence spectral sets as well. And small per-
turbations of intervals that are spectral do have a lattice
spectrum, so they tile too.

The situation is not so satisfactory for perturbations of
higher dimensional cubes [ KŁ04 ].
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Theorem 3.10. Let E ⊂ R2 be a measurable set such that
[0, 1]2 ⊂ E ⊂ [−ϵ, 1 + ϵ]2 for ϵ > 0 small enough. Assume
that E tiles R2 by translations.

Then E also admits a tiling with a lattice Λ ⊆ R2 as the
translation set.

So if E is a sufficiently small perturbation of the square
and it tiles, then it tiles also with a lattice, so it is spectral
as well. The corresponding statement for spectral pertur-
bations of squares is still open.

Question 4. Prove the missing “spectral =⇒
tiling” direction for three intervals. If such a
set is spectral then it must be weakly tiling
(see §  6 ). Perhaps, for such sets, it can be
proved that weak tiling implies tiling, thus
completing the proof.

The same is suggested for the “spectral =⇒
tiling” direction for perturbations of a square
as in Theorem  3.10 .

In both questions it may make sense to first
attack the discrete problem: consider your
intervals to be intervals of integers and your
perturbed square to be a perturbation of the
discrete square {1, 2, . . . ,N}2. The essence of
the problem is still there and one does not
have to think about subtleties in the weak
tiling measure. In the discrete context the
measures are all sequences on the integers.

3.8. Periodicity of the spectrum in dimension one.
Another similarity between tiles and spectral sets is pe-
riodicity. We know from [  LM91 ,  LW96 ,  KL96 ] that for
a bounded measurable set E ⊆ R that tiles by transla-
tion with the tiling complement T ⊆ R the set T must
be periodic: there exists a positive number t such that
T + t = T (except possibly for measure 0). The same
turns out to be true for bounded spectral subsets of R
[ BM11 ,  Kol12 ,  IK13a ].
Theorem 3.11. Suppose that Λ is a spectrum of E ⊆ R, a
bounded measurable set of measure 1.

Then Λ is periodic and any period is a positive integer.

In [  BM11 ,  Kol12 ] Theorem  3.11 was proved when E is
a finite union of intervals.
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Corollary 3.1. If E, a bounded measurable set of measure
1, is spectral then E tiles the real line at some integer level
T when translated at the locations T−1Z.

Proof of Corollary  3.1 . Let Λ be a spectrum of E. By The-
orem  3.11 we know thatΛ is a periodic set and let T be one
of its periods: Λ+T = Λ. Then we haveΛ = TZ+{ℓ1, . . . , ℓT}
(the number of elements in each period must be T in or-
der for Λ to have density 1, hence T is an integer), and,
by ( 2 ) (orthogonality), this implies that χ̂E(nT) = 0 for all
nonzero n ∈ Z. Hence E tiles R when translated at T−1Z
(see, e.g. [ KL96 ]) at level T. □

Theorem  3.11 is not true in dimension higher than 1.
For instance, even when E is as simple as a cube, it may
have spectra that are not periodic as discussed in § 3.5 .

Since E being spectral with spectrum Λ is a tiling con-
dition ∣∣∣1̂E

∣∣∣2 tiles when translated by Λ at level 1

(assuming the measure of E is 1) one might expect that
the structure theorems (see §  2.5 ) about tilings of the real
line with functions might apply. However all these the-
orems assume compact support for the tile (and there
are non-periodic tilings when we give up compact sup-
port [  KL16 ]) and we do not have this here. Since E is
bounded, the Fourier Transform 1̂E is analytic and hence
its support is the entire real line. A different approach is
needed.

The first observation, coming from orthogonality (  2 ),
is that for any two different points λ, µ ∈ Λ the differ-
ence

∣∣∣λ − µ∣∣∣ is bounded below by the smallest zero of 1̂E.
The difference of successive elements ofΛ is also bounded
above as we know [  KL96 , Lemma 2.3] that Λ, as a tiling
complement of an L1 function, mush have density 1, hence
it is impossible to have arbitrarily large gaps.

Writing
Λ = {· · · < λ−2 < λ−1 < λ0 = 0 < λ1 < λ2 < · · ·}

Since 1̂E is analytic it has a finite number of roots in any
interval, so we deduce that λn+1 − λn belongs to a finite
set Σ of positive real numbers, for all n ∈ Z. From now
on we view Λ as a bi-infinite sequence of symbols from Σ
and thus as an element in the compact topological space
ΣZ.
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Since Λ is a tiling complement of
∣∣∣1̂E

∣∣∣2 it follows from (  6 )
that

(21) supp δ̂Λ ∩ (0, a) = ∅

for some a > 0. Define next the subspace X ⊆ ΣZ to con-
sist of all sequences in ΣZ which encode a set Λ satisfying
( 21 ). Then X is clearly a shift invariant set and it is not
hard to see via a limiting argument that X is closed in the
topology of ΣZ.

The crucial lemma is:

Lemma 3.1. The elements of the set X are determined if
we know their values on any left or right half-line.

That is, if {xn}n∈Z ∈ X is such a sequence and we know
the right half-sequence {xn}n≥a or the left half-sequence
{xn}n≤a, for any a ∈ Z, then {xn}n∈Z is completely deter-
mined.

Proof. Suppose that X is not determined by left half-lines
(the argument is similar for right half-lines). Then there
are distinct Λ1,Λ2 ∈ X such that Λ1

i = Λ
2
i for all negative

integers i. Both δΛ1 and δΛ2 have a spectral gap at (0, a)
and therefore so does their difference

µ = δΛ1 − δΛ2 .

Notice that µ is supported in the half-line [0,+∞). Sup-
pose ψ ∈ C∞(−a/10, a/10). It follows from the rapid decay
of ψ̂ that the measure

ν = ψ̂ · µ
is totally bounded and still has a spectral gap at the in-
terval (a/10, 9a/10). But the measure ν is also supported
in the half-line [0,+∞) and by the F. and M. Riesz Theo-
rem [ HJ94 ] its Fourier Transform is mutually absolutely
continuous with respect to the Lebesgue measure on the
line. But this is incompatible with the vanishing of ν̂
in some interval. Therefore ν must be identically 0 and,
sinceψ ∈ C∞(−a/10, a/10), is otherwise arbitrary, it follows
that µ ≡ 0, or Λ1 = Λ2, a contradiction. It follows that X
is indeed determined by left half-lines. □

We also observe that determination from all half-lines
implies determination by a window of some finite length.
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Lemma 3.2. Suppose X ⊆ ΣZ is a closed, shift-invariant
set which is determined by left half-lines and by right half-
lines. Then there is a finite number w such that X is deter-
mined by windows of size w.

Proof. It is enough to show that there is a finite window
size w such that whenever two elements of X agree on a
window of size w then they necessarily agree at the first
index to the right of that window. For in that case they
necessarily agree at the entire right half-line to the right
of the window and are by assumption equal elements of
X.

Assume this is not true. Then there are elements xn, yn

of X, n = 1, 2, . . ., which agree at some window of width n
but disagree at the first location to the right of that win-
dow. Using the shift invariance of X we may assume that

xn
−n = yn

−n, xn
−n+1 = yn

−n+1, . . . , xn
−1 = yn

−1 & xn
0 , yn

0 .

By the compactness of the space there are x, y ∈ X and
a subsequence of n’s such that xn → x and yn → y. By
the meaning of convergence in the space ΣZ we have that
the sequences x and y agree for all negative indices and
disagree at 0. This contradicts the assumption that X is
determined by left half-lines. □

We can now prove the periodicity of xn = λn+1−λn (which
implies that Λ is periodic). From Lemma  3.2 xn is deter-
mined by windows of width w. But each such window can
only be “colored” in finitely many ways using Σ as the set
of colors, so there are two windows with the same con-
tents. This implies that the difference of their starting
points, call it t, is a period of xn. This number t is neces-
sarily an integer, since the density of Λ is equal to 1 and
the density of a periodic set is the number of points per
period divided by the period length t. Since the number
of points per period is integral so must be t.

The following is a major open question about one-
dimensional spectra.

Question 5. Is it true that for a bounded
spectral set E ⊆ R its spectrum Λ (which we
may assume contains 0) is rational?

Perhaps every spectral E has some rational
spectrum?
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In a more basic form, we may ask if the
spectrum of any finite set of integers (a subset
of T containing 0) is necessarily rational.

3.9. The product question. Suppose we have two
groups G1 and G2 (think of finite groups for simplicity)
and two sets A ⊆ G1 and B ⊆ G2. It is easy to see that if
A tiles G1 with tiling complement T1 ⊆ G1 and B tiles G2
with tiling complement T2 ⊆ G2 then the product A × B
tiles G1 × G2 with tiling complement T1 × T2.

The converse is also true though not completely as obvi-
ous. If we assume that A×B tiles G1×G2 it follows that A
tiles G1 and B tiles G2. The reason is that the intersection
of any translate of A × B with the subgroup G1 × {0} is a
translate of the set A × {0}. Thus we have G1 × {0} being
tiled by copies of A × {0} which is of course the same as
saying that A tiles G1. Similarly B has to tile G2.

What if A is spectral in G1 and B is spectral in G2? Can
we conclude that A×B is spectral in G1 ×G2? The answer
is an easy yes: if Λ1 ⊆ Ĝ1 is a spectrum of A and Λ2 ⊆ Ĝ2

is a spectrum of B then Λ1 × Λ2 ⊆ Ĝ1 × Ĝ2 = ̂G1 × G2 is a
spectrum of A × B.

But we do not know if the reverse implication is true.

Question 6. If A ⊆ G1, B ⊆ G2 and A × B ⊆
G1 × G2 is spectral, does it follow that A is
spectral in G1 and B is spectral in G2?

Here are some partial results. It was proved in [  GL16 ]
that the answer is yes if we know that A ⊆ R is an inter-
val and B ⊆ Rd−1. This was followed by [  Kol16 ] where, in
the same groups, A was allowed to be a union of two in-
tervals. It was shown then in [ GL20 ] that even if A ⊆ Rd

is a convex polygon the answer is still yes. Finally, it was
proved in [ KLM23 ] that if A ⊆ Rm is a convex body and
B ⊆ Rn is bounded and A × B is spectral in Rm+n then A is
also spectral in Rm.

If the answer to Question  6 is negative this would obvi-
ously break the symmetry between tiles and spectra and
one expects to be able to disprove the Fuglede Conjecture.
The smallest case where this would be interesting is when
A and B are both inR. What conclusions can we draw then
if A × B is spectral in R2 but A, say, is not spectral? The
answer is that the Fuglede Conjecture cannot be valid in
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both dimensions 1 and 2. More precisely, if “spectral =⇒
tiling” were valid in dimension 2 then A × B would be a
tile and therefore A and B would be tiles and if “tiling
=⇒ spectral” were true in dimension 1 then both A and B
would be spectral.

We conclude that a negative answer to Question  6 im-
plies that either “spectral =⇒ tiling” fails in dimension 2
or “tiling =⇒ spectral” fails in dimension 1.

4. Counterexamples to the Fuglede Conjecture

4.1. Spectrality in groups. The Spectrality question
can be phrased in any locally compact abelian group.
Suppose G is such a group and Ĝ its dual group, that
is the group consisting of all continuous characters on
G (group homomorphisms into the multiplicative group
C \ {0}; see, for example, [  Rud62 ]). Notice that we write
all abelian groups additively (the only exception being the
group {z ∈ C : |z| = 1}.)

Suppose E ⊆ G is a subset of G with finite and non-zero
Haar measure. We say that E tiles G with tiling comple-
ment the set T ⊆ G if 1E ∗ 1T = 1 almost everywhere (with
respect to the Haar measure) on G. Correspondingly, we
say that E is spectral and has spectrum the set Λ ⊆ Ĝ if
the set of characters in Λ form an orthogonal basis for the
Hilbert space L2(E).

We mostly care about the “classical” groups Rd, Zd, Td

and finite groups, and direct products that can be formed
among them. For instance, a finite subset E ⊆ Z is
spectral if we can find a finite collection of characters
eλ(x) = e2πiλx, with λ ∈ T, which forms an orthogonal basis
on L2(E) (which is finite dimensional, so our question here
is really a question of linear algebra). Another example
is the finite group ZN = Z/(NZ) whose dual group is iso-
morphic to itself: ẐN ≃ ZN. When E ⊆ ZN is finite for E to
be spectral means to be able to find Λ ⊆ ZN such that the
characters eλ(x) = e2πiλx, λ ∈ Λ, are orthogonal on E and
|Λ| = |E| (this last requirement forces the completeness).

The characters λ, µ ⊆ Ĝ (often we identify λ with e2πiλx

with λx in the exponent being shorthand for λ(x)) are or-
thogonal on E ⊆ G if and only if

1E(λ − µ) = 0.
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Here the Fourier Transform of f : G → C is the function
Ĝ → C given by f̂ (γ) =

∫
G

f (x)γ(x) dx, where the integra-
tion is carried out with respect to the Haar measure on
G. Haar measure can be normalized differently but we
always choose the normalization on Ĝ that makes the fol-
lowing formula for Fourier inversion true:

f (x) =
∫

Ĝ
f̂ (γ)γ(x) dγ.

For example, when G = ZN and Haar measure on G is the
counting measure then the Haar measure on Ĝ ≃ ZN is
counting measure divided by N, so that the formulas for
the Fourier Transform and Fourier inversion are

f̂ (ν) =
∑
x∈ZN

f (x)e−2πiνx and f (x) =
1
N

∑
ν∈ZN

f̂ (ν)e2πiνx.

By a similar argument as the one that led to (  13 ) we are
again led to Λ ⊆ Ĝ being a spectrum for E ⊆ G if and only
if we have the tiling on Ĝ

(22)
∣∣∣1̂E

∣∣∣2 ∗ 1Λ = |E|2,
where |E| is the Haar measure of E.

As a warmup for what is to follow let us prove the Fu-
glede Conjecture in the case the group is Zp, with p a
prime, a rather easy case.

Suppose E ⊆ Zp is a tile. Then obviously |E| divides the
size of the group, so |E| = 1 or |E| = p. In other words E
is the whole space or just one point. In both cases it is
spectral: when it is one point just choose any character
as the spectrum and when it is the whole space choose
all the characters as the spectrum (the characters of G
are always orthogonal on G). So we have proved the tiling
=⇒ spectral direction of the conjecture.

For the other direction we shall need the following well
known result.
Theorem 4.1. Suppose p is a prime and ∅ , A ⊆{
0, 1, 2, . . . , p − 1

} is such that∑
a∈A

e2πia/p = 0.

Then A =
{
0, 1, 2, . . . , p − 1

}.
In other words if the sum of some distinct p-th roots of

unity vanishes then these must be all p-th roots of unity.
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Proof. The minimal polynomial of e2πi/p over Q is well
known to be the cyclotomic polynomial Φp(x) = 1+ x+ x2 +
· · · + xp−1 so this polynomial must divide the polynomial
q(x) =

∑
a∈A xa since it vanishes on e2πi/p by our assump-

tion. But the degree of q(x) is at most p − 1, so it must be
equal to q − 1 and we have q(x) = Φp(x). □

Corollary 4.1. If ∅ , E ⊆ Zp is not the whole group then
1̂E has no-zeros on Zp.

Proof. We have 1̂E(ν) =
∑

e∈E e−2πieν is a sum of p-th roots of
unity (they are all different) so they must be all p-th roots
of unity by Theorem  4.1 . □

Suppose now that ∅ , E ⊆ G is spectral with spectrum
Λ ⊆ Zp. Since we must have 1̂E(λ−µ) = 0 for all λ , µ ∈ Λ
it follows from Corollary  4.1 that E is the whole group or
that we cannot find two different points in Λ, so that E is
either the whole group or a single point. In both cases it
tiles.

4.2. Failure of the “spectral =⇒ tiling” direction.
In 2003 T. Tao [  Tao04 ] surprised the community of re-
searchers working on the Fuglede Conjecture by disprov-
ing the “spectral =⇒ tiling” with a very easy argument.
Until that point all the partial results regarding the Fu-
glede Conjecture were in the direction of supporting it.

Tao first disproved the conjecture in a finite group then
lifted the example to the group R5. In [  Mat05 ,  KM06a ]
the dimension d was reduced to 3 (where it still stands).

Let us start with a slightly weaker result (because the
number of factors in the group, 12, is larger than the
promised 5).

Theorem 4.2. The “spectral =⇒ tiling” direction of the
Fuglede Conjecture fails in the group Z12

2 .

Proof. Take E = {e1, e2, . . . , e12} to consist of all axis vectors:
e j is all zeros except at the j-th position where it has a 1.
Then |E| = 12 which does not divide the size of the group∣∣∣Z12

2

∣∣∣ = 212, so E cannot tile the group. We show that E is
spectral.
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As is the case with all finite groups we have Ẑ12
2 ≃ Z12

2 .
The characters on Z12

2 are the functions

eγ(x) = (−1)
∑12

j=1 γ jx j =

12∏
1

(−1)γ j(−1)x j ,

where γ ∈ Z12
2 . To have a spectrum of E means that we

have a collection of γs such that the matrix
M j,k = (−1)γ j,k(−1)e j,k , ( j, k = 1, 2, . . . , 12)

has orthogonal rows. This is a matrix with entries ±1
and orthogonal matrices of this type are called Hadamard
matrices. Such a 12 × 12 matrix does exist [  Tao04 ] (in
general it is not known for which dimensions Hadamard
matrices exist). This 12 × 12 Hadamard matrix gives us
the elements of the spectrum of E. □

Working similarly in the group G = Z6
3 Tao obtained a

counterexample in this group. Using again E = {e1, . . . , e6}
(again, 6 does not divide the order of the group, which
is 36) a spectrum is found whenever we can find a 6 × 6
matrix M with elements in {0, 1, 2} such that the matrix

T j,k = (e2πi/3)M j,k

is orthogonal. Such a matrix was found by computation
[ Tao04 ] and is

M =



0 0 0 0 0 0
0 0 1 1 2 2
0 1 0 2 2 1
0 1 2 0 1 2
0 2 2 1 0 1
0 2 1 2 1 0


.

To obtain a counterexample in the even smaller group Z5
3

we observe that E is contained in a coset of the subgroup{
x :

∑6
k=1 x j = 0

}
≃ Z5

3 in Z6
3. Translating it to 0 does not

change its tiling or spectrality properties so we can take
E to be a subgroup of Z5

3 instead of Z6
3.

This last step demands some more explanation. When-
ever we have a set E ⊆ G and we study its tiling properties
(“does it tile G?”) we can always work in the subgroup G′
generated by E. If E tiles G′ then we can translate this
tiling to every coset of G′ in G and obtain a tiling of G.
Conversely, if E tiles G then the translates of E that par-
ticipate in the tiling also tile G′ as it is impossible for a
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translate of E to intersect G′ without being contained in
it. Thus E tiles G′ if and only if E tiles G.

Regarding spectrality of E ⊆ G′ ⊆ G, if E is spectral in
G (using characters of G) it is also spectral in G′ as every
character of G is a character of G′ when restricted to G′.
And if E is spectral in G′ (using characters of G′) it is also
spectral on G as every character on G′ can be extended to
a character of G.

Thus when thinking about tiling and spectrality we
can always assume, if that suits us, that E generates the
group.

Back to Tao’s example in Z6
3 now: properly translating

E can place it into a subgroup of Z6
3 which is isomorphic

to Z5
3. Viewed in this group E is spectral but not a tile, by

the discussion above.
Having a counterexample E to “spectral =⇒ tiling” in

Z5
3 the next step is to lift it to a counterexample E′ in Z5.

(This is described in [ Tao04 ].) The set E′ then is lifted to a
counterexample E′′ in R5 by just attaching a unit cube to
each point in E′. This last step is very easy to verify that
it preserves both the spectrality of E′ and its non-tiling
character.

The dimension 5 was further reduced to 3 in [  Mat05 ,
 KM06a ]. The main innovation there is that in place of
the usual Hadamard matrices one considers orthogonal
matrices whose entries are complex numbers of modulus
one. In [ DLR16 ] useful parametrizations of such families
are given and one of these was used to reduce the dimen-
sion to 3. The extension to Z3 and R3 works in the same
way as in [ Tao04 ].

4.3. Failure of the “tiling =⇒ spectral” direction. In
the disproof of the “spectral =⇒ tiling” direction in a finite
group there was the great advantage of having an easy
test for non-tiling: if the size of E ⊆ G (assume G is a finite
group) does not divide the size of G then E does not tile
G. Unfortunately no such easy criterion is known with
which to disprove spectrality.

We will first disprove a stronger conjecture, the Univer-
sal Spectrum Conjecture of Lagarias and Wang [ LW97 ].
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Universal Spectrum Conjecture If G fi-
nite and E tiles G then all its tiling comple-
ments have a common spectrum.

Take G = Z5
6 and E = {0, e1, e2, . . . , e5} ⊆ G. Define v =

(1, 2, 3, 4, 5) and the associated homomorphism ϕ : G→ Z6
defined by

ϕ(x) = v · x mod 6.
Then ϕ is one to one on E and ϕ(E) = Z6 hence E tiles G
with T = kerϕ. We can do this with any permutation of
the coordinates of v and get several tiling complements of
E in G.

Assume now that E has the set L as a universal spec-
trum, i.e., L is a spectrum for any tiling complement T of
E in G. This implies that |L| = 64. It also means that

L − L ⊆ Z(1T) ∪ 0.

By the definition of T as the kernel of ϕ we have, with
ζ6 = e2πi/6,

1̂T(λv) =
∑
t∈T
ζλv·t

6 = |T|, (λ ∈ Z6).

With λ = 2 this implies that 2v = (2, 4, 0, 2, 4) < L − L and,
permuting the coordinates of v, we get that any vector
which is a permutation of (0, 2, 2, 4, 4) is not in L − L.

Define the matrix

(23) K =


0 0 2 2 4 4
0 2 0 4 4 2
0 2 4 0 2 4
0 4 4 2 0 2
0 4 2 4 2 0


and observe that the differences of all its columns (call
K ⊆ Z5

6 also the set of columns of the matrix K) are per-
mutations of (0, 2, 2, 4, 4), so that

(K − K) ∩ (L − L) = {0}.
Hence K + L is a packing. But |K| = 6 and |L| = 64 so that
this is actually a tiling of G. But this cannot be, since
K is contained in the subgroup of Z5

6 of vectors with even
coordinates and K cannot tile this subgroup as |K| = 6 and
the subgroup has size 35.

We have thus disproved the Universal Spectrum Con-
jecture. Next we will prove that the “tiling =⇒ spectral”
direction fails in the group

G2 = Z
5
6 ×ZN,
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where N is the number of tiling complements of E in
our disproof of the Universal Spectrum Conjecture above.
Call these tiling complements of E in Z6

5 by the names
T0,T1, . . . ,TN−1.

Denote by x̃ = (x1, . . . , x5, 0) the embedding Z5
6 → G2.

Define the set

Γ =

N−1⋃
j=0

(
T̃ j + (0, 0, . . . , 0, j)

)
.

(See Fig.  23 .) Obviously Γ + Ẽ = G2 is a tiling.

Z5
6

T1

TN−1

Γ

ET0

ZN

K

G2:

Figure 23. The construction of the set Γ in
G2. We move each tiling complement T j of E
in Z5

6 to a different coset of Z5
6 in G2.

Assume that S is a spectrum of Γ in G2 so that
S − S ⊆ Z(1Γ) ∪ {0}.

Let k be a difference of two columns of K. Then

(24) 1̂Γ
(̃
k
)
=

N−1∑
j=0

(
1T̃ j+(0,0,...,0, j)

)∧ (̃
k
)
> 0,

since

• The Fourier Transforms of the subgroups T̃ j are
everywhere nonnegative (true for all subgroups).
• The phase factor introduced to the Fourier Trans-

form with the translation by (0, . . . , 0, j) has no ef-
fect as the last coordinate of k̃ is 0.
• For any such k, by the previous disproof of the

Universal Spectrum Conjecture, for some j =
0, 1, . . . ,N − 1,(

1T̃ j+(0,0,...,0, j)

)∧
(̃k) > 0.
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So K̃ − K̃ ⊆ Z(1Γ)c, or (K̃ − K̃) ∩ (S − S) = {0} and it follows
that K̃+S = G2 is a tiling since

∣∣∣K̃∣∣∣ = 6, |S| = N ·64. But this
is a contradiction since K̃ is not a tile (from the previous
proof).

We have thus disproved the “tiling =⇒ spectral” conjec-
ture for the group G2 = Z5

6 ×ZN. Notice now that we can
increase N as much as we wish by repeating one of the T j
sets more than once. The proof remains valid. Increasing
thus N to be coprime to 6 and remembering that the prod-
uct group Za×Zb is isomorphic to the cyclic group Zab if a
and b are coprime, we see that we have an example in the
group Z4

6 ×Z6N, which has only 5 factors, not 6 as before.
This makes a difference in the final dimension we obtain
for our example in Zd and Rd.
Theorem 4.3. Any counterexample to the “tiling =⇒ spec-
tral” direction of the Fuglede Conjecture in a product
group Zn1 × · · · ×Znd gives rise to a counterexample in Zd

and in Rd.

Proof. Assume A ⊆ G = Zn1 × · · · × Znd is a non-spectral
tile and write
T = {0,n1, 2n1, . . . , (k − 1)n1} × · · · × {0,nd, 2nd, . . . , (k − 1)nd}

for the k×· · ·×k grid spaced by n1×· · ·×nd. Finally, define
A(k) = A + T (see Fig.  24 ).

A

A(k)

Figure 24. If A is a non-spectral
tile in Zn1 × · · · × Znd then the set
A(k) = A + {0,n1, 2n1, . . . , (k − 1)n1} × · · · ×
{0,nd, 2nd, . . . , (k − 1)nd} is a non-spectral tile
in Zd if k is sufficiently large.

The set A(k) clearly tiles Zd for any value of k because
A tiles Zn1 × · · · × Znd (tilings of this group translate to
periodic tilings of Zd with period lattice n1Z × · · · × ndZ).
We will show that it is not spectral in Zd. Suppose S ⊆ Td

is a spectrum of A(k).
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Z(1A)

Td:

Q

0

Z(1T)

Figure 25. The zero set of 1̂A(k) consists of
the zero set of the trigonometric polynomial
1̂A with a set of affine subspaces parallel to
the axes from from 1̂T.

We have 1A(k) = 1A ∗ 1T so we have 1̂A(k) = 1̂A · 1̂T and for
the zero sets we have

Z(1A(k)) = Z(1A) ∪ Z(1T).

See Fig.  25 .
An easy calculation shows that

Z(1T) =
{
ξ ∈ Td : ξ j =

ν
kn j

for some j and integer ν, where k does not divide ν
}
.

Define the rectangle

Q =
[
0,

1
kn1

)
× · · · ×

[
0,

1
knd

)
and the subgroup H of Td (independent of the parameter
k) consisting of all points ξ in Td all of whose coordinates
ξ j are multiples of 1/n j (for all j). We can view H as the
dual group of the product Zn1 × · · · ×Znd.

Observe next that H + (Q − Q) does not intersect Z(1T)
and take k large enough (which makes Q small enough)
to ensure:

h ∈ H with 1̂A(h) , 0⇒ h + (Q −Q) does not meet Z(1A).

Partition now the spectrum S into the sets Sν as follows.
Define

Sν = S ∩
(
H +Q +

(
ν1

kn1
, . . . ,

νd

knd

))
,
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0

group H

Sν

Td:

translate of Q

x

λ(x)

Figure 26. The various sets defined in the
lifting of non-spectrality from a finite group
to Zd.

for ν ∈ {0, . . . , k − 1}d. Since |S| = |A|kd it follows that there
exists some Sµ with ∣∣∣Sµ∣∣∣ ≥ |A|.
As Q − Q does not meet ZA(k) we cannot have more than
one point of S in any translate of Q.

For x ∈ Td write λ(x) for the unique point whose j-th
coordinate is an integer multiple of 1/(kn j) (for all j) and is
such that x ∈ λ(x)+Q (the lower left corner of the rectangle
to which x belongs). It follows that for any x, y ∈ Td we
have

x − y ∈ λ(x) − λ(y) +Q −Q.

If x, y ∈ Sµ then λ(x) − λ(y) ∈ H ∩ Z(1A). Refer to Fig.  26 .

Define now Λ =
{
λ(x) : x ∈ Sµ

}
and translate Λ so that

it contains 0 and so that Λ ⊆ H. Since Λ −Λ ⊆ Z(1A) ∪ {0}
and |Λ| ≥ |A| we obtain that Λ is a spectrum of A in the
group G, a contradiction.

□

Suppose now that we have a non-spectral tile A inZd, a
finite set. Let us see how we can construct a non-spectral
tile inRd. Let Q = [0, 1)d and define the set E = A+Q ⊆ Rd.
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Obviously E tiles Rd with the same tiling complement it
has in Zd. Let us show that it is still not spectral in Rd.

Suppose E has a spectrum S ⊆ Rd. It follows that
dens S = |A| so there exists a k ∈ Zd so that Λ = S∩ (k+Q)
has at least |A| points. Viewing Q as Td we show that Λ is
a spectrum of A.

Observe first that Z(1E) = Z(1A) ∪ Z(1Q) where the set
Z(1A) is a Zd-periodic set in Rd. But Λ − Λ ⊆ Q − Q and
Q−Q does not intersect Z(1Q), which consists of all points
with at least one non-zero integer coordinate. It follows
that Λ − Λ ⊆ Z(1A) and Λ is a spectrum of A ⊆ Zd, a
contradiction, so E is not spectral in Rd.

So far we have produced an example contradicting
“tiling=⇒ spectral” inRd for d ≥ 5. In [  FMM06 ,  FR06 ] the
dimension was eventually reduced to 3, so that the Fu-
glede Conjecture, in its generality, remains open in both
directions in dimensions 1 and 2 only.

4.4. Connected counterexamples. Another recent de-
velopment [  GK23 ] is the construction of counterexamples
for both directions of the Fuglede Conjecture (as well as
for aperiodic translational tiles [  GT24 ]) which are con-
nected. This is achieved by using the existing counterex-
amples for each direction to construct connected coun-
terexamples in higher dimension.

For the “spectral =⇒ tiling” counterexample the dimen-
sion has to be increased by 2, thus giving connected coun-
terexamples for this direction in dimension 5.

For the “tiling =⇒ spectral” direction though the di-
mension has to be increased by a number that depends
on the counterexample used as a seed to a certain iter-
ative procedure (which increases the dimension at every
step) that eventually produces a connected counterexam-
ple. Though we know that this process finishes in a finite
number of steps we do not know what the final dimension
of the counterexample will be apart from the fact that it
exists.

Question 7. Improve the process [ GK23 ]
that constructs a connected counterexample
to the “tiling=⇒ spectral” direction of the Fu-
glede Conjecture. More precisely, reduce the
price one has to pay in dimension increase
to a constant number that does not depend
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on the seed counterexample that initiates the
connectification process in [ GK23 ].

5. Orthogonal exponentials on the disk

In [  Fug74 ] it was claimed that the disk in the plane
(and the Euclidean ball in Rd) is not a spectral set. Ac-
cording to the Fuglede Conjecture this is as it should
be. A proof appeared in [  IKP99 ]. Later it was proved in
[ Fug01 ,  IR03 ] that any orthogonal set of exponentials for
the ball must necessarily be finite but it is still unknown
if there is a uniform bound for the size of each orthogonal
set. It is still a possibility that there are arbitrarily large
orthogonal sets of exponentials for the ball and proving a
uniform upper bound is probably very hard as it appears
to depend on the existence or not of algebraic relations
among the roots of the Bessel function J1.

In the direction of showing upper bounds for orthog-
onal sets of exponentials it was proved in [  IJ08 ] that if
Λ is a set of orthogonal exponentials for the ball then∣∣∣Λ ∩ [−R,R]d

∣∣∣ = O(R), with the implicit constant indepen-
dent of Λ. Completeness would of course require that∣∣∣Λ ∩ [−R,R]d

∣∣∣ ≳ Rd.
Here we will describe the argument in [ IK13b ] which

led to the bound

(25)
∣∣∣Λ ∩ [−R,R]d

∣∣∣ = O(R2/3).

Suppose D is the unit disk in the plane, centered at 0
and Λ is an orthogonal set of exponentials for D. Write
N =

∣∣∣Λ ∩ [−R,R]d
∣∣∣. We seek upper bounds on N in terms

of R, for large R.
By the orthogonality of Λ we have Λ−Λ ⊆ Z(1D)∪{0} so

we need information for the zero set Z(1D). Clearly this is
a radial set in the plane, a collection of concentric circles
centered at the origin and let us call the radii of these
circles

0 < r1 < r2 < · · · .
There are some well known estimates for these num-
bers (which happen to be the zeros of the Bessel function
J1(2πr)) [  AS64 ]:

(26) rn =
n
2
+

1
8
+

K1

2π(nπ + π/4)
+O(

1
n3 )
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where K1 is an absolute constant. It follows from this that
if 0 < m − n ≤ K and m,n→ +∞ then

(27) rm − rn =
m − n

2
+O((rm − rn)r−2

n ).

It is the positive offset 1/8 in (  26 ) that makes the following
lemma possible. It roughly says that three points of the
spectrum cannot be approximately on the same line, if
they are far apart.
Lemma 5.1. There are constants R0,C > 0 such that
whenever a, b, c ∈ R2 are orthogonal for the unit disk, with
|a − c|, |b − c|, |a − b| ≥ R ≥ R0 then the two largest angles of
the triangle abc (as well as all its external angles) are

(28) ≥ C
R1/2 .

Proof. Assume without loss of generality that R = |a − c| ≤
|b − c| ≤ |a − b| (see Fig.  27 ). Writing θ = b̂ac for the second
largest angle and T = |a − b| we have

T

θa b

c
R

Figure 27. Three points orthogonal for the
unit disk cannot be approximately on a
straight line.

|b − c| =
√

(T − R cosθ)2 + R2 sin2 θ

=
√

(T − R)2 + 2TR(1 − cosθ)

from which we get
(29)
|b − c|−(T−R) =

2TR(1 − cosθ)
T − R + |b − c| =

2R(1 − cosθ)

1 − R
T +

|b−c|
T

≤ 2R(1−cosθ) ≤ Rθ2.

From ( 26 ) it follows that as R → ∞ the quantities
|a − b|, |b − c|, |a − c| are all of the form

k
2
+

1
8
+ o(1), for some integer k.

It follows that |b − c|−(T−R) = k
2+

1
8+o(1), for some integer

k ≥ 0. This, together with (  29 ), implies that k
2 +

1
8 + o(1) ≤
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Rθ2 which gives us the required inequality with constant
C arbitrarily close to

√
1/8 when R is large.

□

The following is almost immediate from Lemma  5.1 .
See Fig.  28 .

Corollary 5.1. There is a constant C′ > 0 such that when-
ever a, b, c ∈ R2 belong to a R0-separated orthogonal set for
the unit disk and their pairwise distances are at least L
then they cannot all belong to a strip of width C′L1/2.

a

b

c

θ

Figure 28. Three points of the spectrum
that are distance at least L from one another
cannot belong to the same strip of width ∼√

L.

From Corollary  5.1 we get:

Corollary 5.2. Suppose Λ ⊆ R2 is a R0-separated set of
orthogonal exponentials for the unit disk, R > 0 and let

∆ = inf
{∣∣∣λ − µ∣∣∣ : λ, µ ∈ Λ ∩ [−R,R]2

}
.

Then

(30)
∣∣∣Λ ∩ [−R,R]2

∣∣∣ ≤ C
R
∆1/2 ,

for some constant C > 0.

Proof. Cover [−R,R]2 by O(R/∆1/2) vertical strips of width
c∆1/2, for small c > 0. From Corollary  5.1 each of these
contains at most two points of Λ.

□
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With ∆ defined in Corollary  5.2 we have ∆ ≥ c > 0 (for
any spectrum the points are separated by a positive con-
stant at least) so we already have from Corollary  5.2 the
bound |Λ| = O(R) or [ IJ08 ].

The main theorem of [ IK13b ] is the following.
Theorem 5.1. There are constants C1,C2 such that when-
ever Λ ⊆ R2 is an orthogonal set of exponentials for the
unit disk in the plane and

t = inf
{∣∣∣λ − µ∣∣∣ : λ, µ ∈ Λ, λ , µ

}
then |Λ| ≤ C1t.

Furthermore,
∣∣∣Λ ∩ [−R,R]2

∣∣∣ ≤ C2R2/3 for all R ≥ 1.

Let us sketch the proof of Theorem  5.1 . For the details
in the various delicate estimates see [ IK13b ].

Write ∆ = t/2 and after an appropriate rigid motion
of Λ, to which we are entitled, we can assume that two
points of Λ are

V = (∆, 0) and − V = (−∆, 0).

Let λ be any third point inΛ, say in the first quadrant and
consider the hyerbola with foci at ±V and going through
Λ. Call a(λ) the point where this hyperbola intersects the
x-axis. See Fig.  29 .

y

x

λ ∈ Λ

2∆

−V V

a(λ)0

Figure 29. Take the hyperbola with foci at
±V that goes through another point λ ∈ Λ.
Call a(λ) the point where the hyperbola in-
tersects the x-axis.

The quantity 2a(λ) is the difference of the distances of
λ from the foci of the hyperbola and from the asymptotics
( 27 ) we obtain

(31) 2a(λ) = |λ + V| − |λ − V| = k
2
+O(∆|λ|−2),
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for some integer k.
Define the hyperbolas Hk as the locus of points p in the

plane satisfying∣∣∣p + V
∣∣∣ − ∣∣∣p − V

∣∣∣ = k
2
, k = 0, 1, . . . , ⌊4∆⌋.

There are O(∆) such hyperbolas and it is important that
each λ is “near” one such hyperbola.

λ
∆1/2-strip

∆3/2V
0

Figure 30. Each λ of size |λ| ≥ ∆3/2 is in a
O(∆1/2)-width strip around an asymptote to
a hyperbola Hk.

More specifically we can show that each point λ ∈ Λ
with |λ| ≥ ∆3/2 must be at distance O(∆1/2) from the asymp-
tote to one of the hyperbolas Hk. See Fig.  30 .

According to Lemma  5.1 each strip whose midline is
an asymptote to a hyperbola and its width is O(∆1/2) may
contain at most 2 λ’s and since there are O(∆) such strips
we have a total of O(∆) points of Λ outside the disk cen-
tered at 0 of radius ∆3/2. The size of Λ in that disk can be
bounded by applying Corollary  5.2 with R = ∆3/2 and we
see that this part of Λ is also of size O(∆). This completes
the proof that |Λ| = O(t).

To get the bound on
∣∣∣Λ ∩ [−R,R]d

∣∣∣ in terms of R we only
need to observe that we have two upper bounds for |Λ|: the
bound O(R/∆1/2) coming from Corollary  5.2 and the bound
|Λ| = O(∆) that we just finished proving. The minimum of
these two upper bounds is O(R2/3) which is the promised
bound.
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In a major recent development it has been shown
[ Zak24 ] ∣∣∣Λ ∩ [−R,R]2

∣∣∣ = O(R3/5+ϵ)
for any positive ϵ. The proof in [  Zak24 ] builds on Corol-
lary  5.1 and on Theorem  5.1 .

6. Weak tiling

6.1. Spectrality implies weak tiling. Suppose we
work on a group G with counting measure, such as any fi-
nite group orZd, and E = {e1, e2, . . . , eN} ⊆ G is a finite spec-
tral set, of size N. The spectrum Λ = {λ1, λ2, . . . , λN} ⊆ Ĝ
also has N elements. Orthogonality of the characters
means that the matrix

M =
(
λ j(ek)

)
j,k=1,2,...,N

has orthogonal rows, so it also has orthogonal columns.
This means that E, viewed now as a subset of the dual
group of Ĝ, which is G itself, is a spectrum ofΛ (the points
g ∈ G act on the characters γ ∈ Ĝ by γ→ γ(g)).

By ( 13 ) we now have the tiling conditions

N−2
∑
λ∈Λ

∣∣∣1̂E(t − λ)
∣∣∣2 = 1 (Λ is a spectrum of E)

and
N−2

∑
e∈E

∣∣∣1̂Λ(x − e)
∣∣∣2 = 1 (E is a spectrum of Λ) .

These can be rewritten as the convolutions
N−2

∣∣∣1̂E

∣∣∣2 ∗ 1Λ = 1 and N−2
∣∣∣1̂Λ∣∣∣2 ∗ 1E = 1.

The second of those can be viewed as a tiling by E with
a function, or set of fractional translates. Let us write
w(x) = N−2

∣∣∣1̂Λ∣∣∣2(x) for x ∈ G. Then the second convolution
above becomes
(32) 1E ∗ w = 1.

The function w is nonnegative and is equal to 1 at 0 of G.
If the function w happens to take only the values 0 or 1
then (  32 ) would be an ordinary tiling of G by translates
of E (at the locations where the 1’s occur in w). In general
w does not have this property so we call this situation a
weak tiling by E. So weak tiling is whenever (  32 ) holds for
some function w on G which is nonnegative and equals 1
at 0 ∈ G.
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We have proved:
Theorem 6.1. If E ⊆ G is a finite set which is spectral
with the counting measure then there is a weak tiling of G
by E.

It is one of the greatest developments in the area that
Lev and Matolcsi [  LM22 ] proved Theorem  6.1 to the case
of Rd and, in the process, made us realize the importance
of this concept.
Theorem 6.2. Suppose E ⊆ Rd is a bounded measurable
set which is spectral. Then there exists a nonnegative, lo-
cally finite measure ν on Rd such that

1E ∗ (δ0 + ν) = 1, almost everywhere in Rd.

In both Theorem  6.1 and Theorem  6.2 it is crucial that
we demand that the measure (w in the discrete case, δ0 +
ν in the case of Rd) has a unit point mass at the origin.
(Often we state the same condition as the fact that the
domain E can tile its complement by fractional copies of
itself). Had we not insisted on that condition then every
set E would admit a weak tiling (by a multiple of the Haar
measure) so admitting a weak tiling would be worthless
in distinguishing the spectral sets.

6.2. Weak tiling does not imply tiling. The question
if weak tiling by a set E implies that E can also tile is ob-
viously one of the first questions that comes to mind. If
the answer were affirmative then we would have imme-
diate confirmation of the “spectral =⇒ tiling” direction
of the Fuglede Conjecture. Since we know that this di-
rection fails in dimension 3 and higher we can conclude
that there are sets E which tile weakly but cannot tile.
Any counterexample to the “spectral =⇒ tiling” direction
is such an example.

We do not know of any such examples when the group is
a product of at most two cyclic groups. Another important
reason, besides the Fuglede Conjecture, that we would
like to know if the implication “weak tiling =⇒ tiling”
is true in a category of groups, say the cyclic groups, is
that if the implication is true we would immediately have
a polynomial time (in N, the size of the group G) algo-
rithm which, given a subset A ⊆ G would decide if A tiles
G or not. The algorithm would decide if A weakly tiles
G via linear programming, which takes polynomial time
[ KM09 ].
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Question 8. Find an algorithm that runs
in time polynomial in N which decides if a
given A ⊆ ZN tiles the group ZN by transla-
tions.

6.3. Using the weak-tiling necessary condition to
disprove spectrality. It is hard to overemphasize the
importance of this necessary condition for spectrality.
Perhaps one example of its use will immediately convey
its strength. Of all three domains in Fig.  31 only the one-
dimensional one (the union of two intervals) was known
[ Łab01 ] to be non-spectral and the proof of this was some-
what involved. But knowing the necessity of weak tiling
for a set to be spectral, it is immediately clear that none of
these sets can weakly tile space (fractionally tile its com-
plement) because of the presence of the “hole” which can-
not be covered with whole or fractional copies of the set
without these copies touching the one whole copy that we
must have at the origin.

Figure 31. These domains are not spectral
as they cannot weakly tile R2 or R.

The importance of this criterion was immediately made
plain in [ LM22 ] where it was used to complete the missing
“spectral =⇒ tiling” direction of the Fuglede Conjecture.
Theorem 6.3. If E is a convex body in Rd which is spec-
tral then it is a polytope and it can tile Rd face-to-face by
translations along a lattice.

Therefore, the Fuglede Conjecture is true for the class of
all convex bodies in Rd.

The Fuglede Conjecture for convex sets had a long his-
tory of partial results before its eventual confirmation.
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To begin with, as explained in § 3.4 , it was known early
on that the “tiling =⇒ spectral” direction is true for all
convex bodies.

In [  Kol00a ] it was proved that only symmetric convex
bodies can be spectral (see also §  3.1 ). In [  IKT01 ] it was
shown that smooth convex bodies with everywhere posi-
tive Gaussian curvature are not spectral (see also §  3.6 ).
In [ IKT03  ] it was shown that the Fuglede Conjecture
holds for all planar convex bodies and in [  GL17 ] it was
proved for all convex polytopes in dimension 3.

We will not show here the details of how the weak tiling
necessary condition is used in order to show Theorem  6.3 

but we will try to convey the spirit of the proof in how it
forces the domain to be a polytope and forbids curvature.
In other words, we will show a new proof that the disk
in the plane (this proof is valid in any dimension) is not
spectral, by showing that it does not admit weak tilings.

D

Figure 32. It is impossible to tile the exte-
rior of a disk D with fractional copies of the
same disk. Whenever one tries to fill an area
near the boundary of D by placing a copy of
D with some nonnegative weight on it the ef-
fect is that strictly more weight is placed on
the outer ring than on the inner ring.

Let us fix the unit disk D in the plane (see Fig.  32 ) and
assume it is weakly tiling the plane. The shaded disk is
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the one whole copy of the disk that must be there in the
weak tiling. The exterior of D must be covered to a total
of level 1 by weighted (fractional) copies of D which are
not allowed to overlap the shaded copy of D as it has full
weight. Draw two rings concentric with D an inner ring
just outside D and an outer ring whose inner radius is 2.
Let the width of the inner ring be a small positive number
ϵ and the width of the outer ring be such that the area of
the two rings is the same (so the width of the outer ring
will be roughly ϵ/2).

We now claim that whenever we use a copy of D in order
to place some weight near D it is always the case that
strictly more weight is placed on the inner ring than on
the outer ring. Indeed, the worst case for this claim is the
one drawn in Fig.  32 , namely when the fractional disk
touches D. In this case the area covered in the inner ring
is roughly ϵ3/2 while the area covered in the outer ring
is roughly ϵ, so when ϵ is sufficiently small the claim is
true. This leads to a contradiction as the total weight
that gets placed on each ring must be equal to its area and
therefore the two rings should get the same total weight.

6.4. Fat Cantor sets. Let us also see how the weak-
tiling necessary condition for spectrality can be used to
show that a class of fat Cantor sets (Cantor sets of posi-
tive measure) is not spectral [ KLM23 ].

Define the set as an infinite intersection of level sets

E =
∞⋂

n=1

En,

where the compact sets En ⊆ [0, 1] are shown in Fig.  33 .
We start with E0 = [0, 1] and at the n-th stage we remove
an interval of length dn from the middle of each interval
of En−1 thus leaving behind two intervals of length ℓn =
(ℓn−1 − dn)/2.

If we assume that the set E so constructed has posi-
tive Lebesgue measure then it follows that we must have
dn/ℓn → 0.

Theorem 6.4. A fat Cantor set as described above cannot
weakly tile the real line and is therefore not spectral.

It is obvious that each En cannot weakly tile since the
hole is too small. We have to find a way to pass to the
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ℓn

dn

ℓn

ℓn−1 dn−1

ℓn

dn

ℓn

ℓn−1

Figure 33. How a fat Cantor set is con-
structed. The upper row shows 4 intervals
of En that arose from two intervals of En−1
after we removed a middle interval of legth
dn from each.

limit. Suppose 1E ∗ µ = 1 on R,

µ = δ0 + ν, and ν ≥ 0.

Since En+1 ⊆ En monotone convergence gives

∫
En

1En ∗ ν→
∫

E
1E ∗ ν = 0,

from the weak tiling assumption 1E ∗ (δ0 + ν) = 1.
The crucial inequality is

ℓn − dn

dn

∫
An

1En ∗ ν ≤
∫

En

1En ∗ ν

where An = En−1 \ En (what was thrown out at the n-th
stage). The intuition behind this inequality is that when-
ever we are trying to fill the gap An using some weighted
copies of our set then we end up putting more weight on
the remaining set, which will lead to a contradiction, as
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follows.

0←−
∫

En

1En ∗ ν ≥
ℓn − dn

dn

∫
An

1En ∗ ν

≥ ℓn − dn

dn

∫
An

1E ∗ ν (since E ⊆ En)

=
ℓn − dn

dn
|An| (due to weak tiling since An ⊆ Ec)

=
ℓn − dn

dn

dn

2ℓn
|En| (since |En|

ℓn
= 2
|An|
dn

)

=

(
1
2
− dn

2ℓn

)
|En|

→ 1
2
|E| as n→∞.

We have reached a contradiction so E cannot weakly tile.
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