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Abstract. Consider the set E(D,N) of all bivariate exponential polynomials

f (ξ, η) =
n∑

j=1

p j(ξ, η)e2πi(x jξ+y jη),

where the polynomials p j ∈ C[ξ, η] have degree < D, n ≤ N and where x j, y j ∈ T =
R/Z. We find a set A ⊆ Z2 that depends on N and D only and is of size O(D2N log N)
such that the values of f on A determine f . Notice that the size of A is only larger
by a logarithmic quantity than the number of parameters needed to write down f .

We use this in order to prove some uniqueness results about polygonal regions
given a small set of samples of the Fourier Transform of their indicator function.
If the number of different slopes of the edges of the polygonal region is ≤ k then
the region is determined from a predetermined set of Fourier samples that depends
only on k and the maximum number of vertices N and is of size O(k2N log N). In the
particular case where all edges are known to be parallel to the axes the polygonal
region is determined from a set of O(N log N) Fourier samples that depends on N
only.

Our methods are non-constructive.
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1. Introduction

We deal with the general problem of identifying an object (a region in Eudlidean
space, a measure or a function of a certain type) from samples of its Fourier Trasform
or samples of the function itself. If the object comes from a parametric family where
each object is defined by N real or complex parameters then it is a reasonable expec-
tation that the number of samples used to identify the object should not be much
larger than N.

Suppose for instance, to mention an almost obvious but important case, that our
parametric family consists of all one-variable algebraic polynomials of degree < N
and complex coefficients

f (x) = fn−1xn−1 + · · · + f1x + f0, with f j ∈ C,n ≤ N.

Then, if f is such a polynomial, the set of samples of f on the set {0, 1, . . . ,N − 1},
which consists of N points, is enough to determine f : any two such polynomials
agreeing on that set must be the same polynomial as the difference of these poly-
nomials can have at most N − 1 roots unless it is identically 0.

Another famous case is the determination of exponential sums (trigonometric
polynomials) with at most N frequencies

f (ξ) =
n∑

j=1

f je2πiλ jξ, ( f j ∈ C, n ≤ N)

from samples. Let us restrict the frequencies λ j to lie in the torus R/Z, which we
can identify with [0, 1), and seek to determine f (ξ) from its samples on a set A ⊆ Z.
The famous Prony method from the 18th century [  dP95 ,  DKP23 ,  VMB02 ] says that
we can identify f from its values on the set A = {0, 1, . . . , 2N}. See also Lemma  2.1 

below, with D = 1, for a slightly different viewpoint.
The case of exponential polynomials with n ≤ N terms and polynomial coefficients

of degree deg p j < D is also dealt with in [  VMB02 ]:

f (ξ) =
n∑

j=1

p j(ξ)e2πiλ jξ

can be identified from its samples on the set A = {0, 1, . . . , 2ND} as shown also in
our Lemma  2.1 .

0

I1 I2 In

1

...

Figure 1. A set E ⊆ T consisting of n arcs.
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An example of a more geometric flavor [ Cou10 ,  DKP23 ] is the case of a set E ⊆ T
which is a union of at most N arcs (intervals) as shown in Fig.  1 . Such a set can be
identified by sampling its Fourier Transform 1̂E on the set A = {0, 1, . . . ,N}.

The situation becomes more complicated in higher dimension. Multivariate ex-
ponential sums

f (t) =
n∑

j=1

f je2πiλ j·t, (n ≤ N, f j ∈ C, λ j ∈ Td, t ∈ Zd)

were shown recently [  DKP23 ] (see also [  Sau18 ]) to be identifiable by O(N log N)
samples, only slightly more than the number O(N) of degrees of freedom.

In this paper we study the identification of bivariate exponential polynomials
and apply our results to the identification of certain polygonal regions. Our work is
inspired from the paper [  WP16 ]. Our method assumes, in contrast to [ WP16 ], that
we know the possible slopes of the edges of the polygons.

Our results are as follows. In §  2 (see Theorem  2.1 ) we show that any bivariate
exponential polynomial with at most N terms and polynomial coefficients of degree
< D can be identified from its samples on a set of size O(D2N log N). This sampling
set depends on N and D only. In §  3 we use this result in order to show, for instance,
that polygonal regions with edges parallel to the two axes and at most N vertices
can be identified by sampling the Fourier Transform of their indicator function at a
predetermined set of size O(N log N), where, again, the sampling set depends only
on N (see Corollary  3.3 ).

Remark 1.1. Note than in [ WP16 ] it is precisely the polygons whose vertices project
non-uniquely onto a line that create the most problems, which happens a lot with
polygons whose edges are parallel to the two axes. This coincidence of projections
is reflected in the log N factor in the size of our sampling set: a small and uniform
price to pay for all polygons.

We emphasize that the sampling problems we are studying are of the non-adaptive
type. In other words, given the class of functions that we want to identify the sam-
pling sets are specified a priori and are not allowed to change depending on what
values we have already seen from f (this would be adaptive sampling, as is the
approach in [  WP16 ]).
Note on algorihmic inversion. We should also clarify that we do not provide
algorithms for recovering the object (function, polygon) from its samples or Fourier
samples. We only deal with the concept of inversion in principle. Whenever we
claim that a function f from a certain class C can be identified from its values on a
sampling set A all we mean is that the mapping

f → ( f (a))a∈A
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is injective on C (different functions from C give different data). We do not deal at
all with the algorithmic reconstruction of f .
Notation: We write [n] = {1, 2, . . . , n} and [n]0 = {0, 1, . . . , n}.

2. Indentifying exponential polynomials

A multivariate polynomial is of degree d if d is the highest power that any of its
variables is raised to. Thus, a two-variable polynomial p(ξ, η) is of degree ≤ d if and
only if it can be written in the form

p(ξ, η) =
d∑

k=0

pk(ξ)ηk,

where the univariate polynomials pk(ξ) are of degree ≤ d. All the polynomials have
complex coefficients.
Remark 2.1 (Determination of an exponential polynomial by its values on the in-
tegers). An exponential polynomial

f (ξ, η) =
n∑

j=1

p j(ξ, η)e2πi(x jξ+y jη)

whose values are known for all ξ, η ∈ Z is completely determined. The reason is
that it can be viewed as the Fourier Transform (defined on Z2) of the distribution
(automatically tempered) on T2, the dual group of Z2 [ Rud62 ],

(1) S =
n∑

j=1

p j

( 1
2πi
∂1,

1
2πi
∂2

)
δ(x j,y j).

Here δ(x j,y j) denotes a unit point mass at (x j, y j) ∈ T2 and ∂ j denotes differentiation
with respect to the j-th variable, j = 1, 2. By Fourier inversion (the Fourier Transform
is a linear isomorphism from the space of tempered distributions onto itself) knowing
f on Z2 (the dual group of T2) we automatically know the tempered distribution S
on T2. And it is easy to see that S determines uniquely both the points (x j, y j) and the
corresponding polynomials p j.

The analogous statement is true for exponential polynomials with any number of
variables.

In this section we identify an exponential polynomial, obeying some assumptions,
by its values on a sampling set in Z or Z2. We shall not always attempt to give the
smallest possible sampling set. For the sake of simplicity in expressions we may
opt to prescribe a slightly larger sampling set. In the end what matters to us is the
size of the sampling set as N (the maximum number of terms in the exponential
polynomial) tends to infinity.

Let us start with univariate exponential polynomials.
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Lemma 2.1. Let f (ξ) =
∑n

j=1 p j(ξ)e2πix jξ be a univariate exponential polynomial with
n ≤ N terms. Assume also that the degree of each polynomial coefficient p j is < D.

Then the function f is determined by its values on the set A = [2ND]0.

Proof. It is well known [  EvdPSW15 , Ch. 1, “Generalized power sums”] that the
sequence f (n), n ∈ Z, satisfies a homogeneous linear recurrence relation of order

n∑
j=1

(1 + deg p j) ≤ ND.

This implies that if f = 0 on [ND]0 then f (n) = 0 for all n ∈ Z.
If two exponential polynomials f1 and f2 have at most N frequencies each and

polynomial coefficients of degree < D then the exponential polynomial f1 − f2 has
at most 2N frequencies and polynomial coefficients of degree < D. If f1, f2 agree on
[2ND]0 it follows from the discussion in the previous paragraph that f1(n)− f2(n) = 0
for all n ∈ Z, so that f1, f2 are the same exponential polynomial.

□

Moving to the bivariate case let us first settle the case of simple algebraic poly-
nomials.
Lemma 2.2. Let p(ξ, η) be a polynomial of degree < D.

Then p is determined by its values on the sampling set A = [D]0 × [D]0.

Proof. Take two polynomials p1(ξ, η), p2(ξ, η) in R2 of degree < D, that are identical
on A. We will show that they are equal in R2, and are therefore the same polyno-
mial. Indeed, for every (ξ, η) ∈ A we have :

(p1 − p2)(ξ, η) =
∑

0≤k<D

(p1
k − p2

k)(ξ) ηk = 0,

where we have written p j
k(ξ) for the coefficient of ηk in p j. Fix ξ ∈ [D − 1]0 and let η

vary in [D − 1]0. For every such ξ, we get a D ×D linear system as below:
1 0 0 · · · 0
1 1 12 · · · 1D−1

· · · · · · · · · · · · · · ·
1 D − 1 (D − 1)2 · · · (D − 1)D−1




(p1
0 − p2

0)(ξ)
(p1

1 − p2
1)(ξ)
· · ·

(p1
D−1 − p2

D−1)(ξ)

 =


0
0
· · ·
0


with the D × D matrix on the left being an invertible Vandermonde matrix and so
we get that for k ∈ [D − 1]0 and every ξ ∈ [D − 1]0:

(p1
k − p2

k)(ξ) = 0

Since for each k ∈ [D − 1]0 the polynomial (p1
k − p2

k)(ξ) has degree < D, we conclude
that for every k ∈ [D − 1]0 :

p1
k(ξ) = p2

k(ξ)
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for every ξ ∈ R and hence our two polynomials p1, p2 are equal on R2. We have
shown that the sampling set [D− 1]0× [D− 1]0 is enough for identification, hence so
is its superset [D]0 × [D]0.

□

Next we introduce frequencies in one variable only.

Lemma 2.3. Let f (ξ, η) =
∑n

j=1 p j(ξ, η)e2πiξx j with the polynomials p j having degree
< D and such that n ≤ N.

Then f is determined by its values on the sampling set A = [2ND]0 × [D]0, a set of
size O(D2N).

Proof. Fix η = η0 ∈ [D]0. Then f (ξ, η0) is a univariate exponential polynomial with
coefficients of degree < D, so, by Lemma  2.1 , sampling on [2ND]0 ×

{
η0
} determines

all polynomials p j(·, η0) and all x j for which p j(·, η0) is not the zero polynomial. But
it may happen, for a fixed η0, that some of the x j will not be revealed by invoking
Lemma  2.1 since p j(·, η0) may be identically zero in the first variable for that partic-
ular value η0 of η.

Since each p j(·, ·) is assumed not to be identically 0 as a bivariate polynomial it
follows from Lemma  2.2 that some of the values of p j(·, ·) on [D]0× [D]0 are non-zero.
Hence, by the process described in the previous paragraph repeated for all η0 ∈ [D]0
all the x j will be revealed. This implies that for each j we know all the values of
p j(·, ·) on [D]0 × [D]0, so, by Lemma  2.2 again, all the p j are determined. □

x · y = 4D2N

Figure 2. The sampling set for Lemma  2.4 

The next Lemma is the crucial technical result concerning bivariate exponential
polynomials.
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Lemma 2.4. Let f (ξ, η) =
∑n

j=1 p j(ξ, η)e−2πi(x j·ξ+y j·η) with the polynomials p j having
degree < D and such that n ≤ N.

We can determine f by the following data (see Fig.  2 ):

(a) Its values at the sampling set

(2) AN =
⋃

1≤r≤N

[
2
⌊N

r

⌋
D
]

0
× [2rD]0

(b) Knowing how many many points of the frequency set V = {(x j, y j)} j≤n of f , are
above ( project to ) each x ∈ R.

The sampling set in ( 2 ) is of size O(D2N log N).

Proof. Write X = {x j} for the set of distinct x that appear as first coordinates for the
points of V. We partition X according to how many points of V project to each point
(see Fig.  3 ):

X = X1 ∪ · · · ∪ Xr, (for some r ≤ N)
where

Xt =
{
x ∈ X :

∣∣∣{y : (x, y) ∈ V}
∣∣∣ = t
}
.

In the proof that follows assumption (b) is only used in order to known to which Xt
a given x ∈ X belongs.

X!

X2

X3

X4

x

y

(x j, y j)

Figure 3. The partition of the set X (projections of the points to the
x-axis), to the sets X1,X2, · · · .
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A crucial observation (proof by contradiction) here is that for 1 ≤ t ≤ r we have:

(3) |Xt ∪ Xt+1 ∪ · · · ∪ Xr| ≤
N
t

We write f as :

f (ξ, η) =
∑
x∈X

 ∑
y : (x,y)∈V

p(x,y)(ξ, η)e2πiηy

 e2πiξx.

For any fixed η this is an exponential polynomial in ξ with |X| ≤ N terms and poly-
nomial coefficients of degree < D, so, using Lemma  2.1 , sampling at [2|X|D]0 ×

{
η
}

determines the polynomials of ξ

(4) qx,η(ξ) =
∑

y : (x,y)∈V

p(x,y)(ξ, η)e2πiηy,

for every ξ ∈ R.
Write now

ft(ξ, η) =
∑
x∈Xt

∑
y: (x,y)∈V

p(x,y)(ξ, η)e2πi(xξ+yη)

for the part of f extending over x ∈ Xt only, so that f = f1 + f2 + · · · + fr. We shall
first determine f1, then f2, etc.

Notice that for any fixed ξ the quantity qx,η(ξ) is an exponential polynomial in η.
If x ∈ Xt then, from ( 3 ), this exponential polynomial has |Xt| ≤ ⌊N/t⌋ terms and all
its polynomial coefficients have degree < D.

For x ∈ X1, from Lemma  2.3 with the roles of ξ and η reversed, qx,η(ξ) is determined
by sampling it on [D]0 × [2D]0. By the discussion before (  4 ) these values of qx,η(ξ)
can be determined from the samples of f at [2ND]0 × [2D]0 ⊆ AN. Thus sampling f
at AN suffices to determine the bivariate exponential polynomial f1(ξ, η).

To determine f2 we apply roughly the same procedure to the polynomial f − f1.
Since we now know f1 we can assume that we have sampled f − f1 on AN. But f − f1
now has |X2 + X3 + · · · + Xr| ≤ ⌊N/2⌋ terms, so to determine the polynomials of ξ

qx,η(ξ), (x ∈ X2 ∪ X3 ∪ · · · ∪ Xr)

we only need to sample f at [2⌊N/2⌋D]0×
{
η
}. Viewing, again, qx,η(ξ) as an exponential

polynomial in η for every fixed ξ, Lemma  2.3 tells us that, for x ∈ X2, it is enough to
sample qx,η(ξ) at [D]0 × [4D]0 (since qx,η(ξ) has 2 terms. By the discussion before (  4 )
these values of qx,η(ξ) can be determined from the samples of f at [2⌊N/2⌋D]0×[4D]0 ⊆
AN.

Thus we have also determined f2. We next work on f − f1− f2 to determine f3 from
the samples of f at [2⌊N/3⌋D]0 × [6D]0 ⊆ AN and so on.

The fact that |AN| = O(D2N log N) is easily seen as all pairs (m,n) ∈ AN satisfy
m · n ≤ 4D2N.
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□

In the next Lemma we point out that data (b) from Lemma  2.4 represent only a
finite number of options.

Lemma 2.5. There are at most finitely many exponential polynomials f of the form

f (ξ, η) =
K∑

j=1

p j(ξ, η)e−2πi(x j·ξ+y j·η),

where K ≤ N, p j polynomials of degree < D, with given values on the set AN in ( 2 )
and with given the projections of its frequencies onto the x-axis

X = {x j}1≤ j≤K.

(We do not assume to know how many frequencies project to each x ∈ X)

Proof. Knowing the values of f at AN is exactly the data (a) of Lemma  2.4 . What
is missing in order to fully know also data (b) of that Lemma is to know how many
frequencies project to each x ∈ X. There are only finitely many possibilities for this
information. For each of them there is at most one exponential polynomial fitting
the data by Lemma  2.4 , so, in total, we have finitely many exponential polynomials
matching the given values at AN and the given set of projections X.

□

But a whole continuum of different exponential polynomials with the same data
and the same x-projections of their frequencies arise from just two different expo-
nential polynomials with the same data.

Lemma 2.6. Suppose that

f1(ξ, η) =
K1∑
j=1

p1
j (ξ, η)e

−2πi(x1
j ·ξ+y1

j ·η)

and

f2(ξ, η) =
K2∑
j=1

p2
j (ξ, η)e

−2πi(x2
j ·ξ+y2

j ·η)

are two different exponential polynomials with K1,K2 ≤ N, p1
j , p

2
j polynomials of de-

gree < D, and with the same values at A2N as in ( 2 ).
Then there are infinitely many different exponential polynomials of the form

f (ξ, η) =
K∑

j=1

p j(ξ, η)e−2πi(x j·ξ+y j·η)
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with K ≤ 2N, deg(p j) < D, with{
x j

}
1≤ j≤K

⊆
{
x1

j

}
1≤ j≤K1

∪
{
x2

j

}
1≤ j≤K2

and having the same values at A2N

Proof. Write for λ ∈ C
fλ = λ f1 + (1 − λ) f2

Then fλ has the same values at A2N (for every λ) and all these exponential polyno-
mials are different: there is at least one point (x, y) where f1 and f2 differ. Finally
observe that fλ has at most 2N frequencies all of them at locations projecting down
inside the set {x1

j } ∪ {x2
j }.

□

We arrive to our main result.

Theorem 2.1. Let f (ξ, η) =
∑n

j=1 p j(ξ, η)e−2πi(x j·ξ+y j·η), with n ≤ N, p j being a polynomial
of degree < D.

Then f is determined by knowing its values on the sampling set

(5) A2N =
⋃

1≤r≤2N

[
2
⌊2N

r

⌋
D
]

0
× [2rD]0

with size O(D2N log N).

Proof. Suppose not, so that we can find two exponential polynomials

f1(ξ, η) =
K1∑
j=1

p1
j (ξ, η)e

−2πi(x1
j ·ξ+y1

j ·η)

and

f2(ξ, η) =
K2∑
j=1

p2
j (ξ, η)e

−2πi(x2
j ·ξ+y2

j ·η)

with K1,K2 ≤ N, with the same values on A2N. From Lemma  2.6 then there are
infinitely many exponential polynomials with up to 2N frequencies and polynomial
coefficients of degree < D that have the same values at A2N. But this contradicts
Lemma  2.5 ( used with 2N in place of N).

□
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3. Application to identification of polygons

A polygonal region in the plane is described by an ordered sequence of n ver-
tices v0, v1, . . . , vn−1 ∈ R2. This sequence of vertices, connected by line segments,
the edges, which do not intersect except at the vertices, defines a polygonal curve,
whose interior is the polygonal region. We also assume that successive edges are
not parallel to each other: this forbids redundant vertices in the interior of an edge.

Define the edges w j = v j+1 − v j, where j ∈ [n − 1]0 and addition and subtraction of
the indices is done mod n (see Fig.  4 ) and the corresponding unit vectors u j = w j/

∣∣∣w j

∣∣∣.
Write sr, r = 1, 2, . . . , k, for all the different directions (slopes) of the edges w j, written
once each (no two sr are parallel to each other). The s j are vectors of unit length, so
u j = ϵ jsϕ( j)), where ϵ j = ±1 and ϕ : [n − 1]0 → [k] is the function which tells us which
direction vector sr corresponds to edge w j.

v j

w j−1

v0

vn−1

v j+1w j =
∣∣∣w j

∣∣∣u j

v j−1

Figure 4. A polygonal region in the plane.

Let P be a polygonal region in the plane and 1P its indicator function. The Brion-
Barvinok formula [ Rob24  ] is a valuable formula for the Fourier Transform of 1P.
In our notation it becomes, for t = (ξ, η) ∈ R2,

(6) 1̂P(t) =
1

4π2

n−1∑
j=0

∣∣∣det(u j−1,u j)
∣∣∣

(u j−1 · t) (u j · t)
e−2πiv j·t.

This formula is valid whenever all the denominators u j · t are not zero. To cancel
all denominators we multiply (  6 ) by the product

(s1 · t) (s2 · t) · · · (sk · t).
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Since u j−1 and u j correspond to different direction vectors we obtain

(s1 · t) (s2 · t) · · · (sk · t) 1̂P(t) =(7)

=
1

4π2

n−1∑
j=0

∣∣∣det(u j−1,u j)
∣∣∣ϵ j−1ϵ j

∏
r=1,...,k

r,ϕ( j−1),ϕ( j)

(sr · t) e−2πiv j·t.

The expression on the right hand side of ( 7 ) is an exponential polynomial, which
we denote by fP(t), in t = (ξ, η) with n terms and polynomial coefficients of degree
< k−1. If we happen to know the direction vectors s1, . . . , sk then knowing the values
of 1̂P on a sampling set A ⊆ Z2 implies that we know the samples of fP(t) on A.

If the sampling set A is enough to identify fP(t) then we have determined 1̂P(t)
except when t is on the finite set of straight lines{

t ∈ R2 : sr · t = 0 for some r ∈ [k]
}
.

By the continuity of 1̂P(t) this function is then determined everywhere and so is P
by Fourier inversion.

Combining this with Theorem  2.1 we obtain the following.
Theorem 3.1. Suppose P ⊆ [0, 1)2 is a polygonal region with n ≤ N vertices and
whose edges are of a finite set of known slopes s1, . . . , sk.

Then P can be determined by sampling its Fourier Transform 1̂P on the following
set of points in Z2

(8) A = A(k,N) =
N⋃

r=1

[
2
⌊2N

r

⌋
(k − 1)

]
0
× [2r(k − 1)]0

which is of size O(k2N log N).

Figure 5. A polygonal region in the plane with sides parallel to the axes.

Corollary 3.1. Suppose P ⊆ [0, 1)2 is a polygonal region all of whose edges are
parallel to the x or the y axis (see Fig.  5 ).

Then P can be determined by sampling its Fourier Transform on the set A in ( 8 )
with k = 2.
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Remark 3.1. It is perhaps interesting to see that when identifying a polygon in the
plane all of whose edges are parallel to the axes it is enough to know the vertices: the
interconnections of the vertices via axis-parallel edges (and when these vertices are
guaranteed to be non-degenerate) arise uniquely.

To see this observe first that any vertical line (parallel to the y-axis) must always
contain an even number of polygon vertices and they are always connected as follows.
Since every polygon vertex has both a vertical and a horizontal edge it follows that all
vertical edges of the vertices belonging to a vertical line must connect them among
themselves and the only way for this is if the lowest vertex connects to the second
lowest, the third lowest to the fourth and so on. This determines all vertical edges of
the polygon. Similarly all horizontal edges are determined.

This is not strictly used in our (non-constructive) proof as what we do is to deter-
mine the Fourier Transform of the indicator function of the polygon, which contains
all the information we need.

f = v4

f = v5

f = v3

f = v2

f = v1

Figure 6. The level sets of a function are polygonal regions with few slopes.

The following Theorem, a generalization of Theorem  3.1 , has essentially the same
proof, which we indicate below.

Theorem 3.2. Suppose f : [0, 1)2 → C takes finitely many values and each level set
of f

L(v) =
{
t ∈ [0, 1)2 : f (t) = v

}
is a polygonal region whose edges are of a finite set of known slopes s1, . . . , sk (see Fig.

 6 ). Suppose also that the total number of vertices appearing in any L(v) (written once
each) is n ≤ N.

Then f can be determined by the samples of f̂ on the set A(k,N) in ( 8 ) which is of
size O(k2N log N).
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Proof. The function f can be written as the finite sum

f (x) =
∑
v∈V

v1L(v)(x),

where V ⊆ C is the finite set of values taken by f . It follows that

f̂ (t) =
∑
v∈V

v1̂L(v)(t).

Using again the Brion-Barvinok formula for each 1̂L(v) we obtain an identity analo-
gous to ( 6 ), valid, again, whenever all s j · t are non-zero. As in the proof of Theorem

 3.1 , multiplying by (s1 · t) · · · (sk · t) we obtain an exponential polynomial analogous
to ( 7 ) which has at most N vertices and the polynomial coefficients all have degree
< k − 1. The remaining of the proof is exactly the same.

□

3.1. Unknown slopes. When we try to extend Theorems  3.1 and  3.2 to the case
of knowning the maximum number of different slopes but not knowing the slopes
themselves, we encounter the unpleasant fact that when one subtracts two func-
tions like those in Theorem  3.2 one obtains again such a function but with much
larger parameters. If the numbers f1, f2 are as in Theorem  3.2 , with at most N
vertices total in the polygonal regions involved then it can be that the number of
vertices in the corresponding representation of f1 − f2 is quadratic in N, as shown
in Fig.  7 . If we try to apply Theorem  3.2 to f1 − f2 we end up with a superquadratic
number of samples.

The solution to this is to change the representation. Instead of parametrizing
f by the number of values it takes we parametrize it by the number of building
blocks, indicator functions of a polygonal region, that are needed to construct f .

Theorem 3.3. Suppose f : [0, 1)2 → C is of the form

(9) f (x, y) =
n∑

j=1

f j1P j(x, y),

where f j ∈ C and the P j are polygonal regions, not necessarily disjoint, with a total
number of vertices at most N. Suppose also that the different slopes appearing in
some P j are among the known slopes s1, . . . , sk.

Then f can be determined by the samples of f̂ on the set A(k,N) in ( 8 ) which is of
size O(k2N log N).

Proof. Exactly the same as the proof of Theorem  3.2 .
□
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f1 = v1

f1 = v2

f1 = v3

f2 = w1

f2 = w2

f2 = w3 f2 = wN

f1 − f2 = v3 − w3

f1 = vN

Figure 7. The two functions f1, f2 have N different levels each, with
number of vertices O(N), but f1− f2 may have N2 different values with
a quadratic total number of vertices.

Corollary 3.2. Suppose f is as in Theorem  3.3 with parameters k (maximum num-
ber of different slopes) and N (maximum total number of vertices appearing in any
of the polygons P j), but we do not assume that we know the slopes.

Then f can be determined by the samples of f̂ on the set A(2k, 2N) in ( 8 ) which is
of size O(k2N log N).

Proof. Suppose f1, f2 are both of the form (  9 ) with parameters k and N. Then f1 − f2
is also of the same form but with parameters 2k and 2N, at most. If f1, f2 have the
same Fourier samples on A(2k, 2N) then, by Theorem  3.3 , since f1 − f2 has Fourier
samples identically 0 on A(2k, 2N), it follows that f1 ≡ f2.

□

Refering to Fig.  7 notice that f1 − f2 has parameters 2k and 2N if we assume that
f1, f2 have parameters k and N. We do not demand that the P j in (  9 ) are disjoint and
this makes for a more flexible and algebraically pliable representation.

Corollary 3.3. Suppose P ⊆ [0, 1)2 is a polygonal region with n ≤ N vertices and
whose edges have at most k different (unknown) slopes.

Then P can be determined by sampling its Fourier Transform 1̂P on A(2k, 2N)
which is of size O(k2N log N).
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Proof. The function 1P is of the form covered by Corollary  3.2 , so it is determined
by its Fourier samples on A(2k, 2N).

□

Remark 3.2. It is less than satisfying that the maximum number k of different
slopes appears quadratically in the size of the sample. Of course in the general case
of exponential polynomials with coefficients of degree < k the number of parameters
involved in each polynomial coefficient is also quadratic so one cannot expect a gen-
eral improvement. But in the case of polygonal regions the polynomial coefficients
that appear on the right side of ( 7 ) are a product of ≤ k linear forms in R2 and that
involves only 2k parameters, so one may hope to find a way to exploit this. As it
stands, using the general recovery of exponential polynomials as a means to recover
polygons the general case with N different slopes gives a sample size larger than N3

which is much larger than the number of parameters.
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