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Abstract. We present a new approach to the problem of mutu-
ally unbiased bases (MUBs), based on positive definite functions
on the unitary group. The method provides a new proof of the fact
that there are at most d+1 MUBs in Cd, and it may also lead to a
proof of non-existence of complete systems of MUBs in dimension
6 via a conjectured algebraic identity.
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1. Introduction

In this paper we present a new approach to the problem of mutually
unbiased bases (MUBs) in Cd. Our approach has been motivated by
two recent results in the literature. First, in [21] one of the present
authors described how the Fourier analytic formulation of Delsarte’s LP
bound can be applied to the problem of MUBs. Second, in [24, Theorem
2] F. M. Oliveira Filho and F. Vallentin proved a general optimization
bound which can be viewed as a generalization of Delsarte’s LP bound
to non-commutative settings (and they applied the theorem to packing
problems in Euclidean spaces). As the MUB-problem is essentially
a problem over the unitary group, it is natural to combine the two
ideas above. Here we present another version of the non-commutative
Delsarte scheme in the spirit of [21, Lemma 2.1]. Our formulation in
Theorem 2.3 below describes a less general setting than [24, Theorem
2], but it makes use of the underlying group structure and is very
convenient for applications. It fits the MUB-problem naturally, and
leads us to consider positive definite functions on the unitary group.
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The paper is organized as follows. In the Introduction we recall
some basic notions and results concerning mutually unbiased bases
(MUBs). In Section 2 we describe a non-commutative version of Del-
sarte’s scheme in Theorem 2.3. We believe that this general scheme
will be useful for several other applications, too. We then apply the
method in Theorem 2.4 to give a new proof of the fact that there are
at most d + 1 MUBs in Cd. While the result itself has been proved
by other methods, we believe that this approach is particularly suited
for the MUB-problem and may lead to non-existence proofs in the fu-
ture. In particular, in Section 3 we speculate on how the non-existence
of complete systems of MUBs could be proved in dimension 6 via an
algebraic identity conjectured in [22].

Throughout the paper we follow the convention that inner products
are linear in the first variable and conjugate linear in the second.

Recall that two orthonormal bases in Cd, A = {e1, . . . , ed} and B =

{f1, . . . , fd} are called unbiased if for every 1 ≤ j, k ≤ d, |〈ej, fk〉| =
1√
d

.

A collection B1, . . .Bm of orthonormal bases is said to be (pairwise) mu-
tually unbiased if any two of them are unbiased. What is the maximal
number of mutually unbiased bases (MUBs) in Cd? This problem has
its origins in quantum information theory, and has received consider-
able attention over the past decades (see e.g. [14] for a recent compre-
hensive survey on MUBs). The following upper bound is well-known
(see e.g. [1, 3, 30]):

Theorem 1.1. The number of mutually unbiased bases in Cd is less
than or equal to d+ 1.

We will give a new proof of this fact in Theorem 2.4 below. Another
important result concerns the existence of complete systems of MUBs
in prime-power dimensions (see e.g. [1, 11, 12, 17, 20, 30]).

Theorem 1.2. A collection of d+ 1 mutually unbiased bases (called a
complete system of MUBs) exists (and can be constructed explicitly) if
the dimension d is a prime or a prime-power.

However, if the dimension d = pα1
1 . . . pαk

k is not a prime-power, very
little is known about the maximal number of MUBs. By a tensor
product construction it is easy to see that there are at least p

αj

j + 1

MUBs in Cd where p
αj

j is the smallest of the prime-power divisors of
d. One could be tempted to conjecture the maximal number of MUBs
always equals p

αj

j + 1, but this is already known to be false: for some
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specific square dimensions d = s2 a construction of [29] yields more
MUBs than p

αj

j + 1 (the construction is based on orthogonal Latin
squares). Another important phenomenon, proved in [28], is that the
maximal number of MUBs cannot be exactly d (it is either d + 1 or
strictly less than d).

The following basic problem remains open for all non-primepower
dimensions:

Problem 1.3. Does a complete system of d + 1 mutually unbiased
bases exist in Cd if d is not a prime-power?

For d = 6 it is widely believed among researchers that the answer
is negative, and the maximal number of MUBs is 3. The proof still
eludes us, however, despite considerable efforts over the past decade
([3, 4, 5, 6, 18]). On the one hand, some infinite families of MUB-
triplets in C6 have been constructed ([18, 31]). On the other hand,
numerical evidence strongly suggests that there exist no MUB-quartets
[5, 6, 8, 31]. For non-primepower dimensions other than 6 we are not
aware of any conjectures as to the exact maximal number of MUBs.

It will also be important to recall the relationship between mutually
unbiased bases and complex Hadamard matrices. A d × d matrix H
is called a complex Hadamard matrix if all its entries have modulus 1
and 1√

d
H is unitary. Given a collection of MUBs B1, . . . ,Bm we may

regard the bases as unitary matrices U1, . . . , Um (with respect to some
fixed orthonormal basis), and the condition of the bases being pairwise
unbiased amounts to U∗i Uj being a complex Hadamard matrix scaled
by a factor of 1√

d
for all i 6= j. That is, U∗i Uj is a unitary matrix (which

is of course automatic) whose entries are all of absolute value 1√
d
.

A complete classification of MUBs up to dimension 5 (see [7]) is
based on the classification of complex Hadamard matrices (see [16]).
However, the classification of complex Hadamard matrices in dimension
6 is still out of reach despite recent efforts [2, 19, 23, 26, 27].

In this paper we will use the above connection of MUBs to com-
plex Hadamard matrices. In particular, we will describe a Delsarte
scheme for non-commutative groups in Theorem 2.3, and apply it to
the MUB-problem with an appropriate witness function h(Z) on the
unitary group U(d) in Theorem 2.4.
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2. Mutually unbiased bases and a non-commutative
Delsarte scheme

In this section we describe a non-commutative version of Delsarte’s
scheme, and show how the problem of mutually unbiased bases fit into
this scheme. The commutative analogue was described in [21].

Let G be a compact group, the group operation being multiplication
and the unit element being denoted by 1. We will denote the normalized
Haar measure on G by µ. Let a symmetric subset A = A−1 ⊂ G, 1 ∈ A,
be given. We think of A as the ’forbidden’ set. We would like to
determine the maximal cardinality of a set B = {b1, . . . bm} ⊂ G such
that all the quotients b−1j bk ∈ Ac ∪ {1} (in other words, all quotients
avoid the forbidden set A). When G is commutative, some well-known
examples of this general scheme are present in coding theory ([13]),
sphere-packings ([9]), and sets avoiding square differences in number
theory ([25]). We will discuss the non-commutative case here.

Recall that the convolution of f, g ∈ L1(G) is defined by f ∗ g(x) =∫
f(y)g(y−1x)dµ(y).

Recall also the notion of positive definite functions on G. A function
h : G → C is called positive definite, if for any m and any collection
u1, . . . , um ∈ G, and c1, . . . , cm ∈ C we have

∑m
i,j=1 h(u−1i uj)cicj ≥ 0.

When h is continuous, the following characterization is well-known.

Lemma 2.1. (cf. [15, Proposition 3.35]) If G is a compact group, and
h : G→ C is a continuous function, the following are equivalent.

(i) h is of positive type, i.e.

(1)

∫
(f̃ ∗ f)h ≥ 0

for all functions f ∈ L2(G) (here f̃(x) = f(x−1))

(ii) h is positive definite

This statement is fully contained in the more general Proposition
3.35 in [15]. In fact, for compact groups Proposition 3.35 in [15] shows
that instead of L2(G) the smaller class of continuous functions C(G)
or the wider class of absolute integrable functions L1(G) could also
be taken in (i). All these cases are equivalent, but for us it will be
convenient to use L2(G) in the sequel.

We formulate another important property of positive definite func-
tions.
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Lemma 2.2. Let G be a compact group and µ the normalized Haar
measure on G. If h : G→ C is a continuous positive definite function
then α =

∫
G
hdµ ≥ 0, and for any α0 ≤ α the function h − α0 is

also positive definite. In other words, for any m and any collection
u1, . . . , um ∈ G and c1, . . . , cm ∈ C we have

(2)
m∑

i,j=1

h(u−1i uj)cicj ≥ α|
m∑
i=1

ci|2.

Proof. Let f ∈ L2(G) and define a linear operator H : L2(G)→ L2(G)
by

(Hf)(x) =

∫
h(x−1y)f(y) dµ(y).

As h is assumed to be positive definite, H is positive self-adjoint. Also,
writing 1 for the constant one function on G we have

H1 = α1, 〈H1,1〉 = α ≥ 0.

Let us use the notation β =
∫
f . We have the orthogonal decomposition

f = β1 + f2, where f2 ⊥ 1.

Using the invariance of the Haar measure and exchanging the order
of integration we have

〈Hf,1〉 =

∫
(Hf)(x),1(x)dµ(x) =

∫
h(x)dµ(x)

∫
f(y)dµ(y) = αβ

Therefore,

αβ = 〈Hf,1〉 = 〈H(β1 + f2),1〉 = αβ + 〈Hf2,1〉,
and hence 〈Hf2,1〉 = 0.

To show that h− α is positive definite we need to check that

〈Hf, f〉 − |β|2α ≥ 0,

for all f ∈ L2(G). We have

〈Hf, f〉 = 〈βα1 +Hf2, β1 + f2〉 = |β|2α + 〈Hf2, f2〉

since f2 ⊥ 1 and Hf2 ⊥ 1. Hence 〈Hf, f〉− |β|2α = 〈Hf2, f2〉 ≥ 0. �

After these preliminaries we can describe the non-commutative ana-
logue of Delsarte’s LP bound. (To the best of our knowledge the com-
mutative version was first introduced by Delsarte in connection with
binary codes with prescribed Hamming distance [13]. Another formu-
lation of the non-commutative version is given in [24]).
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Theorem 2.3. (Non-commutative Delsarte scheme for compact groups)
Let G be a compact group, µ the normalized Haar measure, and let A =
A−1 ⊂ G, 1 ∈ A, be given. Assume that there exists a positive definite
function h : G→ R such that h(x) ≤ 0 for all x ∈ Ac, and

∫
hdµ > 0.

Then for any B = {b1, . . . bm} ⊂ G such that b−1j bk ∈ Ac ∪ {1} the

cardinality of B is bounded by |B| ≤ h(1)∫
hdµ

.

Proof. Consider

(3) S =
∑
u,v∈B

h(u−1v).

On the one hand,

(4) S ≤ h(1)|B|,
since all the terms u 6= v are non-positive by assumption.

On the other hand, applying (2) with α =
∫
hdµ, u, v ∈ B and

cu = cv = 1, we get

(5) S ≥ α|B|2.

Comparing the two estimates (5), (4) we obtain |B| ≤ h(1)∫
hdµ

. �

The function h in the Theorem above is usually called a witness
function.

We will now describe how the problem of mutually unbiased bases fits
into this scheme. Consider the group U(d) of unitary matrices, being
given with respect to some fixed orthonormal basis of Cd. Consider
the set CH of complex Hadamard matrices. Following the notation
of the Delsarte scheme above define Ac = 1√

d
CH ⊂ U(d), i.e. let the

complement of the forbidden set be the set of scaled complex Hadamard
matrices. Then the maximal number of MUBs in Cd is exactly the
maximal cardinality of a set B = {b1, . . . bm} ⊂ U(d) such that all
the quotients b−1j bk ∈ Ac ∪ {1}. After finding an appropriate witness
function we can now give a new proof of the fact the number of MUBs
in Cd cannot exceed d+ 1.

Theorem 2.4. The function h(Z) = −1 +
∑d

i,j=1 |zi,j|4 (where Z =

(zi,j)
d
i,j=1 ∈ U(d)) is positive definite on U(d), with h(1) = d − 1 and∫

h = d−1
d+1

. Consequently, the number of MUBs in dimension d cannot
exceed d+ 1.

Proof. Consider the function h0(Z) =
∑d

i,j=1 |zi,j|4. First we prove that
h0 is positive definite. For this, recall that the Hilbert-Schmidt inner
product of matrices is defined as 〈X, Y 〉HS = Tr (XY ∗), and for any
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vector v in a finite dimensional Hilbert space H the (scaled) projection
operator Pv is defined as Pvu = 〈u, v〉v. For any two vectors u, v ∈ H
we have |〈u, v〉|2 = Tr PuPv. Also, recall that the inner product on
H ⊗H is given by 〈u1 ⊗ u2, v1 ⊗ v2〉 = 〈u1, v1〉〈u2, v2〉.

Let U1, . . . , Um be unitary matrices, c1, . . . , cm ∈ C, and let {e1, . . . , ed}
be the orthonormal basis with respect to which the matrices in U(d)
are given. Then

(6) |〈U∗rUtej, ek〉|4 = |〈Utej, Urek〉|4 = |〈Utej ⊗ Utej, Urek ⊗ Urek〉|2 =

Tr PUtej⊗UtejPUrek⊗Urek .

Therefore, with the notation Qt =
∑m

j=1 PUtej⊗Utej we have

(7) h(U∗rUt) =
∑
j,k

|〈U∗rUtej, ek〉|4 = TrQtQr.

Finally,

(8)
m∑

r,t=1

h(U∗rUt)crct = ‖
m∑
t=1

ctQt‖2HS ≥ 0,

as desired.

It is known [10] that the integral of h0 on U(d) is 2d
d+1

. By applying

Lemma 2.2 to h0 with α0 = 1 <
∫
h0 we get that h is also positive

definite. Note also that h vanishes on the set 1√
d
CH of scaled complex

Hadamard matrices, h(1) = d−1, and
∫
h = 2d

d+1
−1 = d−1

d+1
. Therefore,

Theorem 2.3 implies that the number of MUBs in Cd is less than or

equal to h(1)∫
h

= d+ 1. �

We remark here that one could consider the witness functions hβ =
h0−β for any 1 ≤ β ≤ 2d

d+1
. All these functions satisfy the conditions of

Theorem 2.3. However, an easy calculation shows that the best bound
is achieved for β = 1.

3. Dimension 6

The function h(Z) = −1 +
∑d

i,j=1 |zi,j|4 in Theorem 2.4 was a fairly

natural candidate, as it vanishes on the set of (scaled) complex Hadamard
matrices 1√

d
CH, for any d. Other such candidates are hk(Z) = − 1

nk−2 +∑d
i,j=1 |zi,j|2k for any k ≥ 2, but they give worse upper bounds than

h. Furthermore, Theorem 1.2 implies that the result of Theorem 2.4
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is sharp whenever d is a prime-power, and hence we cannot hope to
construct better witness functions than h, in general. However, let us
examine the situation more closely in dimension d = 6, and discuss
why we hope that the non-existence of a complete system of MUBs
could be proved by this method.

For d = 6 we have other functions which are conjectured to vanish
on 1√

d
CH. Namely, Conjecture 2.3 in [22] provides a selection of such

functions. Let

(9) m1(Z) =
∑
π∈S6

6∑
j=1

zπ(1),jzπ(2),jzπ(3),jzπ(4),jzπ(5),jzπ(6),j,

where S6 denotes the permutation group on 6 elements. Also, let
m2(Z) = m1(Z

∗). Then m1 and m2 are real-valued (because each
term appears with its conjugate), and they are conjectured to vanish
on 1√

d
CH. Furthermore, as the inner sum in (9) is conjectured to be

zero for all π ∈ S6, we may even multiply each term with (−1)sgn π, if
we wish. This leads to other possible choices of m1 and m2.

The algebraic identity (9) makes dimension 6 very special and pro-
vides some further natural candidates of witness functions for the MUB-
problem. Namely, let

m(Z) = (m1(Z) +m2(Z))2, or

m(Z) = m2
1(Z) +m2

2(Z), or

m(Z) = (m1(Z)m2(Z))2.

In all three cases m(I) = 0, and
∫
Z∈U(d)

m(Z)dµ > 0. Therefore, if

for any ε > 0 the function h(Z) + εm(Z) is positive definite, we get
a better bound than in Theorem 2.4, and obtain that the number of
MUBs in dimension 6 is strictly less than 7, i.e. a complete system of
MUBs does not exist. This leads us to the following general problem.

Problem 3.1. Given a polynomial function f(Z) of the matrix ele-
ments zi,j and their conjugates zi,j, what is a necessary and sufficient
condition for f to be positive definite on the unitary group U(d)?

Finally, it would also be interesting to find any analogue of Conjec-
ture 2.3 in [22] for any dimensions other than d = 6.
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