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Agstract. We discuss part of Fuglede’s original pa-
per [Fug74] in which he posed his famous conjecture
on which bodies in Euclidean space admit an orthog-
onal basis of exponentials for their L? space.

1. INTRODUCTION

In the 1970s Bent Fuglede [Fug74] made the following
conjecture, working on which has shaped many mathe-
maticians’ career.

Conjecture 1. Suppose Q C RY is a bounded set of pos-
itive measure. Then Q tiles space by translations if and
only if the space L*(QQ) has an orthogonal basis which con-
sists of exponentials.

Tiling by translations. For Q to tile space by translations
means that there is a countable set T C R such that

(1) Z lo(x —t) = 1, for almost every x € R”.

teT

In other words, we can translate the domain around so
that the translates are disjoint and cover everything (up
to measure 0). This definition makes perfect sense with
any nonnegative function f in place of 1o. We say that
f = 0 tiles with the set of translates T (sometimes T is
called a tiling complement of f or 1) at level ¢ if

(2) Z f(x —t) = ¢, for almost every x € R%.

teT

Spectrality. The exponential functions on IR? are complex
functions of the form x — ¢*™**, where A - x denotes the
ordinary inner product on RY. The vector A is called the
frequency of the exponential. If the set of exponentials
with frequencies in A € R?

E(A) = {x - ¢ : 1 e A
1
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is an orthogonal basis for L?(QQ) we call Q spectral and A
its spectrum (spectra are not unique if they exist as we
can always translate A without changing this property).

No relation between the set of tiling translates T and the
frequencies of the spectrum A is claimed in Conjecture 1.
But in one important (and easy) case, already proved in
[Fug74], the relation is very clear.

Theorem 1. Q tiles by translations with the lattice L if
and only if it is spectral with the dual lattice L* as a spec-
trum.

If L = AZ" is a lattice (A is a nonsingular d X d matrix) its
dual lattice is L* = A~ Z°.

2. Basic RESULTS ON THE FUGLEDE CONJECTURE

Conjecture 1 has given rise to hundreds of papers. Its
variations are plentiful. It is easy to make sense of the
conjecture not only in Euclidean spaces but in any locally
compact abelian (LCA) group, such as Z?, T? and finite
abelian groups such as cyclic groups. Tiling can be stated
immediately in this context and the role of exponentials
is played by the continuous characters of the group, the
elements of the dual group [Rud62].

Early in the 21st century the “spectral — tiling” di-
rection for RY was disproved by Tao [Tao04] and shortly
thereafter the “tiling = spectral” direction for R? was
disproved by the author and Matolcsi [KMO0O6b]. Both di-
rections are now known to be false in R and Z* for d > 3
[Tao04; KM06a; KM06b; FR06; FMMO06] as well as for
several classes of finite groups. It is also known to be
true for some classes of finite groups (see for example
[KS21; Kis+22]). It is worth noting that all counterex-
amples for RY were first constructed as counterexamples
in some finite groups, then lifted to Z and finally to IR“.
The connections of Conjecture 1 to number theory (espe-
cially in dimension d = 1 or on the cyclic groups), com-
binatorics and, naturally, Fourier analysis are very pro-
nounced [Kol24]. We should also mention that the ques-
tion of spectrality makes sense also for measures. If j is
a probability measure on RY, for example, when does it
have a spectrum, i.e. an orthogonal basis for L?(1) which
consists of exponentials? This is a very active area of re-
search for which, however, we do not have a corresponding
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conjecture, as it is not clear how to define translational
tiling by a measure.

3. SPECTRALITY AS TILING

Fuglede came to his conjecture while studying a problem
posed to him by Segal and he proved Theorem 1 above.
He also proved that a triangle in the plane is not spec-
tral. Additionally he claimed that the disk in the plane
is not spectral but did not provide a full proof of this un-
til much later [Fug01]. It should be intuitively clear to
the reader that neither the triangle nor the disk can tile
the plane by translations (though the triangle can tile if
reflections about the origin are allowed in the group of
transformations along with translations).

Before discussing his proofs we shall make the following
important observation [KolOOb] which was not made by
Fuglede himself explicitly, though he was certainly aware
of it.

Let QO C R? have finite Lebesgue measure and assume
that the set A C IR is such that the set of the correspond-
ing exponentials E(A) is orthogonal in L*(Q). If f € L*(Q)
then Bessel’s inequality gives

Y [ enao| < vol @ ||f

AeA

If E(A) is also complete in L?(Q)) then Bessel’s inequality
becomes an equality, and if this equality holds for all f
then we have completeness of E(A).

Assuming E(A) is an orthogonal basis we apply this now
to f(x) = ¥~ for an arbitrary frequency t € R? and we
obtain, after very little calculation,

—2
(3) Y [Taf - 2) = vol (2.
AEA
Equation (3) clearly represents a tiling situation as in (2)

where the tile is now the nonnegative function |i5|2 €
L'(RY) and the translation set is the spectrum A. Since
the trigonometric polynomials are dense in L?(QQ) we can
see that (3) implies )}, |(f,e;\)|2 = vol (Q)”f”i for any
f € L*(Q). Clearly Conjecture 1 is then equivalent to the
more symmetric form:

—2
Q tiles by translations < |]19| tiles by
translations.
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Since (7™, 2T 5 () = 1o(A - ) we also have the impor-
tant observation that orthogonality of E(A) is equivalent
to the difference set A — A being a subset of the zero set

{i; = O} U {0} of the Fourier Transform of the indicator
function of Q.

4. THE TRIANGLE IS NOT SPECTRAL

Fuglede proved that the triangle Q) is not spectral by first
finding the zeros of the Fourier Transform of 1. With
the Fourier Transform normalization

ﬁg) — jf(x)e—2nig.x dx
R4

and working on the specific triangle with vertices
(0,0),(1,0) and (0,1) (we can always apply a linear trans-
formation to our domain as this does not change spec-
trality) Fuglede computed that the zero set of the Fourier
Transform of the triangle is the set

Z:{(m,n)eZZ:miO, n#0, min},
shown in Figure 1.

At this point it is clear to us now (but, apparently, was
not clear to Fuglede back then, judging from his proof)
that there is no spectrum. We now know from (3) that any
possible spectrum A must have density (number of points
in a large disk, divided by the area of the disk) equal to
vol (Q) = 3. This is true for any tiling: the volume of the
tile (or the integral of the tiling function, as in (3)) times
the density of the translation set must equal the level of
the tiling. Since we are free to translate any possible spec-
trum A we assume, as we often do, that 0 € A. Orthog-
onality then dictates that A C Z C Z? and the shape of
Z shows that there is at most one point of A on any one
horizontal (or vertical, or parallel to the line y = x) line.
It follows that A has O(R) points in any ball of radius R so
it has zero density, not density 1/2 as it should have.

On the other hand, as Fuglede [Fug74] pointed out, there
are infinite orthogonal sets A for the triangle. For in-
stance take A = {(-n,n) : n € Z}.

Let us now describe an alternative proof that the trian-
gle is not spectral which avoids the precise calculation of
the zero set of the Fourier Transform and which is much
more general [KP02]. Let us write f(x, ) = 1a(x, y) for the
indicator function of the triangle. To compute its Fourier
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Ficure 1. The zero set Z of the Fourier
Transform of the triangle shown with one
vertex at the origin and the others at ¢, ¢,.
The dots (zeros) are on integer points. The
three dashed lines are missing (they are
non-zeros).

Transform restricted on the x-axis we can, using Fubini’s
theorem, first project f onto the x-axis and take the pro-
jection’s one-dimensional Fourier Transform.

This projection g(x) = [ f(x,y)dy is the piecewise linear
function which is equal to 1 at 0, equal to 0 at 1 and is 0
off [0,1]. To find the roots of ¢ is the same as finding the
roots of ?(g) = 2mi&Q(&) except at 0. The derivative of g is
the measure

p =00 — Ly,

whose Fourier Transform is

WE) =1-T(). (€ €R)

The second term is the Fourier Transform of an inte-

grable function and so it tends to 0 as |{] — oo. This

implies that for some constant K > 0 we have |ﬁ(£)| > 1
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if |£| > K and
(4)

|ig\)(5, 0)| = ‘g/(\é)' > é for |£] > K and some constant ¢ > 0.

It is easy to see using the divergence theorem that for
C=(&n) € R*\ {0} we have

T — _i —2niC~t£ . d 0
1a(0) ilClaQe 7 v(t)do(t), x#0,

where v(t) = (v1(t), v2(t)) is the outward unit normal vector
to dQ at t € JQ and do is the arc-length measure on JQ.
From this it follows that

(5) V10| < % for |C| > 1.

It then follows from (4) and (5) that for some ¢ > 0 and
for all &, n with |£] > K and |17| < € the Fourier Transform

1a(&,n) #0.

Ficurk 2. The shaded region has no zeros of 1o

It is easy to see that for some positive p (the magnitude

of the smallest root of 1,) we have |/\ - y| > p for any two
distinct A, u € A. From the zero-free region (see Fig. 2)
we established above it follows easily that the set A has
at most a bounded number of points in each horizontal
strip of width 2¢, which implies that A has density 0 and
cannot therefore be a spectrum.

5. THE DISK IS NOT SPECTRAL

In [Fug74] Fuglede also stated that the disk is not a spec-
tral set. This, along with his result about the triangle,
matched his expectation that is contained in Conjecture
1. It is clear that the disk cannot tile and it is well known
since the time of Minkowski that every convex set that
tiles by translation must be symmetric (this latter prop-
erty was extended to spectral sets early on [Kol00Oa]: spec-
tral convex sets must be symmetric). The impossibility of



FUGLEDE’S CONJECTURE ON ORTHOGONAL BASES OF EXPONENTIA

translational tiling with a triangle should be intuitevely
obvious: how are we to cover the outside of one of the tri-
angle’s edges, say edge ¢? There is no other edge of the
triangle that is parallel to e and facing in the opposite di-
rection.

Fuglede outlined (in very broad strokes) how the proof
that the disk is not spectral should proceed. In fact he
claimed that using properties of the zeros of the Bessel
function J; (essentially the Fourier Transform of the disk)
one can prove that there is no infinite orthogonal set A
(which is clearly stronger than non-spectrality).

Fuglede returned later to this problem [Fug01l] and
proved that there are no infinite sets of orthogonal ex-
ponentials for a ball in any dimension. He used, as he
predicted, asymptotic properties of roots of Bessel func-
tions. The same result was proved also in [IKP99; IR03].
See also [Kol04b, Section 3.4] for an almost “accidental”
proof that the disk in the plane is not spectral.

Let us make clear here that, although we know that any
orthogonal set of exponentials for the disk must be finite,
we do not know that the cardinality of all such orthog-
onal sets is uniformly bounded. (In other words, it is
still conceivable that there are arbitrarily large orthog-
onal sets for the disk.) Fuglede himself expected the uni-
form bound to be 3 (which is clearly achievable for the disk
by taking three points at an equilateral triangle whose
side-length is a root of the Fourier Transform of the disk).
Thus it makes sense to ask, for an orthogonal set A for
the disk, how many points it can have in a disk of radius
R. The first result of this type was that this quantity is
O(R) [1J08]. This was improved to O(R*?) in [IK13] and
this upper bound stood until very recently when it was
improved to O(R¥>*€) for any € > 0 [Zak24].

We would like to show here a method to show nonspectral-
ity of the disk [KolO4a] that uses some Ramsey properties
of sets of positive Lebesgue density. (It is however known
by now that Conjecture 1 holds for convex bodies [LM22]
so we are not proving anything new.)

There are two main ingredients in this proof. Both hold
for smooth symmetric convex bodies of positive curvature
everywhere, and so does the resulting non-spectrality,
but we will restrict the discussion to the ball to keep it
simple.
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(1) The zeros of i;, where Q is the unit ball, are
spheres, centered at the origin whose radii r, are
asymptotic to an arithmetic progression

(6) . = A+ Bn+o(1)
where A, B are constants (see e.g. [[K13]).

(2) If a set E C R has positive density with respect
to Lebesgue measure (this means that there is a
constant ¢ > 0 and arbitrarily large balls such that
in each of these balls the set E takes up proportion
at least c of their volume) then all sufficiently large
distances are realized within the set E [FKW90;
Bou86; Kol04al].

Suppose then that A C R? is a spectrum for the unit ball.
Then any two points of A are distance at least C > 0 apart,
where C is a constant and A has positive (counting) den-
sity. Let € = 11—0 min {B, C} and define then the set

E=A+B,

which has positive density wit respect to Lebesgue mea-
sure since A has positive counting density and the balls
B. of radius € centered at A are disjoint. Take two points
x,y € E (see Fig. 3). Then there are two points A, u € A
such that

lx —A| < e and |y—y| <e§€,
which implies that

o]~ 1=l < 2.

But |}L - y' is equal to some 7, and so very close to a
number of the form A + Bn from (6) if only |)\ — y' is large

enough. It follows that |x - y| is within 2e from some 7,,.
Since the distance between successive r,s is B+0(1), which
is much larger than 2¢, it follows that the possible val-
ues for |x — y| have gaps going all the way to infinity, con-
tradicting the fact, mentioned above, that all sufficiently
large distances occur between points of E. We have ar-
rived at a contradiction, so the ball does not have a spec-
trum (it does not even have an orthogonal set A of positive
counting density, by the argument we just presented).
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