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Abstract. We prove that for any two lattices L,M ⊆
Rd of the same volume there exists a measurable,
bounded, common fundamental domain of them. In
other words, there exists a bounded measurable set
E ⊆ Rd such that E tilesRd when translated by L or by
M. In fact, the set E can be taken to be a finite union
of polytopes. A consequence of this is that the indi-
cator function of E forms a Weyl–Heisenberg (Gabor)
orthogonal basis of L2(Rd) when translated by L and
modulated by M∗, the dual lattice of M.
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1. Introduction

1.1. The Steinhaus tiling problem. A question of
Steinhaus from the 1950s [  Mos81 ,  Sie58 ] asks if there is a
subset E of the plane R2 such that E tiles the plane when
translated by RθZ2, for any value of θ. Here Rθ denotes
the 2 × 2 matrix which rotates the plane by the angle θ
around the origin. Equivalently we are seeking a set E
such that RθE tiles the plane when translated by Z2, for
any θ.

For a set E ⊆ Rd to tile Rd when translated by the set
T ⊆ Rd we mean that the T-translates of E partition Rd.
If the set T happens to be a subgroup of Rd this is the
same as demanding that E contains exactly one element
from each coset of T in Rd. Clearly this definition of tiling
makes sense in any abelian group.

The Steinhaus tiling problem bifurcated from the
1980s into two forms:

• the original, set-theoretic formulation where noth-
ing else is expected from the set E but to contain
one point from each coset of RθZ2, and this for any
θ, and
• the measurable formulation, where the set E is ex-

pected to be Lebesgue measurable but, in return,
the tiling is demanded almost everywhere: for any
θ we only ask that

(1)
∑

n∈RθZ2

1E(x − n) = 1, for almost all x ∈ R2.

We should add that the problem makes sense inRd, d > 2,
as well, where we are seeking a set E that tiles simultane-
ously with all linear transformations ofZd by an orthogo-
nal matrix (though we must admit that sensible forms of
this problem may be stated even with smaller groups).

The set-theoretic question in the plane (d = 2) was set-
tled in a major result by Jackson and Mauldin [  JM02a ,

 JM02b ,  JM03 ] who proved the existence of such a set E in
the plane.

The measurable question is still open in the plane.
There have been many partial results, almost all of which
are of the form “if a measurable Steinhaus set E exists
it must be large near infinity”. For example it is known
[ Bec89 ,  Kol96 ] that such a set cannot be bounded. The
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best result so far in this direction is that in [  KW99 ] where
it is shown that∫

E
|x|α dx = +∞ for α > 46/27.

In an interesting lack of symmetry between the set-
theoretic and measurable developments it is now known
[ KW99 ,  KP02 ] that there are no measurable Steinhaus
sets in dimensions d > 2 but it is still unknown if there
are “set-theoretic” Steinhaus sets for d > 2.

The interested reader should consult the references in
[ KP17 ] as well as the most recent paper [  KL24 ], for re-
sults on many variations of the Steinhaus question.

1.2. Common fundamental domains for finitely
many lattices. A fundamental domain for an abelian
group H within an abelian group G is a subset of G that
contains exactly one element from every coset of H in G.
So, the Steinhaus tiling problem for the plane asks for a
common fundamental domain for all groups RθZ2 inside
R2, for θ ∈ [0, 2π).

From now on, we focus on the measurable version of the
problem where we only ask E to satisfy the tiling equation
( 1 ) almost everywhere.

A sensible relaxation of the Steinhaus problem is to
look for a common fundamental domain of only a finite
family of lattices

(2) L1, . . . , Ln ∈ Rd.

Any measurable fundamental domain of a lattice has vol-
ume equal to the determinant (also called volume) of the
lattice. Hence, we must require that all L1, . . . , Ln have the
same volume.

In [ Kol97 ] it was proved that if the dual lattices of the
collection ( 2 ) have a direct sum

L∗1 + · · · + L∗n

then we can find a measurable common fundamental do-
main for (  2 ). And it was shown in [  HW01 ] that for the
case of two lattices only no condition is necessary: Any
two lattices of the same volume in Rd have a measurable
common fundamental domain. (See also [  KP22 ] for sev-
eral similar questions.)
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In both [ Kol97 ] and [ HW01 ] the constructed fundamen-
tal domains are generally unbounded. Since then, it has
been an open problem whether two lattices of the same
volume in Rd have a measurable bounded common fun-
damental domain in Rd. This question we answer in this
paper:
Theorem 1. Suppose L,M are lattices in Rd of the same
volume. Then there is a bounded measurable Ω ⊆ Rd

which tiles with both L and M.
The set Ω can be chosen as a finite union of polytopes.

The important technical breakthrough arises in the
special case below when L and M have a direct sum. This
is made possible using the main result of [ Gre24 ].
Theorem 2. If L,M ⊆ Rd are lattices of the same volume
and L +M = Rd then there is a bounded, measurable E ⊆
Rd such that L⊕E =M⊕E = Rd are both tilings. Moreover,
the set E may be chosen to be a finite union of polytopes in
Rd.

1.3. An application to Weyl–Heisenberg orthogonal
bases. In [  HW01 ] the existence of a measurable common
fundamental domain for two lattices is used to show that
whenever K,L are two lattices in Rd with det L · det K = 1
then there exists a Gabor (or Weyl-Heisenberg) orthogo-
nal basis of Rd with translation lattice L and modulation
lattice K. In other words, there exists a function g ∈ L2(Rd)
such that the collection of time-frequency translates

e2πiℓ·xg(x − k), ℓ ∈ L, k ∈ K,

is an orthogonal basis of L2(Rd). In their proof the func-
tion g is precisely the indicator function of a measurable
common fundamental domain of the lattices K and L∗.
Thus our Theorem  1 implies that this window function
g may be chosen to be of compact support, a possibly sig-
nificant property, since it offers the advantage of localiza-
tion.

1.4. Some notation. A lattice is a discrete subgroup of
Rn which linearly spans Rn. The rank of a subgroup of
Rn is the dimension of its linear span. Thus a lattice is a
discrete subgroup ofRn of full rank, equal to n. We denote
by vol L or det L the volume of any fundamental domain
of the lattice L, and by dens L the lattice density 1/vol L.
If L is a discrete subgroup of Rd of rank smaller than d
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we still write vol L or det L to denote the volume of the
fundamental domain in the R-linear space L spans.

Any lattice L ⊆ Rn is equal to AZn where A is a non-
singular n × n matrix. This matrix A is not unique, but
can be formed by taking as its columns any Z-basis of L.
The dual lattice of L is defined by

L∗ =
{
x ∈ Rd : x · ℓ ∈ Z for all ℓ ∈ L

}
and it can be seen that L∗ = A−⊤Zd.

When we write A ⊕ B for two sets A,B in an additive
group we mean that all sums a + b, with a ∈ A, b ∈ B, are
distinct. In this case we say the sum A+B is direct or that
A + B is a tiling.
Plan. We prove Theorem  2 first in §  2 and use it to prove
then Theorem  1 in § 3 .

2. Bounded common fundamental domains when the
sum is dense

The proof of Theorem  2 relies on certain results from
the theory of so-called cut-and-project sets in Rd. We
therefore give a brief description of this point set con-
struction, introducing necessary notation and terminol-
ogy.

A discrete point set Λ in Rd is called a Delone set if it
is both uniformly discrete and relatively dense, meaning
there exist radii r,R > 0 such that any ball of radius r
contains at most one point of Λ, and any ball of radius R
contains at least one point of Λ. IfΛ additionally satisfies

Λ −Λ ⊆ Λ + F,

for some finite set F in Rd, then we say that Λ is a Meyer
set.

A cut-and-project set, or model set, is constructed from
a lattice Γ ⊂ Rm ×Rn and a window set W ⊂ Rn by taking
the projection intoRm of those lattice points whose projec-
tion into Rn is contained in W. Denoting the projections
from Rm × Rn onto Rm and Rn by p1 and p2, respectively,
we assume that p1|Γ is injective, and that the image p2(Γ)
is dense in Rn, and denote by ΛW = Λ(Γ,W) the model set

Λ(Γ,W) =
{
p1(γ) : γ ∈ Γ, p2(γ) ∈W

}
.
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If the boundary ∂W of the window W has Lebesgue
measure zero, then the model set ΛW is called regular.
In this case, the point set ΛW in Rm has a number of de-
sirable properties. One can show that ΛW is a Meyer set
with well-defined density

densΛW =
|W|

detΓ
= |W| · densΓ.

Moreover, if the model set is either generic (meaning that
p2(Γ)∩ ∂W = ∅) or if the window W is half-open as defined
in [  Ple00 , Definition 2.2], then ΛW is repetitive. Repeti-
tivity is the crystal-like quality that every finite configu-
ration appearing in Λ will reappear infinitely often, see
e.g. [ Ple00 , Property 2] for a precise definition.

The cut-and-project construction is well-studied in the
field of aperiodic order, and in the last 30 years there have
been several results on when a model set (or more gen-
erally a Delone set) is at bounded distance from a lat-
tice [ DO91 ,  FG18 ,  Lac92 ]. We say that two point sets
Λ and Λ′ in Rn are bounded distance equivalent (or, at
bounded distance from each other) if there exists a bijec-
tion φ : Λ→ Λ′ and a constant C > 0 such that

∥φ(λ) − λ∥ < C

for all λ ∈ Λ.
Facts:

(1) Bounded distance equivalence is an equivalence
relation.

(2) If a Delone set Λ in Rd has a well-defined density
and is bounded distance equivalent to a lattice L
in Rd, then densΛ = dens L.

(3) Any two lattices L and M inRd of equal density are
necessarily at bounded distance from each other (
[ DO90 , Theorem 5.2], [  DO91 , Theorem 1], [  Kol97 ,
§3.2]).

The proof of Theorem  2 relies on the following result
from [ DO91 ] on model sets with parallelotope windows,
as well as a more recent result from [ Gre24 ] connecting
bounded distance equivalence and equidecomposability
(Theorem  5 below).
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Theorem 3. [ DO91 , Theorem 3.1] Let Γ be a lattice in
Rm ×Rn. If W ⊂ Rn is a parallelotope

W =

 n∑
k=1

tkvk : 0 ≤ tk < 1


spanned by n linearly independent vectors in p2(Γ), then
the model set Λ(Γ,W) is at bounded distance to a lattice in
Rm.

We say that two sets S and S′ in Rm are equidecom-
posable if S can be partitioned into finitely many subsets
which can be rearranged by translations to form a parti-
tion of S′. Given a subgroup G ⊂ Rm we will use the term
G-equidecomposable to mean that we allow only transla-
tions in G for this rearrangement.

Theorem  3 above can be extended to hold for any rea-
sonably well-behaved fundamental domain of a sublattice
in p2(Γ) by the following result of Frettlöh and Garber.
Theorem 4. [ FG18 , Theorem 6.1] Let Λ and Λ′ be two
model sets constructed from the same lattice Γ but with
different windows W and W′, respectively. If the windows
W and W′ are p2(Γ)-equidecomposable, then Λ and Λ′ are
bounded distance equivalent.

It turns out that for regular model sets, a converse of
Theorem  4 can be established if we relax the equidecom-
posability condition to ignore sets of measure zero.
Definition 1. Let G be a group of translations in Rn.
We say that two measurable sets S and S′ in Rn of equal
Lebesgue measure are G-equidecomposable up to measure
zero if there exists a partition of S into finitely many mea-
surable subsets S1, . . . , SN, and a set of vectors g1, . . . , gN ∈
G, such that S′ and

⋃N
j=1(S j + g j) differ at most on a set of

measure zero.
Theorem 5. [ Gre24 , Theorem 1.1] Let Γ ⊂ Rm × Rn be a
lattice and let W and W′ be bounded, measurable sets in
Rn where both ∂W and ∂W′ have measure zero and |W| =
|W′|. If the model sets ΛW = Λ(Γ,W) and ΛW′ = Λ(Γ,W′)
are bounded distance equivalent, then the windows W and
W′ are p2(Γ)-equidecomposable up to measure zero.
Remark 1. Note that in the proof of Theorem  5 in
[ Gre24 ], the partition of W is constructed by shifting W
by certain elements p2(γ) of p2(Γ), and successively remov-
ing the intersection of (what remains of) W+p2(γ) and W′.
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Accordingly, if W and W′ are both polytopes in Rm, then
the subsets in the partition of W may be chosen to be poly-
topes as well.

We are now equipped to prove Theorem  2 .

Proof of Theorem  2 . By abuse of notation let L = LZd and
M = MZd, where L and M are d × d non-singular ma-
trices. Let ΩL be the half-open parallelotope spanned by
the columns of L and ΩM be the half-open parallelotope
spanned by the columns of M. Then ΩL and ΩM are fun-
damental domains of the lattices L and M, respectively.
Since L and M are assumed to have equal volumes, we
have |ΩM| = |ΩL|.

We now construct a lattice Γ ⊂ Rd × Rd (where Γ again
denotes both the lattice itself and its matrix representa-
tion) by letting

Γ =


K

L M


,

where K may be chosen to be any d×2d matrix which acts
as an injective map on Z2d. With the cut-and-projection
construction in mind, we note that this ensures that the
projection p1 is injective when restricted to the lattice Γ.
Moreover, since L +M = Rd by assumption, we know that
p2(Γ) is dense in Rd.

We now consider the two model sets

ΛL = Λ(Γ,ΩL) =
{
p1(γ) : γ ∈ Γ, p2(γ) ∈ ΩL

}
and

ΛM = Λ(Γ,ΩM) =
{
p1(γ) : γ ∈ Γ, p2(γ) ∈ ΩM

}
.

Since p2(Γ) = L +M, we see that both ΩL and ΩM are win-
dows spanned by d linearly independent vectors in p2(Γ).
Thus by Theorem  3 , bothΛL andΛM are bounded distance
equivalent to a lattice. Moreover, by assumption we have
|ΩL| = |ΩM|, so densΛL = densΛM. This implies that the
model sets ΛL and ΛM are bounded distance equivalent
to lattices of equal density, and thus also at bounded dis-
tance from each other. We thus conclude from Theorem  5 
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that we can find a partition of ΩL into polytopal subsets
S1, . . . , SN and elements γ1, . . . , γN ∈ Γ such that

(3) ΩM =

N⋃
i=1

(
Si + p2(γi)

)︸        ︷︷        ︸
S′i

=

N⋃
i=1

S′i ,

where we understand this equality to hold up to measure
zero.

Finally, we observe that
p2(γi) = ℓi +mi,

for every i = 1, . . . ,N, where ℓi ∈ L and mi ∈ M. It follows
that

E =
N⋃

i=1

(S′i −mi) =
N⋃

i=1

(Si + ℓi)

is a fundamental domain for both M and L by (  3 ) and the
fact that (Si)N

i=1 is a partition of ΩL. We thus have
L ⊕ E =M ⊕ E = Rd,

for a bounded measurable set E ⊂ Rd. □

3. Bounded common fundamental domains in the
general case

In this section we prove Theorem  1 .
Lemma 1. Suppose L ⊆ Zm ×Rn is a lattice in Rd, where
d = m + n. Then

L2 = L ∩ {0}m ×Rn

has rank n.

Proof. Suppose rank L2 = k < n and let u1, . . . , uk ∈ {0}m×Rn

be a Z-basis of L2. Let also uk+1, . . . , ud be an extension
of this Z-basis to a Z-basis of L. This extension always
exists [ Cas96 , Corollary 3, p. 14].

It follows that there are g j ∈ Zm and r j ∈ {0}m × Rn, for
j = 1, . . . , d − k, such that

uk+ j = g j + r j, j = 1, . . . d − k.

Since m < d − k there are n j ∈ Z, not all 0, such that∑d−k
j=1 n jg j = 0. This implies that 0 ,

∑d−k
j=1 n juk+ j ∈ {0}m ×

Rn, hence this sum belongs to L2, a contradiction, since
u1, . . . , ud are linearly independent and L2 is generated by
u1, . . . , uk.



BOUNDED COMMON FUNDAMENTAL DOMAINS FOR TWO LATTICES10

□

Lemma 2. Suppose G1,G2 are subgroups of the abelian
group G of the same, finite index k. Then there are
g1, . . . , gk ∈ G which are simultaneously a complete set of
coset representatives of G1 and G2 in G. In other words

G1 +
{
g1, . . . , gk

}
= G2 +

{
g1, . . . , gk

}
= G

are both tilings.

Proof. Define s = [G : G1 + G2], so that s ≤ k, and let
x1, . . . , xs be a complete set of coset representatives of G1 +
G2 in G. It suffices to find a common fundamental domain
E of G1 and G2 in G1+G2 as, then, E+{x1, . . . , xs} is a common
fundamental domain of G1 and G2 in G. Notice that [G1 +
G2 : G1] = [G1 + G2 : G2] = k/s. Write r = k/s.

Case 1: G1 ∩ G2 = {0}.
We enumerate Gi =

{
gi

j : j = 1, . . . , r
}

for i = 1, 2, and let
F =

{
g1

j + g2
j : j = 1, . . . , r

}
. The elements of F are pairwise

inequivalent mod G1 and mod G2 and Gi + F = G1 +G2, for
i = 1, 2, so F is a complete set of coset representatives of
G1 and G2 in G1 + G2.

Case 2: G1 ∩ G2 , {0}.
Define then Γ = (G1+G2)/(G1∩G2) and Γi = Gi/(G1∩G2),

for i = 1, 2. By the previous case (we have Γ1 ∩ Γ2 = {0}) we
can find a complete set of coset representatives F for Γ1,Γ2
in Γ. Then F is also a complete set of coset representatives
for G1,G2 in G1 + G2.

□

The proof of Theorem  1 follows.
The closed subgroups of Rd are, up to a non-singular

linear transformation, of the form
(4) Zm ×Rn

where m + n = d, where m = 0, 1, . . . , d [ HR12 , Theorem
9.11]. Thus we may assume that L +M = Zm×Rn for some
such decomposition d = m + n. Next we observe that it is
enough to find a bounded common fundamental domain
Ω′ of L,M inZm×Rn which is measurable inZm×Rn. Then
we can take Ω = Ω′+ [0, 1]m× {0}n. From the boundedness
ofΩ′ we get thatΩ will be a finite union of polytopes ifΩ′
is such a set on each slice {k} ×Rn, k ∈ Zm.
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3.1. Case m = 0. This is Theorem  2 : L + M is dense in
Rd and they have the same volume, so there is a bounded
common tile for them which is a finite union of polytopes.

3.2. Case m = d. We have L +M = Zd. The lattices have
the same volume, hence the same index inZd. By Lemma

 2 there exists a finite set F ⊆ Zd such that L+ F =M+ F =
Zd are tilings. Again, a finite set is considered as a finite
union of polytopes.

3.3. General case: 0 < m < d. Define the discrete sub-
groups of {0}m ×Rn

L2 = ({0}m ×Rn) ∩ L and M2 = ({0}m ×Rn) ∩M.

By Lemma  1 the groups L2,M2 have rank n. It is clear
that
(5) L2 +M2 = {0}m ×Rn.

Write
L = L1 ⊕ L2, M =M1 ⊕M2,

where L1,M1 are discrete subgroups of Zm×Rn of rank m.
Since the sums are direct it follows that the points of L1
are all different mod {0}m ×Rn and so are all points of M1.
Therefore we have the group indices
(6)
[Zm×Rn : L1⊕{0}m×Rn] = det L1 and [Zm×Rn : M1⊕{0}m×Rn] = det M1.

We also have that
(7) L1 +M1 + {0}m ×Rn = Zm ×Rn,

since the left hand side is a subgroup of the right hand
side. If it were a proper subgroup then we could not have
L +M = Zm ×Rn.

Abusing notation we can write L = LZd, M = MZd,
where L,M are d× d non-singular matrices. The columns
of these matrices can be any basis of the lattices so we
choose the first m to be a basis of L1 (resp. M1) and the
last n to be a basis of L2 (resp. M2). The matrices L,M are
now lower block triangular

L =
(
L1 0
∗ L2

)
, M =

(
M1 0
∗ M2

)
,

where the m×m matrices L1,M1 have integer entries since
these entries represent the first m coordinates of a basis
of L1,M1 ⊆ Zm ×Rn. It follows that

det L = det L1 · det L2 and det M = det M1 · det M2.
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Since det L = det M and det L1,det M1 ∈ Z we have that

(8) det L2

det M2
=

det M1

det L1
∈ Q.

All determinants in (  8 ) are non-zero and can be assumed
positive.

3.3.1. A simple case. Not strictly necessary for the rest,
but easier. If, besides det L = det M, we also have that the
ratios in (  8 ) are equal to 1, so that det Li = det Mi, i = 1, 2,
then, using the case m = 0 above, we can find a bounded
common tile E′ of L2 and M2 in {0}m ×Rn:
(9) L2 ⊕ E′ =M2 ⊕ E′ = {0}m ×Rn.

From (  6 ) the groups L1 ⊕ {0}m ×Rn and M1 ⊕ {0}m×Rn have
the same finite index det L1 = det M1 in the groupZm×Rn,
hence, from Lemma  2 we can find a common, finite tile F
of them in Zm ×Rn:
(10) L1 ⊕ {0}m ×Rn ⊕ F =M1 ⊕ {0}m ×Rn ⊕ F = Zm ×Rn.

From ( 9 ) and ( 10 ) we obtain
L1 ⊕ (L2 ⊕ E′) ⊕ F =M1 ⊕ (M2 ⊕ E′) ⊕ F = Zm ×Rn,

so with E = F ⊕ E′ we obtain the tilings
L ⊕ E =M ⊕ E = Zm ×Rn.

This concludes the proof of this simple case.

In general the ratios in (  8 ) are not necessarily 1. Take
now L′2 and M′

2 to be super-lattices of L2 and M2 in {0}m×Rn

such that
(11) [L′2 : L2] = det M1 and [M′

2 : M2] = det L1.

It follows from ( 8 ) that

(12) det L′2 =
det L2

det M1
=

det M2

det L1
= det M′

2.

Since, because of (  5 ), L′2 and M′
2 also have a dense sum

in {0}m × Rn it follows from the case m = 0 in this proof
that there is a bounded common tile E′ of L′2 and M′

2 in
{0}m ×Rn. E′ is a finite union of polytopes. We have

|E′| = det L′2 = det M′
2.

Let the finite sets J2 ⊆ L′2 and K2 ⊆M′
2 be such that

L′2 = L2 ⊕ J2 and M′
2 =M2 ⊕ K2

are both tilings, so that it follows from ( 11 ) that |J2| =
det M1 and |K2| = det L1.
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Since L1 +M1 + {0}m ×Rn = Zm ×Rn from (  7 ) we can find
finite sets J1 ⊆ L1 of size |J1| = det M1 and K1 ⊆ M1 of size
|K1| = det L1 (these sizes follow from (  6 )) such that
(13) K1 ⊕ L1 ⊕ {0}m ×Rn = Zm ×Rn

and
(14) J1 ⊕M1 ⊕ {0}m ×Rn = Zm ×Rn.

Since |J1| = |J2| and |K1| = |K2| we can find bijections
ϕ : K1 → K2, ψ : J1 → J2.

Define the sum
(15)
E =

{
x + y + ϕ(x) + ψ(y) : x ∈ K1, y ∈ J1

}
⊕ E′ ⊆ Zm ×Rn.

E is clearly a finite union of polytopes on each slice {k}×Rn,
k ∈ Zm, since E′ is a finite union of polytopes in Rn. The
fact that the sum in (  15 ) is direct is a byproduct of the
proof that follows in which we show that the set E is a
common tile for the lattices L and M.

For reasons of symmetry we need only verify that
L ⊕ E = L1 ⊕ L2 ⊕ E = Zm ×Rn

is a tiling.
We first show that this is a packing. Let ℓ = ℓ1 + ℓ2 and

ℓ̃ = ℓ̃1 + ℓ̃2 be elements of L = L1 ⊕ L2 and assume that the
two translates ℓ+E and ℓ̃+E overlap on positive measure.
This means that there are

x, x̃ ∈ K1, y, ỹ ∈ J1

such that
ℓ1+ℓ2+x+y+ϕ(x)+ψ(y)+E′ and ℓ̃1+ℓ̃2+x̃+ ỹ+ϕ(x̃)+ψ(ỹ)+E′

overlap on positive measure. These can be rewritten as
ℓ1 + y︸︷︷︸
∈L1

+x + ℓ2 + ϕ(x) + ψ(y) + E′︸                    ︷︷                    ︸
⊆{0}m×Rn

and
ℓ̃1 + ỹ︸︷︷︸
∈L1

+x̃ + ℓ̃2 + ϕ(x̃) + ψ(ỹ) + E′︸                    ︷︷                    ︸
⊆{0}m×Rn

.

Since x, x̃ ∈ K1 we get, because of tiling condition (  13 ), that

(16) ℓ1 + y = ℓ̃1 + ỹ and x = x̃,
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which of course implies that ϕ(x) = ϕ(x̃). Thus the trans-
lates

ℓ2 + ψ(y) + E′ and ℓ̃2 + ψ̃(y) + E′

overlap on positive measure. But ℓ2 + ψ(y), ℓ̃2 + ψ̃(ỹ) ∈ L′2
and L′2 ⊕ E′ = L2 ⊕ J2 ⊕ E′ are tilings, so we get ℓ2 = ℓ̃2 and
ψ(y) = ψ(ỹ). The last equation implies y = ỹ since ψ is a
bijection. Finally from ( 16 ) we obtain ℓ1 = ℓ̃1.

We have shown that the translates of E′ that participate
in the definition (  15 ) of the tile E are all non-overlapping
and, therefore,

|E| = |E′| · |K1| · |J1|(17)
= det L′2 · det L1 · det M1

= det L1 · det L′2 · |J2|
= det L1 · det L2

= det L.

We also showed that L+E is a packing. Since the arrange-
ment L + E is periodic it follows that L ⊕ E = Zm ×Rn is a
tiling. By symmetry so is M ⊕ E = Zm ×Rn.

The final bounded common tile Ω of L and M in Rd is
then given by

Ω = E + [0, 1)m × {0}n.
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