BOUNDED COMMON FUNDAMENTAL DOMAINS FOR TWO LATTICES

SIGRID GREPSTAD AND MIHAIL N. KOLOUNTZAKIS

ABSTRACT. We prove that for any two lattices $L, M \subseteq \mathbb{R}^d$ of the same volume there exists a measurable, bounded, common fundamental domain of them. In other words, there exists a bounded measurable set $E \subseteq \mathbb{R}^d$ such that E tiles \mathbb{R}^d when translated by L or by M. In fact, the set E can be taken to be a finite union of polytopes. A consequence of this is that the indicator function of E forms a Weyl–Heisenberg (Gabor) orthogonal basis of $L^2(\mathbb{R}^d)$ when translated by L and modulated by M^* , the dual lattice of M.

Contents

1. Introduction	2
1.1. The Steinhaus tiling problem	2
1.2. Common fundamental domains for finitely many lattices	3
1.3. An application to Weyl–Heisenberg orthogonal bases	4
1.4. Some notation	4
2. Bounded common fundamental domains when the sum is dense	5
3. Bounded common fundamental domains in the general case	9
3.1. Case $m = 0$.	11
3.2. Case $m = d$.	11
3.3. General case: $0 < m < d$.	11
References	14
Date: July 1, 2025. 2020 Mathematics Subject Classification. 52B20, 52C22, 11H Key words and phrases. Tiling, lattices.	16.

Sigrid Grepstad is supported by Grant 334466 of the Research Council of Norway.

1. INTRODUCTION

1.1. **The Steinhaus tiling problem.** A question of Steinhaus from the 1950s [Mos81,Sie58] asks if there is a subset *E* of the plane \mathbb{R}^2 such that *E* tiles the plane when translated by $R_{\theta}\mathbb{Z}^2$, for any value of θ . Here R_{θ} denotes the 2 × 2 matrix which rotates the plane by the angle θ around the origin. Equivalently we are seeking a set *E* such that $R_{\theta}E$ tiles the plane when translated by \mathbb{Z}^2 , for any θ .

For a set $E \subseteq \mathbb{R}^d$ to tile \mathbb{R}^d when translated by the set $T \subseteq \mathbb{R}^d$ we mean that the *T*-translates of *E* partition \mathbb{R}^d . If the set *T* happens to be a subgroup of \mathbb{R}^d this is the same as demanding that *E* contains exactly one element from each coset of *T* in \mathbb{R}^d . Clearly this definition of tiling makes sense in any abelian group.

The Steinhaus tiling problem bifurcated from the 1980s into two forms:

- the original, *set-theoretic* formulation where nothing else is expected from the set *E* but to contain one point from each coset of $R_{\theta}\mathbb{Z}^2$, and this for any θ , and
- the *measurable* formulation, where the set *E* is expected to be Lebesgue measurable but, in return, the tiling is demanded almost everywhere: for any θ we only ask that

(1)
$$\sum_{n \in R_{\theta} \mathbb{Z}^2} \mathbf{1}_E(x-n) = 1$$
, for almost all $x \in \mathbb{R}^2$.

We should add that the problem makes sense in \mathbb{R}^d , d > 2, as well, where we are seeking a set *E* that tiles simultaneously with all linear transformations of \mathbb{Z}^d by an orthogonal matrix (though we must admit that sensible forms of this problem may be stated even with smaller groups).

The set-theoretic question in the plane (d = 2) was settled in a major result by Jackson and Mauldin [JM02a, JM02b, JM03] who proved the existence of such a set *E* in the plane.

The measurable question is still open in the plane. There have been many partial results, almost all of which are of the form "if a measurable Steinhaus set E exists it must be large near infinity". For example it is known [Bec89, Kol96] that such a set cannot be bounded. The

best result so far in this direction is that in $\left[KW99 \right]$ where it is shown that

$$\int_E |x|^\alpha \, dx = +\infty \text{ for } \alpha > 46/27.$$

In an interesting lack of symmetry between the settheoretic and measurable developments it is now known [KW99, KP02] that there are no measurable Steinhaus sets in dimensions d > 2 but it is still unknown if there are "set-theoretic" Steinhaus sets for d > 2.

The interested reader should consult the references in [KP17] as well as the most recent paper [KL24], for results on many variations of the Steinhaus question.

1.2. Common fundamental domains for finitely many lattices. A *fundamental domain* for an abelian group *H* within an abelian group *G* is a subset of *G* that contains exactly one element from every coset of *H* in *G*. So, the Steinhaus tiling problem for the plane asks for a common fundamental domain for all groups $R_{\theta}\mathbb{Z}^2$ inside \mathbb{R}^2 , for $\theta \in [0, 2\pi)$.

From now on, we focus on the measurable version of the problem where we only ask E to satisfy the tiling equation (1) almost everywhere.

A sensible relaxation of the Steinhaus problem is to look for a common fundamental domain of only a finite family of lattices

$$(2) L_1,\ldots,L_n \in \mathbb{R}^d.$$

Any measurable fundamental domain of a lattice has volume equal to the determinant (also called volume) of the lattice. Hence, we must require that all L_1, \ldots, L_n have the same volume.

In [Kol97] it was proved that if the dual lattices of the collection (2) have a direct sum

$$L_1^* + \cdots + L_n^*$$

then we can find a measurable common fundamental domain for (2). And it was shown in [HW01] that for the case of two lattices only no condition is necessary: Any two lattices of the same volume in \mathbb{R}^d have a measurable common fundamental domain. (See also [KP22] for several similar questions.) BOUNDED COMMON FUNDAMENTAL DOMAINS FOR TWO LATTICES

In both [Kol97] and [HW01] the constructed fundamental domains are generally unbounded. Since then, it has been an open problem whether two lattices of the same volume in \mathbb{R}^d have a measurable bounded common fundamental domain in \mathbb{R}^d . This question we answer in this paper:

Theorem 1. Suppose L, M are lattices in \mathbb{R}^d of the same volume. Then there is a bounded measurable $\Omega \subseteq \mathbb{R}^d$ which tiles with both L and M.

The set Ω can be chosen as a finite union of polytopes.

The important technical breakthrough arises in the special case below when L and M have a direct sum. This is made possible using the main result of [Gre24].

Theorem 2. If $L, M \subseteq \mathbb{R}^d$ are lattices of the same volume and $\overline{L+M} = \mathbb{R}^d$ then there is a bounded, measurable $E \subseteq \mathbb{R}^d$ such that $L \oplus E = M \oplus E = \mathbb{R}^d$ are both tilings. Moreover, the set E may be chosen to be a finite union of polytopes in \mathbb{R}^d .

1.3. An application to Weyl–Heisenberg orthogonal bases. In [HW01] the existence of a measurable common fundamental domain for two lattices is used to show that whenever K, L are two lattices in \mathbb{R}^d with det $L \cdot \det K = 1$ then there exists a Gabor (or Weyl-Heisenberg) orthogonal basis of \mathbb{R}^d with translation lattice L and modulation lattice K. In other words, there exists a function $g \in L^2(\mathbb{R}^d)$ such that the collection of time-frequency translates

$$e^{2\pi i\ell \cdot x}g(x-k), \ \ell \in L, k \in K,$$

is an orthogonal basis of $L^2(\mathbb{R}^d)$. In their proof the function g is precisely the indicator function of a measurable common fundamental domain of the lattices K and L^* . Thus our Theorem 1 implies that this *window* function g may be chosen to be of compact support, a possibly significant property, since it offers the advantage of localization.

1.4. **Some notation.** A *lattice* is a discrete subgroup of \mathbb{R}^n which linearly spans \mathbb{R}^n . The *rank* of a subgroup of \mathbb{R}^n is the dimension of its linear span. Thus a lattice is a discrete subgroup of \mathbb{R}^n of full rank, equal to *n*. We denote by vol *L* or det *L* the volume of any fundamental domain of the lattice *L*, and by dens *L* the lattice density 1/vol L. If *L* is a discrete subgroup of \mathbb{R}^d of rank smaller than *d*

we still write vol L or det *L* to denote the volume of the fundamental domain in the \mathbb{R} -linear space *L* spans.

Any lattice $L \subseteq \mathbb{R}^n$ is equal to $A\mathbb{Z}^n$ where A is a nonsingular $n \times n$ matrix. This matrix A is not unique, but can be formed by taking as its columns any \mathbb{Z} -basis of L. The *dual lattice* of L is defined by

$$L^* = \left\{ x \in \mathbb{R}^d : x \cdot \ell \in \mathbb{Z} \text{ for all } \ell \in L \right\}$$

and it can be seen that $L^* = A^{-\top} \mathbb{Z}^d$.

When we write $A \oplus B$ for two sets A, B in an additive group we mean that all sums a + b, with $a \in A, b \in B$, are distinct. In this case we say the sum A + B is *direct* or that A + B is a *tiling*.

Plan. We prove Theorem 2 first in \$2 and use it to prove then Theorem 1 in \$3.

2. Bounded common fundamental domains when the sum is dense

The proof of Theorem 2 relies on certain results from the theory of so-called cut-and-project sets in \mathbb{R}^d . We therefore give a brief description of this point set construction, introducing necessary notation and terminology.

A discrete point set Λ in \mathbb{R}^d is called a *Delone set* if it is both uniformly discrete and relatively dense, meaning there exist radii r, R > 0 such that any ball of radius rcontains at most one point of Λ , and any ball of radius Rcontains at least one point of Λ . If Λ additionally satisfies

$$\Lambda - \Lambda \subseteq \Lambda + F,$$

for some finite set *F* in \mathbb{R}^d , then we say that Λ is a *Meyer set*.

A cut-and-project set, or *model set*, is constructed from a lattice $\Gamma \subset \mathbb{R}^m \times \mathbb{R}^n$ and a *window set* $W \subset \mathbb{R}^n$ by taking the projection into \mathbb{R}^m of those lattice points whose projection into \mathbb{R}^n is contained in W. Denoting the projections from $\mathbb{R}^m \times \mathbb{R}^n$ onto \mathbb{R}^m and \mathbb{R}^n by p_1 and p_2 , respectively, we assume that $p_1|_{\Gamma}$ is injective, and that the image $p_2(\Gamma)$ is dense in \mathbb{R}^n , and denote by $\Lambda_W = \Lambda(\Gamma, W)$ the model set

$$\Lambda(\Gamma, W) = \{p_1(\gamma) : \gamma \in \Gamma, p_2(\gamma) \in W\}.$$

If the boundary ∂W of the window W has Lebesgue measure zero, then the model set Λ_W is called *regular*. In this case, the point set Λ_W in \mathbb{R}^m has a number of desirable properties. One can show that Λ_W is a Meyer set with well-defined density

dens
$$\Lambda_W = \frac{|W|}{\det \Gamma} = |W| \cdot \operatorname{dens} \Gamma.$$

Moreover, if the model set is either generic (meaning that $p_2(\Gamma) \cap \partial W = \emptyset$) or if the window *W* is half-open as defined in [Ple00, Definition 2.2], then Λ_W is *repetitive*. Repetitivity is the crystal-like quality that every finite configuration appearing in Λ will reappear infinitely often, see e.g. [Ple00, Property 2] for a precise definition.

The cut-and-project construction is well-studied in the field of aperiodic order, and in the last 30 years there have been several results on when a model set (or more generally a Delone set) is at bounded distance from a lattice [DO91, FG18, Lac92]. We say that two point sets Λ and Λ' in \mathbb{R}^n are bounded distance equivalent (or, at bounded distance from each other) if there exists a bijection $\varphi : \Lambda \to \Lambda'$ and a constant C > 0 such that

$$\|\varphi(\lambda) - \lambda\| < C$$

for all $\lambda \in \Lambda$.

Facts:

- (1) Bounded distance equivalence is an equivalence relation.
- (2) If a Delone set Λ in ℝ^d has a well-defined density and is bounded distance equivalent to a lattice L in ℝ^d, then dens Λ = dens L.
- (3) Any two lattices L and M in \mathbb{R}^d of equal density are necessarily at bounded distance from each other ([DO90, Theorem 5.2], [DO91, Theorem 1], [Kol97, §3.2]).

The proof of Theorem 2 relies on the following result from [DO91] on model sets with parallelotope windows, as well as a more recent result from [Gre24] connecting bounded distance equivalence and equidecomposability (Theorem 5 below). **Theorem 3.** [DO91, Theorem 3.1] Let Γ be a lattice in $\mathbb{R}^m \times \mathbb{R}^n$. If $W \subset \mathbb{R}^n$ is a parallelotope

$$W = \left\{ \sum_{k=1}^n t_k v_k : 0 \le t_k < 1 \right\}$$

spanned by *n* linearly independent vectors in $p_2(\Gamma)$, then the model set $\Lambda(\Gamma, W)$ is at bounded distance to a lattice in \mathbb{R}^m .

We say that two sets S and S' in \mathbb{R}^m are *equidecomposable* if S can be partitioned into finitely many subsets which can be rearranged by translations to form a partition of S'. Given a subgroup $G \subset \mathbb{R}^m$ we will use the term *G-equidecomposable* to mean that we allow only translations in G for this rearrangement.

Theorem 3 above can be extended to hold for any reasonably well-behaved fundamental domain of a sublattice in $p_2(\Gamma)$ by the following result of Frettlöh and Garber.

Theorem 4. [FG18, Theorem 6.1] Let Λ and Λ' be two model sets constructed from the same lattice Γ but with different windows W and W', respectively. If the windows W and W' are $p_2(\Gamma)$ -equidecomposable, then Λ and Λ' are bounded distance equivalent.

It turns out that for regular model sets, a converse of Theorem 4 can be established if we relax the equidecomposability condition to ignore sets of measure zero.

Definition 1. Let *G* be a group of translations in \mathbb{R}^n . We say that two measurable sets *S* and *S'* in \mathbb{R}^n of equal Lebesgue measure are *G*-equidecomposable up to measure zero if there exists a partition of *S* into finitely many measurable subsets S_1, \ldots, S_N , and a set of vectors $g_1, \ldots, g_N \in$ *G*, such that *S'* and $\bigcup_{j=1}^N (S_j + g_j)$ differ at most on a set of measure zero.

Theorem 5. [*Gre24*, Theorem 1.1] Let $\Gamma \subset \mathbb{R}^m \times \mathbb{R}^n$ be a lattice and let W and W' be bounded, measurable sets in \mathbb{R}^n where both ∂W and $\partial W'$ have measure zero and |W| = |W'|. If the model sets $\Lambda_W = \Lambda(\Gamma, W)$ and $\Lambda_{W'} = \Lambda(\Gamma, W')$ are bounded distance equivalent, then the windows W and W' are $p_2(\Gamma)$ -equidecomposable up to measure zero.

Remark 1. Note that in the proof of Theorem 5 in [Gre24], the partition of *W* is constructed by shifting *W* by certain elements $p_2(\gamma)$ of $p_2(\Gamma)$, and successively removing the intersection of (what remains of) $W + p_2(\gamma)$ and W'.

BOUNDED COMMON FUNDAMENTAL DOMAINS FOR TWO LATTICES

Accordingly, if W and W' are both polytopes in \mathbb{R}^m , then the subsets in the partition of W may be chosen to be polytopes as well.

We are now equipped to prove Theorem 2.

Proof of Theorem 2. By abuse of notation let $L = L\mathbb{Z}^d$ and $M = M\mathbb{Z}^d$, where L and M are $d \times d$ non-singular matrices. Let Ω_L be the half-open parallelotope spanned by the columns of L and Ω_M be the half-open parallelotope spanned by the columns of M. Then Ω_L and Ω_M are fundamental domains of the lattices L and M, respectively. Since L and M are assumed to have equal volumes, we have $|\Omega_M| = |\Omega_L|$.

We now construct a lattice $\Gamma \subset \mathbb{R}^d \times \mathbb{R}^d$ (where Γ again denotes both the lattice itself and its matrix representation) by letting

where K may be chosen to be any $d \times 2d$ matrix which acts as an injective map on \mathbb{Z}^{2d} . With the cut-and-projection construction in mind, we note that this ensures that the projection p_1 is injective when restricted to the lattice Γ . Moreover, since $\overline{L + M} = \mathbb{R}^d$ by assumption, we know that $p_2(\Gamma)$ is dense in \mathbb{R}^d .

We now consider the two model sets

$$\Lambda_L = \Lambda(\Gamma, \Omega_L) = \{ p_1(\gamma) : \gamma \in \Gamma, p_2(\gamma) \in \Omega_L \}$$

and

$$\Lambda_M = \Lambda(\Gamma, \Omega_M) = \{p_1(\gamma) : \gamma \in \Gamma, p_2(\gamma) \in \Omega_M\}.$$

Since $p_2(\Gamma) = L + M$, we see that both Ω_L and Ω_M are windows spanned by d linearly independent vectors in $p_2(\Gamma)$. Thus by Theorem 3, both Λ_L and Λ_M are bounded distance equivalent to a lattice. Moreover, by assumption we have $|\Omega_L| = |\Omega_M|$, so dens $\Lambda_L = \text{dens } \Lambda_M$. This implies that the model sets Λ_L and Λ_M are bounded distance equivalent to lattices of equal density, and thus also at bounded distance from each other. We thus conclude from Theorem 5 that we can find a partition of Ω_L into polytopal subsets S_1, \ldots, S_N and elements $\gamma_1, \ldots, \gamma_N \in \Gamma$ such that

(3)
$$\Omega_M = \bigcup_{i=1}^N \underbrace{(S_i + p_2(\gamma_i))}_{S'_i} = \bigcup_{i=1}^N S'_i,$$

where we understand this equality to hold up to measure zero.

Finally, we observe that

 $p_2(\gamma_i) = \ell_i + m_i,$

for every i = 1, ..., N, where $\ell_i \in L$ and $m_i \in M$. It follows that

$$E = \bigcup_{i=1}^{N} (S'_i - m_i) = \bigcup_{i=1}^{N} (S_i + \ell_i)$$

is a fundamental domain for both *M* and *L* by (3) and the fact that $(S_i)_{i=1}^N$ is a partition of Ω_L . We thus have

$$L \oplus E = M \oplus E = \mathbb{R}^d,$$

for a bounded measurable set $E \subset \mathbb{R}^d$.

3. Bounded common fundamental domains in the general case

In this section we prove Theorem 1.

Lemma 1. Suppose $L \subseteq \mathbb{Z}^m \times \mathbb{R}^n$ is a lattice in \mathbb{R}^d , where d = m + n. Then

$$L_2 = L \cap \{0\}^m \times \mathbb{R}^n$$

has rank n.

Proof. Suppose rank $L_2 = k < n$ and let $u_1, \ldots, u_k \in \{0\}^m \times \mathbb{R}^n$ be a \mathbb{Z} -basis of L_2 . Let also u_{k+1}, \ldots, u_d be an extension of this \mathbb{Z} -basis to a \mathbb{Z} -basis of L. This extension always exists [Cas96, Corollary 3, p. 14].

It follows that there are $g_j \in \mathbb{Z}^m$ and $r_j \in \{0\}^m \times \mathbb{R}^n$, for j = 1, ..., d - k, such that

$$u_{k+j} = g_j + r_j, \quad j = 1, \dots d - k.$$

Since m < d - k there are $n_j \in \mathbb{Z}$, not all 0, such that $\sum_{j=1}^{d-k} n_j g_j = 0$. This implies that $0 \neq \sum_{j=1}^{d-k} n_j u_{k+j} \in \{0\}^m \times \mathbb{R}^n$, hence this sum belongs to L_2 , a contradiction, since u_1, \ldots, u_d are linearly independent and L_2 is generated by u_1, \ldots, u_k .

Lemma 2. Suppose G_1, G_2 are subgroups of the abelian group G of the same, finite index k. Then there are $g_1, \ldots, g_k \in G$ which are simultaneously a complete set of coset representatives of G_1 and G_2 in G. In other words

$$G_1 + \{g_1, \ldots, g_k\} = G_2 + \{g_1, \ldots, g_k\} = G$$

are both tilings.

Proof. Define $s = [G : G_1 + G_2]$, so that $s \le k$, and let x_1, \ldots, x_s be a complete set of coset representatives of $G_1 + G_2$ in G. It suffices to find a common fundamental domain E of G_1 and G_2 in G_1+G_2 as, then, $E+\{x_1,\ldots,x_s\}$ is a common fundamental domain of G_1 and G_2 in G. Notice that $[G_1 + G_2 : G_1] = [G_1 + G_2 : G_2] = k/s$. Write r = k/s.

Case 1: $G_1 \cap G_2 = \{0\}$.

We enumerate $G_i = \{g_j^i : j = 1, ..., r\}$ for i = 1, 2, and let $F = \{g_j^1 + g_j^2 : j = 1, ..., r\}$. The elements of F are pairwise inequivalent mod G_1 and mod G_2 and $G_i + F = G_1 + G_2$, for i = 1, 2, so F is a complete set of coset representatives of G_1 and G_2 in $G_1 + G_2$.

Case 2: $G_1 \cap G_2 \neq \{0\}$.

Define then $\Gamma = (G_1 + G_2)/(G_1 \cap G_2)$ and $\Gamma_i = G_i/(G_1 \cap G_2)$, for i = 1, 2. By the previous case (we have $\Gamma_1 \cap \Gamma_2 = \{0\}$) we can find a complete set of coset representatives *F* for Γ_1, Γ_2 in Γ . Then *F* is also a complete set of coset representatives for G_1, G_2 in $G_1 + G_2$.

The proof of Theorem 1 follows.

The closed subgroups of \mathbb{R}^d are, up to a non-singular linear transformation, of the form

where m + n = d, where m = 0, 1, ..., d [HR12, Theorem 9.11]. Thus we may assume that $\overline{L + M} = \mathbb{Z}^m \times \mathbb{R}^n$ for some such decomposition d = m + n. Next we observe that it is enough to find a bounded common fundamental domain Ω' of L, M in $\mathbb{Z}^m \times \mathbb{R}^n$ which is measurable in $\mathbb{Z}^m \times \mathbb{R}^n$. Then we can take $\Omega = \Omega' + [0, 1]^m \times \{0\}^n$. From the boundedness of Ω' we get that Ω will be a finite union of polytopes if Ω' is such a set on each slice $\{k\} \times \mathbb{R}^n, k \in \mathbb{Z}^m$.

3.1. **Case** m = 0. This is Theorem 2: L + M is dense in \mathbb{R}^d and they have the same volume, so there is a bounded common tile for them which is a finite union of polytopes.

3.2. **Case** m = d. We have $L + M = \mathbb{Z}^d$. The lattices have the same volume, hence the same index in \mathbb{Z}^d . By Lemma **2** there exists a finite set $F \subseteq \mathbb{Z}^d$ such that L + F = M + F = \mathbb{Z}^d are tilings. Again, a finite set is considered as a finite union of polytopes.

3.3. General case: 0 < m < d. Define the discrete subgroups of $\{0\}^m \times \mathbb{R}^n$

$$L_2 = (\{0\}^m \times \mathbb{R}^n) \cap L \text{ and } M_2 = (\{0\}^m \times \mathbb{R}^n) \cap M.$$

By Lemma 1 the groups L_2, M_2 have rank *n*. It is clear that

(5)
$$\overline{L_2 + M_2} = \{0\}^m \times \mathbb{R}^n.$$

Write

$$L = L_1 \oplus L_2, \quad M = M_1 \oplus M_2,$$

where L_1 , M_1 are discrete subgroups of $\mathbb{Z}^m \times \mathbb{R}^n$ of rank *m*. Since the sums are direct it follows that the points of L_1 are all different mod $\{0\}^m \times \mathbb{R}^n$ and so are all points of M_1 . Therefore we have the group indices (6)

 $[\mathbb{Z}^m \times \mathbb{R}^n : L_1 \oplus \{0\}^m \times \mathbb{R}^n] = \det L_1 \text{ and } [\mathbb{Z}^m \times \mathbb{R}^n : M_1 \oplus \{0\}^m \times \mathbb{R}^n]$ We also have that

(7)
$$L_1 + M_1 + \{0\}^m \times \mathbb{R}^n = \mathbb{Z}^m \times \mathbb{R}^n,$$

since the left hand side is a subgroup of the right hand side. If it were a proper subgroup then we could not have $\overline{L+M} = \mathbb{Z}^m \times \mathbb{R}^n.$

Abusing notation we can write $L = L\mathbb{Z}^d$, $M = M\mathbb{Z}^d$, where L, M are $d \times d$ non-singular matrices. The columns of these matrices can be any basis of the lattices so we choose the first *m* to be a basis of L_1 (resp. M_1) and the last *n* to be a basis of L_2 (resp. M_2). The matrices L, M are now lower block triangular

$$L = \begin{pmatrix} L_1 & 0 \\ * & L_2 \end{pmatrix}, \quad M = \begin{pmatrix} M_1 & 0 \\ * & M_2 \end{pmatrix},$$

where the $m \times m$ matrices L_1, M_1 have integer entries since these entries represent the first m coordinates of a basis of $L_1, M_1 \subseteq \mathbb{Z}^m \times \mathbb{R}^n$. It follows that

 $\det L = \det L_1 \cdot \det L_2$ and $\det M = \det M_1 \cdot \det M_2$.

BOUNDED COMMON FUNDAMENTAL DOMAINS FOR TWO LATTICES

Since det L = det M and det L_1 , det $M_1 \in \mathbb{Z}$ we have that

(8)
$$\frac{\det L_2}{\det M_2} = \frac{\det M_1}{\det L_1} \in \mathbb{Q}.$$

All determinants in (8) are non-zero and can be assumed positive.

3.3.1. A simple case. Not strictly necessary for the rest, but easier. If, besides det $L = \det M$, we also have that the ratios in (8) are equal to 1, so that det $L_i = \det M_i$, i = 1, 2, then, using the case m = 0 above, we can find a bounded common tile E' of L_2 and M_2 in $\{0\}^m \times \mathbb{R}^n$:

(9)
$$L_2 \oplus E' = M_2 \oplus E' = \{0\}^m \times \mathbb{R}^n.$$

From (6) the groups $L_1 \oplus \{0\}^m \times \mathbb{R}^n$ and $M_1 \oplus \{0\}^m \times \mathbb{R}^n$ have the same finite index det $L_1 = \det M_1$ in the group $\mathbb{Z}^m \times \mathbb{R}^n$, hence, from Lemma 2 we can find a common, finite tile *F* of them in $\mathbb{Z}^m \times \mathbb{R}^n$:

(10) $L_1 \oplus \{0\}^m \times \mathbb{R}^n \oplus F = M_1 \oplus \{0\}^m \times \mathbb{R}^n \oplus F = \mathbb{Z}^m \times \mathbb{R}^n$. From (9) and (10) we obtain

 $L_1 \oplus (L_2 \oplus E') \oplus F = M_1 \oplus (M_2 \oplus E') \oplus F = \mathbb{Z}^m \times \mathbb{R}^n$, so with $E = F \oplus E'$ we obtain the tilings

$$L \oplus E = M \oplus E = \mathbb{Z}^m \times \mathbb{R}^n.$$

This concludes the proof of this simple case.

In general the ratios in (8) are not necessarily 1. Take now L'_2 and M'_2 to be super-lattices of L_2 and M_2 in $\{0\}^m \times \mathbb{R}^n$ such that

(11)
$$[L'_2:L_2] = \det M_1$$
 and $[M'_2:M_2] = \det L_1$.

It follows from (8) that

(12)
$$\det L'_2 = \frac{\det L_2}{\det M_1} = \frac{\det M_2}{\det L_1} = \det M'_2.$$

Since, because of (5), L'_2 and M'_2 also have a dense sum in $\{0\}^m \times \mathbb{R}^n$ it follows from the case m = 0 in this proof that there is a bounded common tile E' of L'_2 and M'_2 in $\{0\}^m \times \mathbb{R}^n$. E' is a finite union of polytopes. We have

$$|E'| = \det L'_2 = \det M'_2.$$

Let the finite sets $J_2 \subseteq L'_2$ and $K_2 \subseteq M'_2$ be such that

 $L'_2 = L_2 \oplus J_2$ and $M'_2 = M_2 \oplus K_2$

are both tilings, so that it follows from (11) that $|J_2| = \det M_1$ and $|K_2| = \det L_1$.

Since $L_1 + M_1 + \{0\}^m \times \mathbb{R}^n = \mathbb{Z}^m \times \mathbb{R}^n$ from (7) we can find finite sets $J_1 \subseteq L_1$ of size $|J_1| = \det M_1$ and $K_1 \subseteq M_1$ of size $|K_1| = \det L_1$ (these sizes follow from (6)) such that

(13)
$$K_1 \oplus L_1 \oplus \{0\}^m \times \mathbb{R}^n = \mathbb{Z}^m \times \mathbb{R}^n$$

and

(14)
$$J_1 \oplus M_1 \oplus \{0\}^m \times \mathbb{R}^n = \mathbb{Z}^m \times \mathbb{R}^n.$$

Since $|J_1| = |J_2|$ and $|K_1| = |K_2|$ we can find bijections

$$\phi: K_1 \to K_2, \quad \psi: J_1 \to J_2.$$

Define the sum (15)

$$E = \left\{ x + y + \phi(x) + \psi(y) : x \in K_1, \ y \in J_1 \right\} \oplus E' \subseteq \mathbb{Z}^m \times \mathbb{R}^n.$$

E is clearly a finite union of polytopes on each slice $\{k\} \times \mathbb{R}^n$, $k \in \mathbb{Z}^m$, since *E'* is a finite union of polytopes in \mathbb{R}^n . The fact that the sum in (15) is direct is a byproduct of the proof that follows in which we show that the set *E* is a common tile for the lattices *L* and *M*.

For reasons of symmetry we need only verify that

$$L \oplus E = L_1 \oplus L_2 \oplus E = \mathbb{Z}^m \times \mathbb{R}^n$$

is a tiling.

We first show that this is a packing. Let $\ell = \ell_1 + \ell_2$ and $\tilde{\ell} = \tilde{\ell_1} + \tilde{\ell_2}$ be elements of $L = L_1 \oplus L_2$ and assume that the two translates $\ell + E$ and $\tilde{\ell} + E$ overlap on positive measure. This means that there are

$$x, \widetilde{x} \in K_1, y, \widetilde{y} \in J_1$$

such that

$$\ell_1 + \ell_2 + x + y + \phi(x) + \psi(y) + E'$$
 and $\tilde{\ell_1} + \tilde{\ell_2} + \tilde{x} + \tilde{y} + \phi(\tilde{x}) + \psi(\tilde{y}) + E'$
overlap on positive measure. These can be rewritten as

$$\underbrace{\ell_1 + y}_{\in L_1} + x + \underbrace{\ell_2 + \phi(x) + \psi(y) + E'}_{\subseteq \{0\}^m \times \mathbb{R}^n}$$

and

$$\underbrace{\widetilde{\ell}_1 + \widetilde{y}}_{\in L_1} + \widetilde{x} + \underbrace{\widetilde{\ell}_2 + \phi(\widetilde{x}) + \psi(\widetilde{y}) + E'}_{\subseteq \{0\}^m \times \mathbb{R}^n}.$$

Since $x, \tilde{x} \in K_1$ we get, because of tiling condition (13), that

(16)
$$\ell_1 + y = \widetilde{\ell_1} + \widetilde{y} \text{ and } x = \widetilde{x},$$

which of course implies that $\phi(x) = \phi(\tilde{x})$. Thus the translates

$$\ell_2 + \psi(y) + E' \text{ and } \widetilde{\ell_2} + \widetilde{\psi}(y) + E'$$

overlap on positive measure. But $\ell_2 + \psi(y)$, $\tilde{\ell}_2 + \tilde{\psi}(\tilde{y}) \in L'_2$ and $L'_2 \oplus E' = L_2 \oplus J_2 \oplus E'$ are tilings, so we get $\ell_2 = \tilde{\ell}_2$ and $\psi(y) = \psi(\tilde{y})$. The last equation implies $y = \tilde{y}$ since ψ is a bijection. Finally from (16) we obtain $\ell_1 = \tilde{\ell}_1$.

We have shown that the translates of E' that participate in the definition (15) of the tile E are all non-overlapping and, therefore,

(17) $|E| = |E'| \cdot |K_1| \cdot |J_1|$ $= \det L'_2 \cdot \det L_1 \cdot \det M_1$ $= \det L_1 \cdot \det L'_2 \cdot |J_2|$ $= \det L_1 \cdot \det L_2$ $= \det L.$

We also showed that L + E is a packing. Since the arrangement L + E is periodic it follows that $L \oplus E = \mathbb{Z}^m \times \mathbb{R}^n$ is a tiling. By symmetry so is $M \oplus E = \mathbb{Z}^m \times \mathbb{R}^n$.

The final bounded common tile Ω of *L* and *M* in \mathbb{R}^d is then given by

$$\Omega = E + [0, 1)^m \times \{0\}^n.$$

References

- [Bec89] J. Beck. On a lattice point problem of H. Steinhaus. Studia Sci. Math. Hung, 24:263–268, 1989.
- [Cas96] J. W. S. Cassels. An introduction to the geometry of numbers. Springer Science & Business Media, 1996.
- [DO90] M. Duneau and C. Oguey. Displacive transformations and quasicrystalline symmetries. J. Phys. France, 51(1):5–19, 1990.
- [DO91] M. Duneau and C. Oguey. Bounded interpolations between lattices. Journal of Physics A: Mathematical and General, 24(2), 1991.
- [FG18] D. Frettlöh and A. Garber. Pisot substitution sequences, one dimensional cut-and-project sets and bounded remainder sets with fractal boundary. *Indag. Math.*, 29(4):11141130, 2018.
- [Gre24] S. Grepstad. Bounded distance equivalence of cut-andproject sets and equidecomposability. *International Mathematic Research Notices*, 2025(4), 2024.
- [HR12] E. Hewitt and K. A. Ross. Abstract harmonic analysis: volume I: structure of topological groups integration theory group representations, volume 115. Springer Science & Business Media, 2nd edition, 2012.

- [HW01] D. Han and Y. Wang. Lattice tiling and the Weyl-Heisenberg frames. *Geom. Funct. Anal.*, 11(4):742–758, 2001.
- [JM02a] S. Jackson and R. D. Mauldin. On a lattice problem of H. Steinhaus. J. Am. Math. Soc., 15(4):817–856, 2002.
- [JM02b] S. Jackson and R. D. Mauldin. Sets meeting isometric copies of the lattice \mathbb{Z}^2 in exactly one point. *Proc. Natl. Acad.* Sci. USA, 99(25):15883–15887, 2002.
- [JM03] S. Jackson and R. D. Mauldin. Survey of the Steinhaus tiling problem. *Bull. Symb. Log.*, 9(03):335–361, 2003.
- [KL24] G. Kiss and M. Laczkovich. Solutions to the discrete pompeiu problem and to the finite steinhaus tiling problem. *arXiv preprint arXiv:2403.01279*, 2024.
- [Kol96] M. N. Kolountzakis. A problem of Steinhaus: Can all placements of a planar set contain exactly one lattice point? *Progress in Mathematics*, 139:559–566, 1996.
- [Kol97] M. N. Kolountzakis. Multi-lattice tiles. Int. Math. Res. Not., 1997(19):937–952, 1997.
- [KP02] M. N. Kolountzakis and M. Papadimitrakis. The Steinhaus tiling problem and the range of certain quadratic forms. *Ill. J. Math.*, 46(3):947–951, 2002.
- [KP17] M. N. Kolountzakis and M. Papadimitrakis. Measurable Steinhaus sets do not exist for finite sets or the integers in the plane. *Bull. Lond. Math. Soc.*, 49(5):798–805, 2017.
- [KP22] M. N. Kolountzakis and E. Papageorgiou. Functions tiling with several lattices. *Journal of Fourier Analysis and Applications*, 28(4):68, 2022.
- [KW99] M. N. Kolountzakis and T. H. Wolff. On the Steinhaus tiling problem. *Mathematika*, 46(02):253–280, 1999.
- [Lac92] M. Laczkovich. Uniformly spread discrete sets in Rd. J. Lond. Math. Soc., s2-46(1):39-57, 1992.
- [Mos81] W. Moser. *Research problems in discrete geometry*. Department of Mathematics, McGill University, 1981.
- [Ple00] P. Pleasants. Designer quasicrystals: Cut-and-project sets with pre-assigned properties. In *Directions in Mathematical Quasicrystals*, 2000.
- [Sie58] W. Sierpiński. Sur un probleme de H. Steinhaus concernant les ensembles de points sur le plan. Fundam. Math., 2(46):191–194, 1958.

Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway.

Email address: sigrid.grepstad@ntnu.no

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS, UNIVER-SITY OF CRETE,, VOUTES CAMPUS, 70013 HERAKLION, GREECE, AND

INSTITUTE OF COMPUTER SCIENCE, FOUNDATION OF RESEARCH AND TECH-NOLOGY HELLAS, N. PLASTIRA 100, VASSILIKA VOUTON, 700 13, HERAK-LION, GREECE

Email address: kolount@uoc.gr