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Abstract

We give an algorithm for the enumeration of a set I of nonnegative integers with
the property that each nonnegative integer z can be written as a sum of two elements of
F in at least C'ilogx and at most Cslogz ways, where (1, Cy are positive constants.
Such a set is called a basis and its existence has been established by Frdés. Our
algorithm takes time polynomial in n to enumerate all elements of F not greater than
n. We accomplish this by derandomizing a probabilistic proof which is slightly different
than that given by Erdos.
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1 Introduction

A set F of nonnegative integers is called a basis if every nonnegative integer can be
written as a sum of two elements of E. We write r(z) = rg(z) for the number of
representations of z as a¢ + b, with a,b € F and a < b. In what follows C' denotes
an arbitrary positive constant, not necessarily the same in all its occurences, and
N = {1,2,3,...} denotes the set of all positive integers. The mean value of a random
variable X is denoted by EX.

Erdos [2, 3] has proved that there is a basis F such that

Clogz <r(z) < Clogx (1)

for all positive integers z (see also [1, p. 106] and [4, Ch. 3]). The most widely known
proof (in [1, 3, 4]) is probabilistic. It is proved that if we let z € E with a certain
probability p,, independently for all z, then the random set F is an asymptotic basis
(that is (1) is true eventually) with probability 1. Since the probability space used is
infinite, the question of whether such a basis exists which is also computable is not
addressed by this proof.



The original [2] proof though, which has been stated using counting arguments and
not probability, uses an existential argument on a finite interval at a time and can thus
be readily turned into a construction by examining all possible intersections of F with
the interval. But the algorithm which we get this way takes time exponential in n to
decide whether n is in F or not.

In this paper, we give an algorithm which produces the elements of E one by one
and in increasing order, and which takes time polynomial in n in order to produce
all the elements of E not greater than n. We use the so called method of conditional
probabilities [1, p. 223] in order to “derandomize” a modified proof. The method is
not directly applicable to Erdés’s probabilistic proof. We will only care for (1) to hold
for x large enough, since, then, with the addition of a finite number of elements to the
set F we can have it hold true for all positive z.

In Section 2 we give a probabilistic proof of the existence of a basis with certain
properties. In Section 3 we apply the method of conditional probabilities to derandom-
ize the proof and arrive to our algorithm.

2 Probabilistic Proof of Existence

We define the modified representation function r'(z) = rfz(z) as the number of rep-
resentations of the nonegative integer z as a sum a + b, with a,b € E, g(z) < a < b,
where g(z) = (zlogz)'/2. (This is our main difference from Erd8s’s proof. By doing
this modification we have achieved that the presence or absence of a certain number n
in our set E affects /() for only a finite number of nonnegative integers x.)

Theorem 1 There are positive constants cq, cq, c3, with co < ¢3, and a set E of positive
integers such that
calogz < 7'(z) < ezlogw

and
|[EN[z—g(z),z] <ciloga

for all large enough x© € N.

Proof: In what follows z is assumed to be sufficiently large. We define the random
set F by letting
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independently for all z € N, where K is a positive constant that will be specified later.
We are going to show that with positive probability (in fact almost surely but we do
not need this here) the random set F satisfies Theorem 1. Let
/2
n= ET,(JU) = Z PtPr—t-
t=g(x)

Define also

s(z) = [EN[z —g(z), 2]
and

v=Es(z)= ZZ: Pi-

t=z—g(z)



First we estimate p and v for large z. We have
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which proves u = (1 + o(1))IK?logz.
For v we have
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which implies
v=_(140(1))Klogu.

We define the “bad” events

Ag
B;

{Ir'(z) — p| > en}
{s(z) —v > ev}

for a positive constant €. To bound their probabilities we need the following Lemma
[1, p. 239].

Lemma 1 IfY = Xy 4 ---+ Xy, and the X; are independent indicator random vari-
ables, then for all € > 0

Pr(]Y —EY| > €EY) < 2¢EY
where ¢, > 0 is a funclion of € alone.

Since both r’(z) and s(z) are sums of independent indicator random variables we can
use Lemma 1 to get

Pr(Ag;) <2e”%H < 9~ 30K logz _ 9~

and L
Pr(B;) <2e " < 2e 20l loge _ o, -6



where a = %(2511(2 and § = %CEI(. We now let ¢ = 1/2 and choose K large enough to
make both a and 8 greater than 1.
Then

ZPr z)+ Pr(B;) < o

which implies the existence of ny € N such that, with positive probability, none of
the events A, and B,, * > mng, holds. In particular there exists a set E for which
/2 < r'(xz) < 3p/2 and s(z) < 3v/2, for all @ > ng. This implies the conclusion of
Theorem 1 with ¢; = 1K, ¢y = %IK2 and ¢3 = %IKQ. QED
Observe that r'(2) < r(z) < 7'(z)+ s(z). We deduce that for the set E of Theorem
1 we have
caloga <r(z) <(c1+ c3)logz

so that (1) is true for E.

3 Derandomization of the Proof

We keep the notation of the previous section. We showed that for some ng € N
the complement of the “bad” event B = UxZno(Al‘ U B;) has positive probability, by
establishing the inequality

> Pr(A.)+Pr(B,) < 1.

>ng

This implies the existence of a point E in our probability space {0, 1}N which is not in
B (there is a natural identification between points in the probability space and subsets
of N). In this section we are going to show how to construct efficiently such a point
FE. We give an algorithm which at the n-th step outputs 0 or 1 to denote the absence
or presence of n in our set F.

Denote by x € {0,1}N a generic element in our space and by R(ay,...,a;) the

event x1 = ay,..., Xk = @k, where ay,...,a; € {0,1}. It is obvious that for any event
D C{o,1}N
Pr(D | R(ay,...,0,-1)) = (2)

pnPr(D | R(ay,...,a,-1,1)) + (1 —p,)Pr(D | R(aq,...,a,-1,0)).

We are going to define the sequence a, € {0,1} so that the function

b, =bup(ar,...,a, Z Pr(A: | R(a1,...,a,))+ Pr(B: | R(a1,...,a,))
>ng
is non-increasing in n. (Notice that the function Pr(A4, | R(ay,...,a,)) is constant in

n when n > z, and is equal to either 0 or 1. The same is true for the events B,.) Since
bo = Y z>n, PT(Az) + Pr(B;) < 1, the monotonicity of b, implies that

> Pr(A; | R(aq,...,an,...) + Pr(B, | R(ay,...,an,...) < 1.
r>ng

The probabilities above are either 0 or 1, so they are all 0, and the point F =
(a1,...,0p,...)is not in B.



So all that remains to be done is to ensure that b, does not increase. Adding up
(2) we get

bp_1(ar,...,an-1) = pubp(ar, ..., an_1,1)+ (1 — pp)bn(as,...,a,-1,0),

which implies that at least one of b,(ay,...,a,-1,1), by(ay,...,a,—1,0) is not greater
than b,_1(a,...,an—1). We let a, = 1 if the first number is smaller than the latter,
otherwise we let a,, = 0.

Notice that

A = bn(al,. . .,an_l,l) - bn(al,. . .,an_l,O)

G(n)
= Z Pr(A; | R(ay,...,an-1,1)) = Pr(A; | R(aq,...,a,-1,0))+

+Pr(B; | R(a1,...,an-1,1)) = Pr(B; | R(ai,...,an-1,0)),

where G(n) = (1 + o(1))n?/logn is the greatest integer k such that g(k) < n. This
is so because the events A, and B,, with # > G(n) are independent of x1,...,Xn
and their probabilities cancel out in the difference above. We have to decide in time
polynomial in n whether A > 0. This is indeed possible since the expression for A has
(4 + o(1))n?/logn terms, each of which can be computed in polynomial time as the
following Lemma claims.

Lemma 2 Let X = &+ -+ & be a sum of k independent indicator random variables
with Pr(&§; =1) = p;, j = 1,...,k. Then the distribution of Xy can be computed in
time polynomial in k.

Proof: The distribution of X} is a vector of length k& 4+ 1, where the j-th coordinate
in the vector, 7 = 0,...,k, is equal to Pr (X = j). To compute the distribution of X
from that of X,_; we use the obvious formulas

Pr(Xp=7)=pePr (X1 =7 — 1)+ (1 — pi)Pr(Xg—1 =j), forj=1,...k—1,

Pr(Xy=0) = (1 — pr)Pr(Xx—1 =0) and Pr(Xy =k) = ppPr(Xp_1 =k —1). It is
obvious now that the computation of the distribution of Xj; can be carried out in
time polynomial in k. (Here we are really assuming that arithmetic operations on the
numbers p; can be done in time polynomial in k. See the Remarks at the end of the
section for a justification of this assumption.) QED

Thus all probabilities of the form Pr(a < Xj < 3) can be efficiently computed.

Observe that having fixed x1 = a1,...,Xn = a, We have
z/2
r(z) = Y XeXe—t
t=g(x)
n /2
= Z atXz—t + Z XtXz—t

for z — g(z) > n, otherwise r'(z) has already been completely determined by the
assigned values of x1,..., Xn. This means that »'(z) is a sum of independent indicator
random variables and so is s(z). Thus the probabilities of A; and B, conditioned on
R(ay,...,an—1,1) and R(aq,...,a,-1,0) can be efficiently computed and A > 0 can
be decided in polynomial time, as we had to show.

Remarks:



1. Our definition of the probabilities p, = K (logx/x)"/? has to be modified so that
the numbers p, can be represented with a number of digits polynomial in z and
can also be computed in polynomial time, given 2. One such modification is
to use the probabilities ¢, = K275 where I = |logyz| and § = |V/L].
The number S can for example be computed in time polynomial in log L (and
in particular in z) using a simple binary search of the interval [0, L]. Since p, <
Cq, < Cp, one can easily prove asymptotic estimates of the form CTK? < u <
CIK? and CKlogz < v < CKlogz, which is all our existential proof needs.

2. Ignoring polylogarithmic factors, the time our algorithm needs to decide whether
n € E, having already found the set E up to n — 1,is O(n®). This is so since the
distribution of X in Lemma 2 can be computed in time O(k?*). So the compu-
tation of any probability of the form Pr(a < X; < ) can be computed in time
O(k?*). For the computation of A we need to evaluate O(n?) such probabilities
with & = O(n?), thus the total time is O(n5).
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