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Analysis of Probabilistic Roadmaps for Path Planning

Lydia E. Kavraki*

Abstract

We provide an analysis of a recent path planning method
which uses probabilistic roadmaps. This method has proven
very successful in practice, but the theoretical understand-
ing of its performance is still limited. Assuming that a path
~ exists between two configurations a and b of the robot,
we study the dependence of the failure probability to con-
nect a and b on (i) the length of ~, (ii) the distance function
of v from the obstacles, and (iii) the number of nodes N
of the probabilistic roadmap constructed. Importantly, our
results do not depend strongly on local irregularities of the
configuration space, as was the case with previous analysis.
These results are illustrated with a simple but illuminating
example. In this example, we provide estimates for N, the
principal parameter of the method, in order to achieve fail-
ure probability within prescribed bounds. We also compare,
through this example, the different approaches to the anal-
ysis of the planning method.

1 Introduction

Motion planning has been an active area of research
during the last two decades [12]. The problem has
gained increasing attention because of the larger num-
ber of potential applications (e.g. robotics, manufactur-
ing, computer-assisted surgery, molecular biology). Sev-
eral recent papers describe practical path planners that
can deal with robots that have more than 4 degrees of
freedom (dof) and move in realistic environments (for
a survey see [3, 7]). Because of the high computational
complexity of path planning, these planners usually em-
ploy different heuristics to guide the search of the robot
from its initial to its final position.

This paper considers the success of a class of proba-
bilistic algorithms for path planning [6, 7, 8, 9, 13, 14]
and tries to establish a framework for the theoretical
understanding of their results. Our ultimate goal is to
further enhance the performance of these methods by
estimating good values for their input parameters. We
will restrict ourselves to the description of the planner
in [7, 8, 9] for a concise presentation of the algorithm
and our results. We hereafter refer to this planner as
PRM (Probabilistic RoadMap planner).

*Robotics Laboratory, Department of Computer Science Stan-
ford University, Stanford, CA 94305, USA

TSchool of Mathematics, Institute of Advanced Study, Prince-
ton, NJ 08540, USA

Mihail N. Kolountzakis!

Jean-Claude Latombe*

& & o o
> & 4

¢ o ® o

Figure 1: Examples of problems solved by PRM

PRM proceeds as follows. At a preprocessing stage,
a probabilistic roadmap is constructed in the configu-
ration space (C-space) of the robot. Initially, random
configurations (nodes) are generated over the C-space
of the robot and are interconnected with a determinis-
tic and fast planner. We call this planner a connector
to emphasize its simplicity (for example, the connec-
tor may examine only the straight-line path between
two nodes). Each successful connection yields an edge
of the roadmap. After a large number of nodes have
been generated, the “difficult” (narrow) parts of the C-
space are identified heuristically [7], and more nodes
are placed in these areas. This faciliates the formation
of roadmap components that correspond to the actual
components of the free C-space. A path planning query
specifies a and b, the initial and the final configurations
of the robot. PRM connects them to nodes A and B
of the same roadmap component using the connector,
and then searches the roadmap for a sequence of edges
from A to B. Concatenation of the relevant local paths
produces an answer to the query. This path can be
smoothed using any standard smoothing technique.

PRM has been applied with excellent results to free-
flying and articulated robots moving in the plane or in



3-space, as well as to non-holonomic robots. Examples of
its capabilities are given in Fig. 1. The robot in Fig. 1(a)
has 7 dof. PRM answers path planning queries, like the
one defined by the configurations in Fig. 1(a), in a frac-
tion of a second after 50 seconds of preprocessing time
on a DEC ALPHA workstation. For similar query times,
620 seconds are spent in the preprocessing stage for the
robot of Fig. 1(b) which has 16 dof. Recently PRM has
been applied to examples from assembly maintainability
similar to the ones in [4] (aircraft engines).

As described in [7, 8, 9] PRM requires the tuning
of several parameters which depend on the considered
workspace and robot. For example, one such parameter
is N, the size of the network that sufficiently captures
the connectivity of the free C-space within a given prob-
ability. Currently, the output roadmap is augmented
until the given initial and final configuration of the robot
get connected through it. The theoretical estimation of
N can make the full automation of the technique pos-
sible, and permit its application in a wide variety of
environments with minimal user effort.

The theoretical analysis of PRM is a difficult task. The
work in [10] initiated the analysis. It related the per-
formance of the planner to the goodness of the C-space
of the problem in consideration. A space S is called §-
good if the volume of S that each point in S can “see”
is at least a § fraction of the total free volume of S. In
the PRM framework, a point sees another point if it can
be connected to it by the connector. With the above
definition, the value of § is constrained by the point of
the space which sees the least volume of S, which may
be very small. Using é we can estimate how many nodes
a roadmap needs to have, so that the roadmap itself can
see most of the C-space with high probability, and thus
answer planning queries correctly with high probability.

The analysis in this paper focuses on understand-
ing how the properties of the space in which the robot
moves, the shape of the robot, and the features of the
possible paths among distinct configurations influence
parameters of the technique such as the size of the
roadmaps that must be produced by preprocessing. We
adopt the following point of view. Assuming that a
path between two different configurations a and b of the
robot exists, we show that the probability of failure to
connect these configurations with PRM depends on (i)
the length of the assumed path, (ii) the distance of the
path from the obstacles, and (iii) the number of nodes of
the roadmap generated. Using our results and making
simple assumptions for the values of (i) and (ii) above,
as well as for the failure probability we are willing to
tolerate, we can estimate the size (number of nodes) of
the probabilistic roadmap that finds a path between a
and b with the given probability. Or, if the shortest path

between a and b is known, we can estimate the size of
the roadmap that will permit PRM to find a path which
is n-close to the shortest path. Our analysis is not very
sensitive to local difficulties of the C-space and carries
over in any C-space dimension.

The analysis given in this paper together with the
analysis in [10] are also presented in the context of the
general planning scheme in [3]. In that work the dis-
tance of the robot from the obstacles in the workspace
is used to define a random sampling scheme for path
planning. PRM can be regarded as an instance the sam-
pling scheme in [3]. Before proceeding let us also men-
tion that the theoretical evaluation of algorithms that
are experimentally successful in path planning has re-
cently attracted considerable attention. Some examples
of research in this direction can be found in [1, 5, 11].

2 Description of simplified PRM

To analyze the performance of PRM we work with a
simplified algorithm, which we call the simplified Proba-
bilistic Roadmap Planner (s-PRM). We rid the approach
of the heuristics employed in practical implementations
and any shortcuts taken to achieve better performance.

For the moment we assume that the C-space is two-
dimensional. Later, we will show that our analysis can
be carried over to higher C-space dimensions without
any complications. The parameters of our model are:

e The Free Space
An open subset F of the unit square C = [0, 1]2.

e The Robot
A point which is free to move in F.

e The Local Connector
It takes the robot from point a to point b along a
straight line and succeeds if the straight line seg-
ment ab is contained in F.

e The Collection of Random Configurations
A collection of N independent points uniformly dis-
tributed over F.

s-PRM works as follows. We throw N independent
random points in F and connect any two of them that
can be connected by a free straight line. A roadmap
G with possibly more than one connected components
results in this fashion. To solve any planning problem,
that is to go from any point a to any point b, we try to
connect both a and b to two nodes in the same connected
component of G using straight lines. s-PRM succeeds if
and only if this is possible.

Our purpose is to analyze the probability of failure
of s-PRM as a function of all the relevant parameters.
For this we take any two points a,b € F, for which we
assume that they can be connected via a rectifiable path

v : [0,L] — F, where v(0) = a and (L) = b.



(The curve « is parametrized by Euclidean arc length.)
Let also O be the complement of F in C (the C-obstacle)
and for any z € C write r(z) for the Euclidean distance
of x to O, that is

= inf |z —
r(z) Z}golx yl,

where |z — y| is the Euclidean distance of the points z
and y of the plane.

We shall give upper bounds for the probability of fail-
ure of s=PRM to find a path from a to b. These bounds
will involve the number N of random points, the func-
tion r(y(t)) for t € [0, L], as well as the length L of ~,
and will hold for any path v that joins a and b. The
dependence on L and r(v(t)) is to be expected. If we
have two points a and b for which any connecting path is
long, it gets more difficult to find the path, since a larger
number of relevant intermediate configurations must be
present in our roadmap. Similarly, if any connecting
path has small r((t)), this intuitively means that the
problem is difficult. Imagine for example that a and b
are on different sides of narrow passage. The probabil-
ity of placing random configurations inside the passage
and connecting them by straight line paths is small.

3 A Bound that Involves the Minimum
Distance from the Obstacles

In this section we derive an upper bound on the fail-
ure probability when connecting pairs of points a and
b. It is assumed that a and b can be connected by some
path

~v:[0,L] — F,

which keeps uniformly away from the obstacles, that is
all its points are at least a certain distance R away from
the C-obstacles. The key idea is that of covering the
path with few balls which overlap to a certain degree.
(Here we follow closely [7].)

Theorem 1 Let v : [0,L] —> F be a path of (Eu-
clidean) length L, with v(0) = a, v(L) = b, and let
R = info<i<r r(y(t)) be the distance of the path to the
obstacles.
Then the probability that s-PRM will fail to connect
the points a and b is at most
2L

=1 -ar)Y, 1)

where a = w/(4|F|) is a constant.

Notation: We denote by d(s,t) the distance of the
points v(s) and «(t) along the curve y. We also assume
that ~ is parametrized by arc length. The ball centered
at z € R? and with radius r is denoted by B,(z).

Figure 2: Proof of Theorem 1

Proof: Let n = [2L/R]. Then we can find points z¢ =
a,%1,...,%, = bon the curve v, for which d(z;,z;41) <
R/2, for all j. Notice then that

Bgrjs(wj41) € Br(zj;), forj=0,...,n—1.  (2)

This is a direct consequence of the triangle inequality
and the inequality |y(s) — v(¢)| < d(s, ).

Assume now that ¢ € Br/y(x;) and d € Brjs(r;41).
Observe then that also d € Br(z;) because of (2). This
implies that the straight line segment cd is free, since
both ¢ and d are contained in the same free ball Bg(z;).
An illustration of this basic fact is given in Fig. 2.

Let now gqi,...,qy be the random points that our
algorithm produced. According to the preceding obser-
vation, it is enough to have at least one of the gy’s,
k=1,...,N, in each ball Br/s(z;), j = 1,...,n -1,
for our algorithm to succeed to connect the points a and
b. Since the ¢i’s are independent and uniformly dis-
tributed over F, we conclude that the probability that
the ball Br/s(z;) contains none of the g;’s is equal to
(1—|Bgya|/|F|)Y, where |Bg 2| is the area of the ball of
radius R/2. Here we use the fact that we have thrown
N independent points in F. Thus,

Pr[FAILURE] < Pr[Some ball is empty]
n—1
Z Pr[The j-th ball is empty]

j=1

- () (-t o

But since in two dimensions the area of the ball with
radius R/2 is mR?/4, the above relation becomes

oL TR\ Y
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Pr[FAILURE] < R( 1 FI) ,
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which concludes the proof of the theorem. O



4 A Bound that Exploits Varying Dis-
tance

The analysis of Section 3 uses only the minimum dis-
tance of the path v from the obstacles. Yet, if this
minimum is achieved rarely, one expects the bound of
Theorem 1 to be far from the truth. In this section
we establish an upper bound for the failure probabil-
ity that involves a “mean” distance from the obstacles.
The idea of the proof is, as was the case in Section 3, to
cover the curve v with not-too-many balls that overlap
to a certain extent.

Theorem 2 Let the points a,b € F be connected by a
path v : [0, L] = F, of Euclidean length L, and write

r(t) = inf |y(t) — 2|

for the distance of y(t) from the obstacles.
Then the probability of failure of s—=PRM is at most

L (1= (a/a)r2()"
0 r(t)

where « is again w/(4|F)|).

Proof: Define ¢ty = 0, 7o = r(0), and for & > 0 define

sup {t € [ti, 1] : € — te < 1y — %r(t)} 5)
r(tkt1), (6)

and let n be defined by the requirement that ¢, = L.
We have so ensured that

BTk+1/2(7(tk+1)) - BT‘k (7(tk))a

for k =0,...,n — 1, and, by the same reasoning as in
the proof of Theorem 1,

thr1 =

Tk+1 =

Pr[FAILURE] < Z (1—ar?)V. (7)
k=1

Define the integral

_ [F A= (/9"
- [t O,

Let also

T = sup
tp<t<tp+1
The function (1 — (a/4)r?)N /r is a decreasing function
of r. In each interval [tx,tx41], K = 0,...,n — 1, we
estimate it from below by its infimum (1—(a/4)73)" /74
We thus bound I from below with the corresponding
lower Riemann sum

1 - eg LD
k=0

k

Claim 1: 7, < 2r.
This follows immediately from (5) since, if 7, = r(tx)
for some %y, € [tg,tr+1], we have

1 _
rk—ETthk—thO.

Using Claim 1 equation (8) gives
1% thyy —t

1> L Bl

2 Tk

k=0

Claim 2: Vs, t: |r(s) —r(t)]| <|s—t|

That is, the function r(t) is Lipschitz with Lipschitz

constant equal to 1. This is immediate from the triangle

inequality (remember that +(¢) has been parametrized

by arc length) which gives

1—ar?)V. 9)

r(s) <|s—t|+r(t), and r(t) < |s —t| + r(s).

Claim 3: tp4q1 —tr > %m, fork=0,...,n—2.
To see this notice that, by definition, we have

1
tk+1 - tk = Tr— 57“194_1
> Th— g (Tk + (ty1 — tx)) (Claim 2)
1 1
= 57“19 - E(tk-i-l —tr),

which implies 2 (t541 —t) > 17y and the claim. (Notice
also that, if the event “the (n — 1)-st ball is not empty”
is relevant to the success of the algorithm, one has also
tn—tn-1>5Tn 12> 570 1.)

Now (9), (7), and Claim 3 give

—i: (1—ard)V

which concludes the proof of the theorem. O

[u—y

Pr [FAILURE],

Oﬁ
CJl'—‘

5 Simplified Expressions

Using the inequality 1 —z < e7%, for z > 0, we
get, from Theorems 1 and 2, the following easier-to-use
upper bounds for the failure probability.

e The bound of Theorem 1 becomes

2L
Pr[FAILURE] < = exp(~aR’N). (10)

e The bound of Theorem 2 becomes

Pr [FAILURE] < 6 / " exp(—(a/4r* ()N dt,
0

r(t)
(11)

In both formulas above a = 7/(4|F|).




6 Analysis of a Particular Problem

We have found simple upper bounds for the proba-
bility of failure to find a given path with the probabilis-
tic roadmaps method. We are now going to use these
bounds to derive estimates on N, the number of random
points thrown uniformly in the free C-space, in order to
have the probability of failure less than a prespecified
number, say, for the sake of the argument, less than 1/2.

In this section we study a simple problem in two di-
mensions. For the problem shown in Fig. 3 we estimate
N using equation (10), equation (11) and the method
of analysis of [10].

The parameter of the problem is ¢, the length of the
opening near point a, which is taken to tend to 0.

We have |F| = 1 sothat & = 7/4. We alsohave L < 1
and R < e. (By ¢ < y we mean that C~'z <y < Cy,
for some absolute constant C' > 0. In what follows C
stands for an absolute positive constant, not necessarily
the same in all its occurrences.)

Estimate using (10):

We get
2L 5
Pr[FAILURE] < = exp(—aR’N)
1
< C=exp(—Ce’N).
€
If we choose 1 1
N x — log - (12)
€ €

we achieve that the failure probability is bounded above
by a small constant (which, of course, depends on the
constant implied by the x sign in (12), but it is the
dependence of N on € that we care about here).

Estimate using (11):
The function r(¢t) for the path of Fig. 3 clearly satisfies

r(t) = e f0<t<Ce
1t ift>Ce

Equation (11) then gives

Pr[FAILURE] < 6 / " eXp(_(a/é))r2(t)N)dt
0 T
L
< Cexp(—C’eQN)/o r((i—:)
and

[ [
o () T Jo @) ce

1 1 1
Ce= +log — < log -.
€ € €

X

Therefore

1
Pr[FATLURE] < C exp(—Ce*N) log -,
€

0 1

Figure 3: A particular problem

and choosing
1 1
N x - loglog - (13)
€ €

bounds the failure probability from above by a small
constant.

Estimate after [10]:
The space in Fig. 3 is, in the terminology of [10], a
(Ce?)-good space. This means that every point of F
can be connected with a free straight line segment to
a set of points of F whose area is at least Ce? (clearly
because of the box on the left).

Then (see Theorem 2.1 in [10] and the definition of
adequate sets of points) one needs to have

1

1

in order to bound the failure probability away from 1.

Comparison:

Theorem 2 clearly exploits the fact that r(¢) is small
only briefly to gain an extra logarithm in the estimate
(13) with respect to (12) and (14). Note that Theorem
1 and the approach taken in [10] refer to quantities —
the minimum of r(¢) and the goodness of F — which are
single numbers defined globally over the whole space.
Theorem 2 achieves a better estimate for N because it
is less sensitive to local difficulties than are the bounds
of Theorem 1 and the analysis in [10].

It should be said that the true answer is

1

since it is necessary and sufficient to put a bounded
number of points in the box, which happens with prob-
ability < €2. The estimates (12), (13) and (14) can
thus be seen as the unavoidable 1/€? times a factor
on which they are to be compared. According to (11)
and after estimating (from above) the exponential by



exp(—(a/2)R?N) (remember R = inf;7(t)) that factor
takes the very simple form

L[t
Ry, Jo r()’
where R), is the harmonic mean of the function r(t).

7 Higher Dimension

Everything in the preceding analysis extends without
any changes to spaces of higher dimension. Let d be the
dimension of the space and wy denote the d-dimensional
volume of the unit ball in R?. Let also ag = 27 %w,/|F|.

e The bound corresponding to (10) becomes then
2L
Pr[FAILURE] < = exp(—agR*N). (16)
e The bound corresponding to (11) becomes

dt.
(17)

L exp(—aq2~%rd(t)N)
Pr[FAILURE] < 6 /O @

8 Discussion

The bounds computed in this paper are not very easy
to use since they depend on the properties of the pos-
tulated connecting path v(t) from a to b, which are dif-
ficult to measure a priori. Nevertheless, they at least
shed light on the nature of the dependence of the algo-
rithm on these properties. The fact that the dependence
on N is exponential is a good and, of course, expected
feature. Another nice feature revealed is that the de-
pendence on L is linear. The bound of Theorem 2 that
exploits varying distance from the obstacles makes our
analysis useful in spaces where there are narrow regions
and large parts of free C-space.

What the bounds given by Theorems 1 and 2 and by
the simplified inequalities (10) and (11) do permit us to
do is to answer questions of the type: “ Assuming that
there is a path from a to b which stays away from the
obstacles a distance at least €, what should N be in order
to guarantee a success probability of at least 0.992” Or,
if we know the optimal path from a to b and this stays e-
away from the obstacles, we can estimate what IV should
be in order to find, with a predefined probability, a path
which stays n-close (1 < €) to the optimal path. This is
done simply by using 1 as the distance of the optimal
path from the obstacles.

We have thus obtained quite workable expressions for
the failure probability and have demonstrated their use
with a simple but illuminating example. It should also
be said that, in practice, one need not restrict oneself to

using the Euclidean distance. No special properties of
it were used in this paper and any other distance would
give analogous results.

The analysis in this paper relates in a direct way geo-
metric properties of the configuration space of the robot
to the parameters of the PRM planning algorithm. We
hope that research along the direction of understand-
ing how the geometric properties of the robot’s envi-
ronment influence the performance of specific planning
algorithms will guide us in the design of better planners.
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