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§0. Introduction

0.1 In these notes I shall present some additive number-theoretic problems
which refer to “general” sets. This means that [ will not be interested so much
in the additive properties of specific sets such as the primes (e.g., the Goldbach
Conjecture that every large even integer can be written as the sume of two primes)
or the n-th powers (e.g., the Waring problem in which one wants to find information
about the number of ways to represent an integer as a sum of £ n-th powers).

The typical question that we will be interested in is “how large a subset of
{1,..., N} can one find with a given additive property”.

I will try to draw the reader’s attention to a few open problems among the many
that appear implicitly or explicitly here. My reasons for pointing out those problems
and not some others are that I believe that they stand a good chance to be solved
soon, the fact that I have given them some thought myself and, most important,
that I like them more than other problems.

0.2 Blg] sets. In the first lecture we shall deal with sets of the type Bj[g]. For
h, g positive integers, h > 2, we call a set A C N a By[g] set if rp(z) < g for all
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positive integers z. The representation function rp(z) of a set A is defined by
rh(z) = rha(z) = #{(‘117---7%) e A" a;j <ajp & r=a;+ -+ flh}-

Bp[1] sets are called just Bj sets and Bj sets are sometimes called Sidon sets (al-
though the term has an entirely different meaning in harmonic analysis). Notice
that the property of being a Bj[g] set is translation invariant.

We shall consider both finite (subsets of {1,..., N}) and infinite sets and we shall
be concerned with the question “how large can a By[g] set be?” By far the best
(though not completely) understood case are the By sets. The principal reference

is [15, Ch 2,3].

§1. Finite Bj[g] sets

1.1 The order of magnitude. The trivial upper bound. Let I} 4,(N) be the
maximum size of a Bj[g] subset of {1,..., N}. We shall also write F},(N) = F}, 1(N).
It is easy to see that

Frg(N) < ChgNYE, (1)

where Cj is a constant that depends on h and g only. To see (1) observe that, if
A C{l,...,N}is a By[g] set, then all expressions of the type
a4+ ap, withay <...<ay, & a; € A, (2)

fall in the interval [1, AN] and at most g of them can coincide. This reasoning gives

Frg(N) < (ghh)YENYE, (3)

1.2 A lower bound. It is not as easy to give lower bounds for F}, ,(N). Even
proving F5(N) > Cv/N is not trivial. Erdds [26] gave such a proof (see also [15, p.
90]): Take a prime p and cosider the set A C {2p?,...,4p* — p} defined by

A:{Qp(k+p)+(k2)p : k:l,...,p—l}, (4)

where (z), € {0,...,p— 1} denotes the residue of the integer z mod p. It is not hard
to show that A is a By set. After shifting it to the interval [0,2p? — p] it remains a
Bj set of size p— 1. Thus F2(N) > /N/2.

Furthermore, as a corollary of a theorem of Singer [25], generalized by Bose and
Chowla [3, 4] we know
Fy(N)> N/, (5)

Notice that for A = 2 this gives a larger set than Erd8s’s construction (4). This was
first obtained for h = 2 as a corollary of a theorem of Singer that guarantees the



existence of so called perfect difference sets in Z,, (the residues mod m) for certain
values of the integer m. These are subsets D of Z,, such that every non-zero element
of Z,, can be represented exactly once as a difference of two elements of D. The
construction is algebraic (see [15, p. 79]).

1.3 B, sets. There is an important difference between the By case (and that
of even h more generally) and that of the general Bp[g] case (with either odd h or
g > 1). A set Ais of the type By if and only if it has distinct differences, as well
as distinct sums. That is, all the expressions of the type a + b, a < b, a,b € A,
are distinct if and only if all the expressions of the type a — b, @ > b, a,b € A, are
distinct. There exists an analogous statement for Bj sets for even h but not if A is
odd or (worse) if g > 1.

We emphasize that working with a set that has distinct differences is a much
easier task than working with one that has distinct sums. The vast majority of re-
sults that have been obtained (mostly the upper bounds for F}, ,( N) but some lower
bounds as well) have been obtained using information about distinct differences and
are therefore restricted to either the By case only or the, slightly more general, By,
case with even h.

As an example of how distinct differences help consider the determination of
the best constant Cy4 in (1). We saw in (3) that Cy; < 2. Let us now use the
information that a By set A C {1,..., N} has distinct differences. Let k = |A]. All
the differences of the type a — b, @ > b, a,b € A, fall in the interval [1, N], their
number is (5) ~ k*/2 and, therefore, k < V2V/N. That is, we proved

Cyq < V2. (6)

A similar improvement over (3) can be gained for A even and g = 1.

1.4 A connection with harmonic analysis The reason that the sets of the type
Bj or, more generally, B, were first investigated (by Sidon, according to Erdds) was
that they turn out to have interesting properties from the point of view of harmonic
analysis (see also §1.6). Let us briefly mention here the fact that (infinite) sets of
the type Bj are so-called A4 sets. A A, set of integers £ = {Ay, Ag,...}, with p > 1,
is a set for which all L? norms, for 1 < ¢ < p, are comparable, for all trigonometric
polynomials with frequencies on F only. That is, for all numerical sequences a; we
have

1£llg < Coll fll1, forany flz) = aze™”. (7)
J
To prove that a By set is of the type A4 it is sufficient to show that

[fll4 < Coll Fll2- (8)

Inequality (7) then follows by a simple application of Hélder’s inequality. To prove



(8) one simply notices that, because F is B, the Fourier coefficients of f* are of
the type 2a;a;, when j # k, or a?.

1.5 The Erd6s—Turdn theorem. FErdds and Turdn [11] have proved that the
actual value of Cyq is 1 (they proved the upper bound—the lower bound is Singer’s
theorem). They proved

Fy(N) < N2 O(NYY, (9)

Frdés [10] actually believed that the error term in (9) can be made O(N°€), for any
positive €. This inequality has been extended to the case of even h = 2m by Jia [21]
and myself [19]:

Fym(N) < (m(m!)})1/2mN1/2m L O(N/4m), (10)

(This contains an earlier result of Lindstrém [24] who had proved that Fy(N) <
234N/ L O(N'/?).) Jia’s method was a generalization of that of Erdés and Turdn
while the method in [19] is described in §1.6.

1.6  An analytic method for bounding F,,(N) from above. One first

proves that if
n

M = — min cos A;z, (11)
xE[O,27‘r)j:1

and the distinct positive integers A; are all < (2 — ¢)n, then
M > Cén. (12)

(This result was obtained while working on variants of the so called cosine problem
in which lower bounds for M as in (11) are sought, where the A; can be any distinct
integers. A conjectured lower bound (Chowla [5]) is > y/n.) The proof of this result
is based on a very old theorem of Fejér [13] which bounds from above the value at
0 of a n-th degree, nonnegative trigonometric polynomial, of integral 1, by n + 1
instead of the trivial 2n + 1. This is itself a consequence of a well known theorem
of Fejér and Riesz which states that every nonegative trigonometric polynomial of
degree n is the square of the modulus of a trigonometric polynomial of the same
degree.

Assume now that A = {ny,...,nx} C {1,..., N} is a By, set. Then one can
show that all expressions of the type

a1+...+am—b1—---—bm, (13)

with
a;,b; € A, a; < ajqq1, b; < bjyq and a; # b, (14)



are distinct. Form a nonnegative cosine sum by

h L - m L - m
— Zeznjz‘ Ze—xnjz‘
i=1 i=1

= r(z)+2(m!)? ( Z cos (Z a; — ij):c) .

aj,b; satisfy (14)

f(z)

k
§ :einjz‘
i=1

The “remainder” r(z) is of modulus O(£"~') and thus the cosine polynomial in the
parentheses has a “small” minimum. If the number k£ were large the number of
frequencies )~ a; — > b; of that cosine polynomial would be too large for its degree
and (12) would contradict the fact that it has a “small” minimum.

Problem 1. Determine the value of Cy 1 in Fy1(N) ~ C471N1/4. What’s
known is that 21/2 < Can < 23/4,

1.7 More upper bounds: the case of odd h and g = 1. Some progress has
also been made in the case when h is odd. Graham [14] has proved

FQ}C_1(IV) < (k!)Q/(Qk—l)Arl/(Qk—l) T O(A/V—l/(4k—2)). (15)
The method is similar to that of Erdés and Turdn and Jia (van der Corput’s lemma
is used).
For the particular case of A = 3 Li [23] proved

2log? 2

1/3
- m) N+ oq),

F3(N) < (4

Graham [14] improved the estimate to

F3(N) < (3.99561029143 - N)/2 4+ O(1).

1.8 A probabilistic approach. TLet A = {ay,...,a;} C{1,..., N} be a By[g]
set. Alon [2] has obtained a better bound for F}, ,( V) exploiting the “concentration”
of the sums a; + - - - + a; around their mean.

Let the random variable Y be defined by
Y= X4+ Xn,

where the X; are independent random variables uniformly distributed in A. For the
variance 0%(Y) we have, since the X ; are independent,

o*(Y) = ha*(X;) < hNZ.



Chebyshev’s inequality then gives
. 1
PrllY — EY| 2 Mo(Y)] < 55.
and the bound on o(Y') gives

Pr[[Y —EY| <VEAN] > Pr[[Y —EY| < Aa(Y)]

1
> 1-5 (16)
On the other hand, since A is of the type By[g],
Pr |y — EY| < AWAN| < k~"20VAN ght. (17)
From (16) and (17) we conclude that
h ’ \/_
k" < 2gVhh!N. 1
— A2 _1 9 ( 8)
Optimizing for A gives
Fig(N) < (3%2gVhR)YENE, (19)

The same method can be applied in the particular case of By sets, with h either
even or odd. Let us consider the case of even h = 2m. One then studies the random
variable

Y:X1_|_..._|_Xm_X{_..._X;m

where, again, all the X, X]‘ are independent and uniformly distributed in A. Using
the fact that the expressions of the type (13) subject to condition (14) are all distinct
and similar reasoning as above one obtains

Fym(N) < (6%/2/m(m!)?)1/2m N1 /2m, (20)

This estimate is better than the one in (10) when m > 6. A similar estimate can

be obtained for odd A.

Problem 2. Reduce the constants 33/2 and 63/2 in (19) and (20) re-
spectively.

1.9 A dense B;[2] set. Here we show how to use dense finite By sets in order
to construct a dense finite B3[2] set

Bc{l,...,N}, |B|~V2N. (21)



We follow [19].
By Singer’s theorem (5) there is a By set A C {1,...,|N/2| — 1}, with |A| ~
V' N/2. We show that B =2AU(2A+ 1) C {1,..., N} is By[2], which proves (21).

The proof is by contradiction. Assume that we have the non-trivial relations

T1+ % =%2+ Y2 =23+ Y3, (22)

with z;,y; € B and let 2 = 2y +y;. Look at ;4 y; mod 2. There are three possible
patterns: 0+ 0,1+ 1 and 0 + 1.

If z is even then only 04+ 0 and 1 4 1 may appear in (22) and we have either a
relation of the pattern 0+ 0 = 0+ 0 or a relation of the pattern 14+ 1 =1+ 1. Both
cases contradict the fact that A is By, the first after just dividing by 2, the second
after cancelling the remainders and then dividing by 2.

If z is odd then only the pattern 0+ 1 appears in (22) which can be rewritten as
2a1 + (2a} + 1) = 2a3 + (245, + 1) = 2a3 + (2a + 1) (23)
with a;,a; € A. By canceling 1 and dividing by 2 we have
aq +a'1 :a2+a'2 :a3+aé.

But A is By so for at least one of the above relations, say the first one, we have
a1 = ay and af = df, which contradicts the fact that the first relation in (23) is
non-trivial.

Jia [22] has improved and generalized (21). By a similar method he has proved
the existence of a By[g] set B C {1,..., N} such that

|B] ~ (m(h,g))' " NP (24)

where m(h, ¢) is the largest integer m for which the equation @ = 21 + -+ - + 25, has

at most g solutions in Z,, (up to rearrangement) for each ¢ € Z,,. For h = g = 2
the coefficient in (24) becomes /3, which is better than (21).

Problem 3. Find a “direct” way to construct a dense Bz[2] set. It seems
to me that combining two or more dense B;[1] sets as in my construction
(or that of Jia) is bound to lead to a suboptimal value for C ,.

Problem 4. Find a non-trivial upper bound for (5. We stress again
that B3[2] sets do not have any property of distinct differences like the
B; sets do. That’s what makes the methods that give upper bounds
for Cy 1 useless here. What’s known is only the trivial upper bound

Cyo < 2v/2, which comes from (3).



§2. Infinite Bj[g] sets with large lower density

2.1 In this section we look at the question “can one have an infinite Bp[g]
sequence that does not grow too fast?” Tet A = {a; < az <---} be an infinite
Bp[g] sequence. We write

AN)=|ANnA{l,...,N}|
for the counting function of the set A. Clearly if A is of the type Bp[g] then
A(N) < CNY™, (25)

where, again, the constant C' may depend on h and ¢ only (this dependence will
not concern us here). In the case of finite Bj[g] sets one could always find a subset
of {1,..., N} that matched the apriori maximum order of magnitude (the result of
Bose and Chowla [3] mentioned in §1.2). The question here is whether one can do
so with an infinite set. For example, in the case of By sets is there an infinite B,
set A with

A(N)> CVN? (26)

The answer turns out to be negative as we shall see in §2.3.

The question can stated otherwise. Can one find a By sequence A = {a; < ay < -+
with
a; < Cj? (27)

for all 7 We should point out that this is really a question about finite sequences
and that what distinguishes this question from the investigations of §1 is that in §1
one only asked to find a large Bj subset of, say, {1,..., N} where (26) was required
to hold at one value of N only, whereas here it is required to hold for all values of
N. Indeed, if one could, for each N, provide a finite By subset of {1,..., N} for
which (27) held for all § < N and with the same constant C for all different N, then
one could use an easy diagonal argument to construct an infinite By sequence for
which (27) holds for all j.

2.2 Lower bounds. It is not hard to see that given any set of integers B =
{by < by < ---} one can always find a subsequence A = {b;; < b;, < ---} which is
By and with i, < k%, The way to do this is to pick the elements of A one by one
and in increasing order, and always to pick the least possible element of B that will
not destroy the By property that A has up to that step (this is called the greedy
method). One can easily prove ix < k% inductively. When B is the set of all positive
integers we get a set A with A(N) > CN'/3,

This result has only been improved slightly (and it is a difficult improvement)
by Ajtai, Komlés and Szemerédi [1] who proved that there exists a By set A with

A(N) > C(Nlog N)'/2, (28)



Erd8s conjectured that for any ¢ > 0 one can have A(N) > CN/2=,

2.3 An upper bound for the counting function of infinite B, sets. Here
we sketch Erd8s’ proof [26] (we follow [15, p. 89]) that if A ={a; < ay <---}is an
infinite B, set then

] 1/2

limint A8 TN (29)

Let N be large and define
1/2
- — inf A(N)log'/* N
n>N N

and

D= AN (1= 1)N,IN)],

forl =1,..., N. Remember that a B set has distinct differences as well as distinct
sums and observe that for each interval [(I—1)N,IN) the number of positive differ-
ences one can form with the elements of AN[(I—1)N,IN)is (2!) which is ~ D?/2.
When welet [ = 1,..., N and form all such differences they fall in the interval [1, N]
and they are all distinct. Therefore

N
> Di <CN. (30)
=1

We also have by the Cauchy-Schwarz inequality

N N 1/2 N11/2
D=2 < D? - . 31
o (yo) - (25) o

=1

On the other hand, by summation by parts, we can get

N N
STpamtr > ¢ AN
=1

(=1

v

N 7 1/2
IN .
1—3/2
CT; <1oglN>

N 1/2 N 1
CT< ) Z—
log N 1

Using now the last inequality together with (30) and (31) we get the desired 7 < C.

Problem 5. Prove that one cannot have an infinite By set with A(N') >
C+v/N by using an analytic method, perhaps in the spirit of §1.6. The
similarity between the original combinatorial proof of the Frdos-Turdn
theorem (9) and the proof we gave in this section makes the existence of
an analytic proof very likely.



2.4 Infinite B, sets for even h. 1In the proof of §2.3 the fact that B, sets
had distinct differences (as well as sums) was heavily used in (30). Some similar
property of distinct differences is also present for Bj sets if h is even and a result
similar to (29) is now known. Consult [18] for a list of references to the papers that
led to the proof of the fact that

A(N
lim inf (V)

Neooo N1/h =0, (32)

for any infinite By set A, and for any even h.

2.5 0Odd % and the case h = 3. The situation is different when A is odd. The
result (32) is not known to hold for any odd h. Some partial results are known in
the case h = 3. We mention the following result of Helm [17] and indicate its proof.
Let A = {a; < ay < ---} be an infinite set. Then, Helm proves, if

. A(N)
MmN

=L>0, (33)
the set A cannot be of the type Bs.
We try to prove this in a way similar to that of §2.3. Observe that if a set A is
of the type B3 then all expressions of the type
a+b—ec, witha>b>c, and a,b,c€ A, (34)
are distinct. As in §2.3 let N be a large integer and define
Dy = AN (= 1)N,IN),

for/ =1,..., N. The fact that the expressions (34) are all distinct implies (in a way
similar to that in §2.3) that, for any &,

> DiD;Dyyiy; < CN. (35)
027

This is the analogue of (30) that was the principal ingredient in the proof of §2.3.
Notice that here we have a family of inequalities, one for each value of k.

We are not going to show Helm’s proof. Rather we show that assuming a “rea-
sonable” behavior about the sequence a; is enough to prove the result. We shall
make the assumption that the sequence D; is non-increasing. Helm’s proof is very
similar to the one described here. Furthermore we use (35) only for k£ = 0.

Since D; is non-increasing we have (all the summation indices run from 1 to N
unless otherwise restricted)

CN > > DiD;Diy;
2]

10



> Y DY
i>j
> CY iD?. (36)

We also have

S = > i~ D;

1/3 | 2/3
(Z sz) (Z ;) by Holder’s inequality,

z z

IA

IA

CN'Y3log¥ N, by (36), (37)
as well as

S > CZ A(iN)i_4/3 by summation by parts,

v

Z(il\’)1/3i_4/3 by assumption (33),

k3

CN'Y3log N. (38)

v

We get a contradiction from (37) and (38) which finishes the proof.

We should mention that Helm [18] has shown that use of the inequality (35)
with £ = 0 alone cannot prove that there are no infinite B3 sequences A with
A(N) > CN'/3. That is because he has shown the existence of a sequence with
this growth that satisfies (35) with & = 0 for infinitely many N. Thus, use of (35)
for a single arbitrarily large N is not going to prove the general theorem, but the
possibility is still open that one might exploit the fact that (35) actually holds for
all N and k.

Problem 6. Prove that there is no infinite Bs set A with A(N) >
CN'/3. Erd6s had put a high prize ($500 according to [6]) on this but I
think he should have promised less. Of course, this is of no importance
any more.

2.6 Infinite B;[g] sets of almost quadratic growth. Here we mention the
following result of Erdés and Rényi [12]. For every d > 0 there is an integer g and
an infinite By[g] sequence A = {a1 < ag < --} such that

aj < C§*F,

for all § > 0. This is, of course, the same as saying that for any given é > 0 there
exist such a set A with

A(N)> CN'?=5, (39)

11



We shall give the proof of this in a later section as its proof is probabilistic and is
more suitable for presentation together with the results of Erdds on additive bases
of the positive integers.

§3. Infinite Bj[g] sets with large upper density.

3.1 Constructing infinite Bj[g] sets with large upper density, that is sets which
are dense infinitely often, seems to be a considerably easier problem. One wants to
construct a By[g] set A = {a1 < az < ---} such that

AN)
N1/h

(40)

Kj g = limsup

N—oo

is as large as possible. Most constructions build the set A by somehow putting

together dense finite sets of the type Bj:[g'] (b’ and ¢’ need not be the same as h

and ¢). The existence of those finite sets is guaranteed by the Singer or Bose-Chowla

theorem (see §1.2). Typically, the constant K3, that one gets thus will not be as

large as the constant C , of §1.1 and there are no results at all to show that these
two constants have to differ.

3.2 Infinite B; sequences with large upper density. Here we sketch the
construction of an infinite By set A with large upper density

A(N) > %ﬁ (41)

This is a very simple construction of Erdds [26] and of Kriickeberg [20] (see also
[15, p. 90]). Compare with the result of Singer (5) that there exist By subsets of

{1,..., N} of size ~ VN.

Assume that we have constructed already our set A in the interval [1, N]. We
show how to extend the set in an interval [1, M], where M is very large compared

1
to N, so that A(M) > —

1
can find a By subset B of [M/2, M], of size ~ —2\/M and we add that set to the

VM. The B, property is translation-invariant so we

already existing part of A. We still have to eliminate some elements of B though,
since relations of the type

b —b=d —a, a,d €A, bbcB, (42)

are still possible (relations of a different type have been taken care of because of the
size of the elements of B). For that, we remove from B the b’ elements from any
relation of the type (42). Since the number of those relations is O(/N) this removal
will not affect the asymptotics of A(M), as long as M is large enough.

12



Problem 7. Prove (41) with a constant larger than 1/v/2 (perhaps 1).
My comment about the likely suboptimality of constructions that use
ready-made building blocks (see Problem 3) applies here as well. In any
case, a “direct” construction of a By set that is dense infinitely often
would be interesting in itself.

3.3 Infinite B3[2] sequences with large upper density. We show here how
to construct an infinite By[2] sequence A with

i A(N)
11m su
N—>oop V N

Thus, as was the case in finite sets, going from the class B; to the class By[2] helps
construct denser sets. We follow [19] again.

=1. (43)

It suffices to show that any B3[2] sequence 1 < ny < -+ < ni can be extended
to a sequence 1 < ny < -+ < np < nggy < + -+ < ny, such that ny ~ 2.

Write A = {ny,...,nt} and = nj. Take B C {2z + 1,...,2"} to be a By set
with |B| ~ z%. In what follows a; € A, b; € B and d; € D (to be defined below).

Consider the relations of the form
a4+ by = ay + bs. (44)

Such a relation may be written as a4 — ay = by — by. But B is a B, set, so all
differences by — b1 are distinct, which implies that a pair aq,a, € A may appear in
(44) only once. Thus there are O(k?) = O(z) of these relations which may involve
O(z) elements of B. Let then

D = {b € B :b does not appear in any relation of the form (44)} (45)

and £ = AU D. Obviously |E| ~ 2%. We show that F is a By[2] set.
First note that the relations of the form
ay +ay =az3+dy or a4 ay =dy 4 dy

are not possible (the left hand side is too small) and A is itself B[2]. This proves
re(ar + az;2) < 2 for all ay,ay € A.

It remains to be checked that rg(a; + di;2) < 2 and rg(dy + dg;2) < 2. By
passing from B to D we eliminated all relations of the form (44) and so the only
remaining non-trivial relations that we have to check are of the form

aq + d1 = dg + d3. (46)
These are indeed possible. Assume y = a1 + d1 = dz + d3. We have to show that

these are the only ways that y can be written as a sum of two elements of F. But

13



this is obvious since y = d 4 df is impossible (this would mean dy + d3 = db, + dj
which contradicts D in By), y = a} +al, is impossible because of size and y = a} +d
would mean that ¢} + d} = a1 + dy which we took care to eliminate in (45).

Problem 8. Prove (43) with a right-hand side larger than 1. The
comment in Problem 7 applies here as well.
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