Serial Number: 500, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 10$! $B: 3^{11} \quad C: 11$! $D: 9$!
Question 2: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad B$: side B has more vertices than side $A . \quad C$: side A has more vertices than side $B . \quad D$: there is always a perfect matching of the vertices of side A.

Question 3: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
A: $n^{m} \quad B: m^{n} \quad C: n(n-1) \cdots(n-m+1) \quad D: m \cdot n$
Question 4: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 5: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: 20^{3} \quad B: \frac{20!}{3!} \quad C: 20 \cdot 19 \cdot 18 \quad D: 3^{20}$
Question 6: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 7: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $2(m+n) \quad B: m+n \quad C: m(n-1)+n(m-1) \quad D: m \cdot n$
Question 8: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 10 \times 10 \quad C: 10!\quad D: 11$!
Question 9: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : each vertex of side B is connected to some vertex in side $A . \quad B$: the number of vertices of side B is at least the number of vertices of side $A . \quad C$: the number of vertices of side A is at least the number of vertices of side $B . \quad D$: each vertex of side A is connected with all vertices of side B.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 501, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 3^{10} \quad B: 10 \cdot 9 \cdot 8 \quad C: 10^{3} \quad D: 30$
Question 2: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
A: $2^{10} \quad B: 10 \times 10 \quad C: 10$! $D: 11$!
Question 3: In a simple graph with 100 vertices
A : not all vertex degrees can be odd. B : the minimum vertex degree is $\geq 1 . \quad C$: it is possible that all vertices have different degrees. D : the maximum vertex degree is ≤ 99.
Question 4: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1} \quad B: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1}$
Question 5: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to the degree of vertex $i \quad B$: equal to 1 exactly when there is a path that connect i to $j . \quad C$: equal to 1 exactly when i is not connected to $j \quad D$: equal to 0 exactly when i is not connected to j
Question 6: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
$A: n^{m} \quad B: m \cdot n \quad C: n(n-1) \cdots(n-m+1) \quad D: m^{n}$
Question 7: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 8: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!} \quad B: 6!\quad C: \frac{10!}{6!4!} \quad D: 10^{4}$
Question 9: If G is a connected simple graph with n vertices then
A : it cannot have more than $n+1$ edges. $\quad B$: it must have at least $n-1$ edges. $\quad C$: it must have at least n edges. $\quad D$: it cannot contain cycles.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 502, Answers: 1: 2: 3: 4:5:6:7: 8:9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 10$! $B: 11$! $C: 9$! $D: 3^{11}$
Question 2: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 3: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 4: If G is a simple graph then
A : it has at most two vertices with odd degree. B : it has at least two vertices with odd degree. C : the number of its vertices with odd degree is not odd. D : the number of its vertices with even degree is even.

Question 5: In a simple graph with 100 vertices
A : not all vertex degrees can be odd. B : the maximum vertex degree is $\leq 99 . \quad C$: the minimum vertex degree is $\geq 1 . \quad D$: it is possible that all vertices have different degrees.

Question 6: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
A: $10 \cdot 9 \cdot 8 \quad B: 10^{3} \quad C: 3^{10} \quad D: 30$
Question 7: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 2^{n} \quad B: 2^{n}+2^{n} \quad C: 3^{n} \quad D:\binom{n}{n / 2}$
Question 8: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!4!} \quad B: 6!\quad C: \frac{10!}{6!} \quad D: 10^{4}$
Question 9: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : there is always a perfect matching of the vertices of side $A . \quad B$: side B has more vertices than side A.
C : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad D$: side A has more vertices than side B.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Serial Number: 503, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 11$! $B: 10!C: 2^{10} \quad D: 10 \times 10$
Question 2: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A:\binom{n}{n / 2} \quad B: 2^{n} \quad C: 3^{n} \quad D: 2^{n}+2^{n}$
Question 3: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 4: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 5: If G is a connected simple graph with n vertices then
A : it cannot have more than $n+1$ edges. $\quad B$: it cannot contain cycles. C : it must have at least $n-1$ edges. $\quad D$: it must have at least n edges.

Question 6: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 11!B: 3^{11} \quad C: 10!\quad D: 9$!
Question 7: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $m \cdot n \quad B: 2(m+n) \quad C: m(n-1)+n(m-1) \quad D: m+n$
Question 8: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n(n-1) \cdots(n-m+1) \quad B: n^{m} \quad C: m \cdot n \quad D: m^{n}$

Question 9: In a simple graph with 100 vertices
A : the minimum vertex degree is ≥ 1. B : not all vertex degrees can be odd. C : it is possible that all vertices have different degrees. D : the maximum vertex degree is ≤ 99.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

Serial Number: 504, Answers: 1: 2: 3: 4:5:6:7:8:9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: If G is a connected simple graph with n vertices then
A : it must have at least $n-1$ edges. B : it cannot contain cycles. C : it must have at least n edges. D : it cannot have more than $n+1$ edges.

Question 2: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 9$! $B: 3^{11} \quad C: 10$! $D: 11$!
Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
A: 3^{20}
$B: \frac{20!}{3!}$
$C: 20^{3}$
D: $20 \cdot 19 \cdot 18$

Question 4: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 5: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
$A: m^{n} \quad B: m \cdot n \quad C: n(n-1) \cdots(n-m+1) \quad D: n^{m}$
Question 6: In a simple graph with 100 vertices
A : it is possible that all vertices have different degrees. B : not all vertex degrees can be odd. C : the maximum vertex degree is ≤ 99. D : the minimum vertex degree is ≥ 1.

Question 7: If G is a simple graph then
A : it has at most two vertices with odd degree. B : the number of its vertices with odd degree is not odd.
C : the number of its vertices with even degree is even. D : it has at least two vertices with odd degree.
Question 8: The binomial coefficient $\binom{n}{k}$ equals
A: 0 if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 9: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 11!\quad C: 10!\quad D: 10 \times 10$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Serial Number: 505, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
$A: m \cdot n \quad B: 2(m+n) \quad C: m+n \quad D: m(n-1)+n(m-1)$
Question 2: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
A: 3^{20}
B: 20^{3}
$C: \frac{20!}{3!}$
D: $20 \cdot 19 \cdot 18$

Question 3: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 3^{11} \quad B: 10$! $C: 11$! $D: 9$!
Question 4: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 10^{4} \quad B: 6!\quad C: \frac{10!}{6!4!} \quad D: \frac{10!}{6!}$
Question 5: In a simple graph with 100 vertices
A : the minimum vertex degree is $\geq 1 . \quad B$: it is possible that all vertices have different degrees. C : the maximum vertex degree is ≤ 99. D : not all vertex degrees can be odd.

Question 6: If G is a simple graph then
A : it has at least two vertices with odd degree. B : the number of its vertices with odd degree is not odd.
C : it has at most two vertices with odd degree. D : the number of its vertices with even degree is even.
Question 7: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 8: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 9: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 2^{n} \quad B: 2^{n}+2^{n} \quad C: 3^{n} \quad D:\binom{n}{n / 2}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 506, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: 20^{3} \quad B: 20 \cdot 19 \cdot 18 \quad C: 3^{20} \quad D: \frac{20!}{3!}$
Question 2: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : each vertex of side B is connected to some vertex in side A. $\quad B$: each vertex of side A is connected with all vertices of side $B . \quad C$: the number of vertices of side B is at least the number of vertices of side A. $\quad D$: the number of vertices of side A is at least the number of vertices of side B.

Question 3: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 4: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 10$! $B: 11$! $C: 9$! $D: 3^{11}$
Question 5: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 6: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $m(n-1)+n(m-1) \quad B: 2(m+n) \quad C: m+n \quad D: m \cdot n$
Question 7: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!} \quad B: 10^{4} \quad C: 6!\quad D: \frac{10!}{6!4!}$
Question 8: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
A: $10 \cdot 9 \cdot 8 \quad B: 3^{10} \quad C: 30 \quad D: 10^{3}$
Question 9: In a simple graph with 100 vertices
A : the maximum vertex degree is $\leq 99 . B$: it is possible that all vertices have different degrees. C : the minimum vertex degree is ≥ 1. D : not all vertex degrees can be odd.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 507, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!4!} \quad B: \frac{10!}{6!} \quad C: 6!\quad D: 10^{4}$
Question 2: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
$A: m \cdot n \quad B: m(n-1)+n(m-1) \quad C: m+n \quad D: 2(m+n)$
Question 3: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 4: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 1 exactly when i is not connected to $j \quad B$: equal to the degree of vertex $i \quad C$: equal to 0 exactly when i is not connected to $j \quad D$: equal to 1 exactly when there is a path that connect i to j.
Question 5: If G is a simple graph then
A : the number of its vertices with even degree is even. $\quad B$: the number of its vertices with odd degree is not odd. C : it has at most two vertices with odd degree. D : it has at least two vertices with odd degree.

Question 6: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $m^{n} \quad B: n(n-1) \cdots(n-m+1) \quad C: m \cdot n \quad D: n^{m}$
Question 7: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 11!\quad B: 9$! $C: 3^{11} \quad D: 10$!
Question 8: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 10^{3} \quad B: 30 \quad C: 3^{10} \quad D: 10 \cdot 9 \cdot 8$
Question 9: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
A: $10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 508, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 2: In a simple graph with 100 vertices
A : not all vertex degrees can be odd. B : the minimum vertex degree is $\geq 1 . \quad C$: the maximum vertex degree is $\leq 99 . \quad D$: it is possible that all vertices have different degrees.

Question 3: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n(n-1) \cdots(n-m+1) \quad B: m^{n} \quad C: n^{m} \quad D: m \cdot n$

Question 4: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $m+n \quad B: 2(m+n) \quad C: m \cdot n \quad D: m(n-1)+n(m-1)$
Question 5: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 3^{11} \quad B: 11$! $C: 9$! $D: 10$!
Question 6: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : each vertex of side A is connected with all vertices of side B. B : the number of vertices of side B is at least the number of vertices of side $A . \quad C$: each vertex of side B is connected to some vertex in side A. D : the number of vertices of side A is at least the number of vertices of side B.

Question 7: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 8: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 10!C: 10 \times 10 \quad D: 11!$
Question 9: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
A: $3^{20} \quad B: 20 \cdot 19 \cdot 18$
$C: 20^{3}$
D: $\frac{20!}{3!}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 509, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: If G is a simple graph then
A : it has at most two vertices with odd degree. $\quad B$: the number of its vertices with even degree is even.
C : it has at least two vertices with odd degree. D : the number of its vertices with odd degree is not odd.

Question 2: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: \frac{20!}{3!} \quad B: 20^{3} \quad C: 3^{20} \quad D: 20 \cdot 19 \cdot 18$
Question 3: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!4!} \quad B: 6!\quad C: 10^{4} \quad D: \frac{10!}{6!}$
Question 4: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n(n-1) \cdots(n-m+1) \quad B: n^{m} \quad C: m \cdot n \quad D: m^{n}$
Question 5: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 6: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A: 10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 7: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 3^{11} \quad B: 11$! $C: 10!\quad D: 9$!
Question 8: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad B$: side B has more vertices than side $A . \quad C$: there is always a perfect matching of the vertices of side $A . \quad D$: side A has more vertices than side B.

Question 9: If G is a connected simple graph with n vertices then
A : it must have at least n edges. B : it cannot contain cycles. C : it must have at least $n-1$ edges.
D : it cannot have more than $n+1$ edges.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 510, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: If G is a connected simple graph with n vertices then
A : it cannot have more than $n+1$ edges. $\quad B$: it must have at least $n-1$ edges. $\quad C$: it cannot contain cycles. $\quad D$: it must have at least n edges.
Question 2: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to the degree of vertex $i \quad B$: equal to 1 exactly when i is not connected to $j \quad C$: equal to 0 exactly when i is not connected to $j \quad D$: equal to 1 exactly when there is a path that connect i to j.

Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
A: 20^{3}
$B: 3^{20}$
$C: 20 \cdot 19 \cdot 18$
D: $\frac{20!}{3!}$

Question 4: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : side B has more vertices than side A. $\quad B$: For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad C$: side A has more vertices than side $B . \quad D$: there is always a perfect matching of the vertices of side A.

Question 5: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 6!B: 10^{4}$
$C: \frac{10!}{6!}$
$D: \frac{10!}{6!4!}$

Question 6: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10$! $B: 11$! $C: 2^{10} \quad D: 10 \times 10$
Question 7: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0 . \quad B:\binom{n}{n-k}$.
Question 8: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 10^{3} \quad B: 3^{10} \quad C: 30 \quad D: 10 \cdot 9 \cdot 8$
Question 9: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Serial Number: 511, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
A: $n(n-1) \cdots(n-m+1) \quad B: m^{n} \quad C: m \cdot n \quad D: n^{m}$
Question 2: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 3: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : side A has more vertices than side B. $\quad B$: there is always a perfect matching of the vertices of side A. C : side B has more vertices than side $A . \quad D$: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J.

Question 4: If G is a simple graph then
A : it has at least two vertices with odd degree. B : the number of its vertices with odd degree is not odd.
C : it has at most two vertices with odd degree. $\quad D$: the number of its vertices with even degree is even.
Question 5: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 11!B: 9!C: 10!\quad D: 3^{11}$
Question 6: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!4!} \quad B: 10^{4} \quad C: 6!\quad D: \frac{10!}{6!}$
Question 7: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 2^{n} \quad B:\binom{n}{n / 2} \quad C: 3^{n} \quad D: 2^{n}+2^{n}$
Question 8: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : the number of vertices of side A is at least the number of vertices of side $B . \quad B$: the number of vertices of side B is at least the number of vertices of side $A . \quad C$: each vertex of side A is connected with all vertices of side B. $\quad D$: each vertex of side B is connected to some vertex in side A.

Question 9: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
A: $10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis

Serial Number: 512, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10$! $B: 11$! $C: 2^{10} \quad D: 10 \times 10$
Question 2: If G is a connected simple graph with n vertices then
A : it cannot have more than $n+1$ edges. B : it must have at least n edges. C : it must have at least $n-1$ edges. D : it cannot contain cycles.
Question 3: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 10^{4} \quad B: \frac{10!}{6!4!} \quad C: 6!\quad D: \frac{10!}{6!}$
Question 4: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 5: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
A: $30 \quad B: 10^{3} \quad C: 3^{10} \quad D: 10 \cdot 9 \cdot 8$
Question 6: In a simple graph with 100 vertices
A : the maximum vertex degree is ≤ 99. B : not all vertex degrees can be odd. C : it is possible that all vertices have different degrees. D : the minimum vertex degree is ≥ 1.

Question 7: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 1 exactly when there is a path that connect i to j. $\quad B$: equal to 1 exactly when i is not connected to $j \quad C$: equal to 0 exactly when i is not connected to $j \quad D$: equal to the degree of vertex i

Question 8: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: 20^{3} \quad B: \frac{20!}{3!} \quad C: 3^{20} \quad D: 20 \cdot 19 \cdot 18$
Question 9: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A: 10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 513, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
A: $10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 2: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
$A: m+n \quad B: m(n-1)+n(m-1) \quad C: m \cdot n \quad D: 2(m+n)$
Question 3: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 4: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? $A: m^{n} \quad B: m \cdot n \quad C: n^{m} \quad D: n(n-1) \cdots(n-m+1)$
Question 5: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 3^{11} \quad B: 10$! $C: 11$! $D: 9$!
Question 6: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad B$: side B has more vertices than side $A . \quad C$: there is always a perfect matching of the vertices of side $A . \quad D$: side A has more vertices than side B.

Question 7: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: 3^{20} \quad B: \frac{20!}{3!} \quad C: 20 \cdot 19 \cdot 18 \quad D: 20^{3}$
Question 8: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10 \times 10 \quad B: 11$! $C: 10$! $D: 2^{10}$
Question 9: If G is a simple graph then
A : the number of its vertices with even degree is even. B : it has at most two vertices with odd degree.
C : it has at least two vertices with odd degree. D : the number of its vertices with odd degree is not odd.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis

Serial Number: 514, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad B$: there is always a perfect matching of the vertices of side $A . \quad C$: side A has more vertices than side $B . \quad D$: side B has more vertices than side A.

Question 2: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : each vertex of side A is connected with all vertices of side B. B : the number of vertices of side A is at least the number of vertices of side B. C : each vertex of side B is connected to some vertex in side A. D : the number of vertices of side B is at least the number of vertices of side A.

Question 3: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
A: 11! B: $2^{10} \quad C: 10 \times 10 \quad D: 10$!
Question 4: If G is a simple graph then
A : the number of its vertices with even degree is even. B : it has at most two vertices with odd degree. C : it has at least two vertices with odd degree. D : the number of its vertices with odd degree is not odd.

Question 5: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n^{m} \quad B: m^{n} \quad C: m \cdot n \quad D: n(n-1) \cdots(n-m+1)$

Question 6: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 9$! $B: 11$! $C: 10$! $D: 3^{11}$
Question 7: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
A: $10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 8: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 9: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A:\binom{n}{n / 2} \quad B: 3^{n} \quad C: 2^{n} \quad D: 2^{n}+2^{n}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 515, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 2: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
A: 10^{3}
B: 30
$C: 10 \cdot 9 \cdot 8$
$D: 3^{10}$

Question 3: If G is a simple graph then
A : it has at least two vertices with odd degree. B : the number of its vertices with even degree is even. C : it has at most two vertices with odd degree. D : the number of its vertices with odd degree is not odd.

Question 4: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!} \quad B: 6!\quad C: 10^{4} \quad D: \frac{10!}{6!4!}$
Question 5: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 1 exactly when there is a path that connect i to j. $\quad B$: equal to 1 exactly when i is not connected to $j \quad C$: equal to 0 exactly when i is not connected to $j \quad D$: equal to the degree of vertex i

Question 6: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
$A: n^{m} \quad B: m \cdot n \quad C: m^{n} \quad D: n(n-1) \cdots(n-m+1)$
Question 7: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : side B has more vertices than side A. B : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad C$: side A has more vertices than side B. D : there is always a perfect matching of the vertices of side A.

Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1} \quad B: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1}$
Question 9: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 10 \times 10 \quad C: 11!\quad D: 10$!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 516, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

$$
\begin{aligned}
& \text { University of Crete - Department of Mathematics - Discrete Mathematics I } \\
& \text { Final examination }
\end{aligned}
$$

Question 1: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
A: $20^{3} \quad B: \frac{20!}{3!} \quad C: 3^{20} \quad D: 20 \cdot 19 \cdot 18$
Question 2: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!4!} \quad B: 6!\quad C: 10^{4} \quad D: \frac{10!}{6!}$
Question 3: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 4: In a simple graph with 100 vertices
A : the minimum vertex degree is $\geq 1 . \quad B$: the maximum vertex degree is $\leq 99 . \quad C$: it is possible that all vertices have different degrees. D : not all vertex degrees can be odd.

Question 5: If G is a connected simple graph with n vertices then
A : it must have at least n edges. B : it cannot contain cycles. C : it cannot have more than $n+1$ edges. D : it must have at least $n-1$ edges.

Question 6: If G is a simple graph then
A : the number of its vertices with even degree is even. B : it has at least two vertices with odd degree. C : the number of its vertices with odd degree is not odd. D : it has at most two vertices with odd degree.
Question 7: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 10 \times 10 \quad C: 11$! $D: 10$!
Question 8: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A: 10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 9: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
A: $10 \cdot 9 \cdot 8 \quad B: 3^{10} \quad C: 30 \quad D: 10^{3}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 517, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: If G is a simple graph then
A : it has at least two vertices with odd degree. B : the number of its vertices with even degree is even.
C : the number of its vertices with odd degree is not odd. D : it has at most two vertices with odd degree.
Question 2: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1} \quad B: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1}$
Question 3: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10 \times 10 \quad B: 11$! $C: 10!\quad D: 2^{10}$
Question 4: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : side B has more vertices than side A. B : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad C$: side A has more vertices than side B. $\quad D$: there is always a perfect matching of the vertices of side A.
Question 5: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
$A: m \cdot n \quad B: m+n \quad C: m(n-1)+n(m-1) \quad D: 2(m+n)$
Question 6: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 7: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 10^{4} \quad B: \frac{10!}{6!4!} \quad C: 6!\quad D: \frac{10!}{6!}$
Question 8: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
A: $n(n-1) \cdots(n-m+1) \quad B: n^{m} \quad C: m \cdot n \quad D: m^{n}$
Question 9: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A:\binom{n}{n / 2} \quad B: 2^{n} \quad C: 3^{n} \quad D: 2^{n}+2^{n}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 518, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 : Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad B$: side B has more vertices than side $A . \quad C$: there is always a perfect matching of the vertices of side $A . \quad D$: side A has more vertices than side B.

Question 2: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 10 \cdot 9 \cdot 8 \quad B: 30 \quad C: 10^{3} \quad D: 3^{10}$
Question 3: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 4: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 6!\quad B: \frac{10!}{6!4!} \quad C: \frac{10!}{6!} \quad D: 10^{4}$
Question 5: In a bipartite graph with vertex sets A and B which has a perfect matching of side A
A : each vertex of side B is connected to some vertex in side $A . \quad B$: the number of vertices of side A is at least the number of vertices of side $B . \quad C$: each vertex of side A is connected with all vertices of side B. D : the number of vertices of side B is at least the number of vertices of side A.
Question 6: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n^{m} \quad B: m^{n} \quad C: n(n-1) \cdots(n-m+1) \quad D: m \cdot n$

Question 7: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
A: $10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 8: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 11$! $B: 10 \times 10 \quad C: 10!\quad D: 2^{10}$
Question 9: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $m \cdot n \quad B: m+n \quad C: m(n-1)+n(m-1) \quad D: 2(m+n)$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis

Serial Number: 519, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : the number of vertices of side A is at least the number of vertices of side B. B : each vertex of side A is connected with all vertices of side $B . \quad C$: each vertex of side B is connected to some vertex in side A. D : the number of vertices of side B is at least the number of vertices of side A.

Question 2: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 11$! $B: 10!~ C: 10 \times 10 \quad D: 2^{10}$
Question 3: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 4: If G is a simple graph then
A : the number of its vertices with even degree is even. B : it has at least two vertices with odd degree.
C : the number of its vertices with odd degree is not odd. D : it has at most two vertices with odd degree.

Question 5: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 6: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
A: $m \cdot n \quad B: n^{m} \quad C: m^{n} \quad D: n(n-1) \cdots(n-m+1)$
Question 7: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $2(m+n) \quad B: m \cdot n \quad C: m(n-1)+n(m-1) \quad D: m+n$
Question 8: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: 3^{20} \quad B: \frac{20!}{3!} \quad C: 20 \cdot 19 \cdot 18 \quad D: 20^{3}$
Question 9: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 11$! $B: 10$! $C: 9$! $D: 3^{11}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 520, Answers: 1: 2: 3: 4:5:6:7:8:9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
A: $10 \cdot 9 \cdot 8 \quad B: 3^{10} \quad C: 30 \quad D: 10^{3}$
Question 2: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 3: If G is a connected simple graph with n vertices then
A : it cannot contain cycles. B : it must have at least $n-1$ edges. $\quad C$: it cannot have more than $n+1$ edges. $\quad D$: it must have at least n edges.

Question 4: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $2(m+n) \quad B: m(n-1)+n(m-1) \quad C: m \cdot n \quad D: m+n$
Question 5: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 10$! $B: 3^{11} \quad C: 9$! $D: 11$!
Question 6: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 10 \times 10 \quad C: 10!\quad D: 11$!
Question 7: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : each vertex of side A is connected with all vertices of side B. B : the number of vertices of side A is at least the number of vertices of side B. $\quad C$: each vertex of side B is connected to some vertex in side A. D : the number of vertices of side B is at least the number of vertices of side A.

Question 8: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
A: $m^{n} \quad B: n(n-1) \cdots(n-m+1) \quad C: m \cdot n \quad D: n^{m}$
Question 9: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1} \quad B: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Serial Number: 521, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : the number of vertices of side A is at least the number of vertices of side $B . \quad B$: each vertex of side B is connected to some vertex in side $A . \quad C$: the number of vertices of side B is at least the number of vertices of side $A . \quad D$: each vertex of side A is connected with all vertices of side B.

Question 2: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : side A has more vertices than side B. $\quad B$: there is always a perfect matching of the vertices of side A. $\quad C$: side B has more vertices than side A. $\quad D$: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J.

Question 3: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 11!B: 9!C: 10!\quad D: 3^{11}$
Question 4: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: 20 \cdot 19 \cdot 18 \quad B: 3^{20} \quad C: 20^{3} \quad D: \frac{20!}{3!}$
Question 5: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 6: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 10 \cdot 9 \cdot 8 \quad B: 30 \quad C: 3^{10} \quad D: 10^{3}$
Question 7: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 8: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!} \quad B: \frac{10!}{6!4!} \quad C: 10^{4} \quad D: 6!$
Question 9: If G is a simple graph then
A : it has at least two vertices with odd degree. B : the number of its vertices with even degree is even.
C : it has at most two vertices with odd degree. D : the number of its vertices with odd degree is not odd.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Serial Number: 522, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $2(m+n) \quad B: m \cdot n \quad C: m(n-1)+n(m-1) \quad D: m+n$
Question 2: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 3: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : each vertex of side A is connected with all vertices of side B. B : the number of vertices of side B is at least the number of vertices of side $A . \quad C$: each vertex of side B is connected to some vertex in side A. D : the number of vertices of side A is at least the number of vertices of side B.

Question 4: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 10$! $B: 9$! $C: 11$! $D: 3^{11}$
Question 5: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad B$: there is always a perfect matching of the vertices of side $A . \quad C$: side B has more vertices than side $A . \quad D$: side A has more vertices than side B.

Question 6: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 11!~ C: 10 \times 10 \quad D: 10$!
Question 7: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
A: $10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 8: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 3^{n} \quad B: 2^{n}+2^{n} \quad C: 2^{n} \quad D:\binom{n}{n / 2}$
Question 9: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 30 \quad B: 3^{10} \quad C: 10^{3} \quad D: 10 \cdot 9 \cdot 8$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 523, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 3^{n} \quad B: 2^{n}+2^{n} \quad C:\binom{n}{n / 2} \quad D: 2^{n}$
Question 2: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10 \times 10 \quad B: 2^{10} \quad C: 11$! $D: 10$!
Question 3: If G is a simple graph then
A : the number of its vertices with odd degree is not odd. B : the number of its vertices with even degree is even. C : it has at least two vertices with odd degree. D : it has at most two vertices with odd degree.

Question 4: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1} \quad B: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots \cdot 1}$
Question 5: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $m \cdot n \quad B: 2(m+n) \quad C: m(n-1)+n(m-1) \quad D: m+n$
Question 6: In a simple graph with 100 vertices
A : the minimum vertex degree is ≥ 1. B : not all vertex degrees can be odd. C : the maximum vertex degree is ≤ 99. D : it is possible that all vertices have different degrees.

Question 7: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 3^{10} \quad B: 30 \quad C: 10^{3} \quad D: 10 \cdot 9 \cdot 8$
Question 8: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!4!} \quad B: 6!\quad C: 10^{4} \quad D: \frac{10!}{6!}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 524, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
A: $m \cdot n \quad B: n(n-1) \cdots(n-m+1) \quad C: n^{m} \quad D: m^{n}$
Question 2: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 3: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!} \quad B: 6!\quad C: \frac{10!}{6!4!} \quad D: 10^{4}$
Question 4: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 10$! $B: 3^{11} C: 11$! $D: 9$!
Question 5: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $m+n \quad B: m(n-1)+n(m-1) \quad C: 2(m+n) \quad D: m \cdot n$
Question 6: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 7: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : each vertex of side A is connected with all vertices of side $B . \quad B$: the number of vertices of side B is at least the number of vertices of side $A . \quad C$: each vertex of side B is connected to some vertex in side A. D : the number of vertices of side A is at least the number of vertices of side B.

Question 8: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 3^{10} \quad B: 10 \cdot 9 \cdot 8 \quad C: 30 \quad D: 10^{3}$
Question 9: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : there is always a perfect matching of the vertices of side $A . \quad B$: side B has more vertices than side A. C : side A has more vertices than side B. D : For every subset $J \subseteq A$ the set of all its neighbors has more elements than J.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 525, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 3^{11} \quad B: 11$! $C: 9$! $D: 10$!
Question 2: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
A: $30 \quad B: 10 \cdot 9 \cdot 8 \quad C: 10^{3} \quad D: 3^{10}$
Question 3: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
$A: m+n \quad B: m \cdot n \quad C: 2(m+n) \quad D: m(n-1)+n(m-1)$
Question 4: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 5: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
A: $10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 6: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 2^{n} \quad B: 2^{n}+2^{n} \quad C:\binom{n}{n / 2} \quad D: 3^{n}$
Question 7: In a bipartite graph with vertex sets A and B which has a perfect matching of side A
A : each vertex of side A is connected with all vertices of side B. B : the number of vertices of side A is at least the number of vertices of side B. $\quad C$: each vertex of side B is connected to some vertex in side A. D : the number of vertices of side B is at least the number of vertices of side A.

Question 8: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 6!\quad B: 10^{4} \quad C: \frac{10!}{6!} \quad D: \frac{10!}{6!4!}$
Question 9: If G is a connected simple graph with n vertices then
A : it must have at least n edges. B : it cannot contain cycles. C : it must have at least $n-1$ edges.
D : it cannot have more than $n+1$ edges.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Serial Number: 526, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1} \quad B: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots \cdot 2 \cdot 1}$
Question 2: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 10^{4} \quad B: \frac{10!}{6!} \quad C: 6!\quad D: \frac{10!}{6!4!}$
Question 3: In a bipartite graph with vertex sets A and B which has a perfect matching of side A
A : the number of vertices of side A is at least the number of vertices of side $B . \quad B$: each vertex of side A is connected with all vertices of side $B . \quad C$: the number of vertices of side B is at least the number of vertices of side $A . \quad D$: each vertex of side B is connected to some vertex in side A.

Question 4: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
$A: m \cdot n \quad B: m^{n} \quad C: n(n-1) \cdots(n-m+1) \quad D: n^{m}$
Question 5: If G is a connected simple graph with n vertices then
A : it cannot have more than $n+1$ edges. $\quad B$: it must have at least $n-1$ edges. $\quad C$: it cannot contain cycles. $\quad D$: it must have at least n edges.

Question 6: In a simple graph with 100 vertices
A : the minimum vertex degree is ≥ 1. B : it is possible that all vertices have different degrees. C : not all vertex degrees can be odd. D : the maximum vertex degree is ≤ 99.
Question 7: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 8: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 3^{10} \quad B: 30 \quad C: 10 \cdot 9 \cdot 8 \quad D: 10^{3}$
Question 9: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 11$! $B: 2^{10} \quad C: 10 \times 10 \quad D: 10$!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 527, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: If G is a simple graph then
A : the number of its vertices with odd degree is not odd. B : it has at least two vertices with odd degree.
C : the number of its vertices with even degree is even. D : it has at most two vertices with odd degree.
Question 2: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 3: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 9$! $B: 3^{11} \quad C: 10$! $D: 11$!
Question 4: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 10 \cdot 9 \cdot 8 \quad B: 30 \quad C: 3^{10} \quad D: 10^{3}$
Question 5: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
A: $n^{m} \quad B: m \cdot n \quad C: m^{n} \quad D: n(n-1) \cdots(n-m+1)$
Question 6: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 0 exactly when i is not connected to $j \quad B$: equal to 1 exactly when there is a path that connect i to j. $\quad C$: equal to the degree of vertex $i \quad D$: equal to 1 exactly when i is not connected to j

Question 7: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : side B has more vertices than side $A . \quad B$: side A has more vertices than side $B . \quad C$: For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad D$: there is always a perfect matching of the vertices of side A.

Question 8: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A: 10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 6!\quad B: \frac{10!}{6!} \quad C: \frac{10!}{6!4!} \quad D: 10^{4}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Serial Number: 528, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 3^{11} \quad B: 9$! $C: 11!\quad D: 10$!
Question 2: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 1 exactly when i is not connected to $j \quad B$: equal to 1 exactly when there is a path that connect i to j. $\quad C$: equal to the degree of vertex $i \quad D$: equal to 0 exactly when i is not connected to j
Question 3: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0 . \quad B:\binom{n}{n-k}$.
Question 4: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 11$! $B: 10!~ C: 2^{10} \quad D: 10 \times 10$
Question 5: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 6: If G is a simple graph then
A : the number of its vertices with even degree is even. B : it has at least two vertices with odd degree.
C : the number of its vertices with odd degree is not odd. D : it has at most two vertices with odd degree.
Question 7: In a simple graph with 100 vertices
A : not all vertex degrees can be odd. B : the maximum vertex degree is $\leq 99 . \quad C$: it is possible that all vertices have different degrees. D : the minimum vertex degree is ≥ 1.
Question 8: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 3^{n} \quad B: 2^{n} \quad C:\binom{n}{n / 2} \quad D: 2^{n}+2^{n}$
Question 9: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

$$
A: 30 \quad B: 10 \cdot 9 \cdot 8 \quad C: 10^{3} \quad D: 3^{10}
$$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 529, Answers: 1: 2: 3: 4:5:6:7:8:9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 11!~ C: 10 \times 10 \quad D: 10$!
Question 2: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
A: $20 \cdot 19 \cdot 18 \quad B: 20^{3} \quad C: 3^{20} \quad D: \frac{20!}{3!}$
Question 4: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 1 exactly when there is a path that connect i to j. $\quad B$: equal to the degree of vertex $i \quad C$: equal to 0 exactly when i is not connected to $j \quad D$: equal to 1 exactly when i is not connected to j

Question 5: If G is a connected simple graph with n vertices then
A : it cannot have more than $n+1$ edges. B : it cannot contain cycles. C : it must have at least n edges. D : it must have at least $n-1$ edges.

Question 6: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $2(m+n) \quad B: m(n-1)+n(m-1) \quad C: m+n \quad D: m \cdot n$
Question 7: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1} \quad B: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1}$
Question 8: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
A: $n(n-1) \cdots(n-m+1) \quad B: m \cdot n \quad C: n^{m} \quad D: m^{n}$
Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 6!\quad B: 10^{4} \quad C: \frac{10!}{6!} \quad D: \frac{10!}{6!4!}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 530, Answers: 1:2:3:4:5:6:7:8:9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I
 Final examination

Question 1: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 2: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1} \quad B: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1}$
Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: 3^{20} \quad B: 20 \cdot 19 \cdot 18 \quad C: \frac{20!}{3!} \quad D: 20^{3}$
Question 4: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
A: $10 \cdot 9 \cdot 8 \quad B: 3^{10} \quad C: 10^{3} \quad D: 30$
Question 5: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad B$: side B has more vertices than side $A . \quad C$: side A has more vertices than side $B . \quad D$: there is always a perfect matching of the vertices of side A.

Question 6: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 10$! $B: 3^{11} \quad C: 9$! $D: 11$!
Question 7: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 10^{4} \quad B: \frac{10!}{6!} \quad C: 6!\quad D: \frac{10!}{6!4!}$
Question 8: In a bipartite graph with vertex sets A and B which has a perfect matching of side A
A : the number of vertices of side A is at least the number of vertices of side B. $\quad B$: each vertex of side B is connected to some vertex in side $A . \quad C$: each vertex of side A is connected with all vertices of side B. D : the number of vertices of side B is at least the number of vertices of side A.

Question 9: If G is a simple graph then
A : the number of its vertices with even degree is even. B : it has at most two vertices with odd degree.
C : it has at least two vertices with odd degree. D : the number of its vertices with odd degree is not odd.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Serial Number: 531, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : the number of vertices of side A is at least the number of vertices of side $B . \quad B$: each vertex of side B is connected to some vertex in side $A . \quad C$: each vertex of side A is connected with all vertices of side B. D : the number of vertices of side B is at least the number of vertices of side A.

Question 2: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n(n-1) \cdots(n-m+1) \quad B: m \cdot n \quad C: m^{n} \quad D: n^{m}$

Question 3: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
$A: 10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 4: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 3^{11} \quad B: 9$! $C: 10$! $D: 11$!
Question 5: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : side A has more vertices than side B. B : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad C$: there is always a perfect matching of the vertices of side $A . \quad D$: side B has more vertices than side A.
Question 6: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 7: If G is a connected simple graph with n vertices then
A : it must have at least $n-1$ edges. B : it must have at least n edges. C : it cannot contain cycles. D : it cannot have more than $n+1$ edges.

Question 8: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 3^{10} \quad B: 30 \quad C: 10 \cdot 9 \cdot 8 \quad D: 10^{3}$
Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!} \quad B: 10^{4} \quad C: \frac{10!}{6!4!} \quad D: 6!$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 532, Answers: 1: 2: 3: 4:5:6:7:8:9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : there is always a perfect matching of the vertices of side $A . \quad B$: side A has more vertices than side B. C : side B has more vertices than side $A . \quad D$: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J.

Question 2: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 3: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 4: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
A: 20^{3}
B: $20 \cdot 19 \cdot 18$
$C: 3^{20}$
D: $\frac{20!}{3!}$

Question 5: If G is a connected simple graph with n vertices then
A : it must have at least $n-1$ edges. B : it cannot contain cycles. C : it cannot have more than $n+1$ edges. $\quad D$: it must have at least n edges.

Question 6: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 2^{n} \quad B: 2^{n}+2^{n} \quad C:\binom{n}{n / 2} \quad D: 3^{n}$
Question 7: If G is a simple graph then
A : the number of its vertices with even degree is even. B : the number of its vertices with odd degree is not odd. C : it has at most two vertices with odd degree. D : it has at least two vertices with odd degree.

Question 8: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 10$! $B: 11$! $C: 3^{11} \quad D: 9$!
Question 9: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 11$! $B: 2^{10} \quad C: 10 \times 10 \quad D: 10$!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 533, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: If G is a simple graph then
A : the number of its vertices with even degree is even. B : it has at most two vertices with odd degree.
C : it has at least two vertices with odd degree. D : the number of its vertices with odd degree is not odd.

Question 2: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 6!\quad B: \frac{10!}{6!} \quad C: \frac{10!}{6!4!} \quad D: 10^{4}$
Question 3: If G is a connected simple graph with n vertices then
A : it cannot contain cycles. B : it cannot have more than $n+1$ edges. C : it must have at least n edges. D : it must have at least $n-1$ edges.
Question 4: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
A: $10 \cdot 9 \cdot 8 \cdot 7 \quad$ B: $\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 5: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 6: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $2(m+n) \quad B: m(n-1)+n(m-1) \quad C: m \cdot n \quad D: m+n$
Question 7: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
A: $2^{n}+2^{n}$
$B: 3^{n}$
$C: 2^{n}$
$D:\binom{n}{n / 2}$

Question 8: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 10!C: 10 \times 10 \quad D: 11!$
Question 9: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $m \cdot n \quad B: n^{m} \quad C: m^{n} \quad D: n(n-1) \cdots(n-m+1)$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 534, Answers: 1:2:3:4:5:6:7:8:9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 3^{n} \quad B: 2^{n} \quad C: 2^{n}+2^{n} \quad D:\binom{n}{n / 2}$
Question 2: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 3: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10 \times 10 \quad B: 10$! $C: 11$! $D: 2^{10}$
Question 4: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : there is always a perfect matching of the vertices of side $A . \quad B$: side A has more vertices than side B. C : side B has more vertices than side $A . \quad D$: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J.

Question 5: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 6: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!4!} \quad B: 6!\quad C: 10^{4} \quad D: \frac{10!}{6!}$
Question 7: If G is a connected simple graph with n vertices then
A : it cannot contain cycles. B : it must have at least $n-1$ edges. $\quad C$: it cannot have more than $n+1$ edges. $\quad D$: it must have at least n edges.

Question 8: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $2(m+n) \quad B: m(n-1)+n(m-1) \quad C: m \cdot n \quad D: m+n$
Question 9: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 3^{10} \quad B: 30 \quad C: 10 \cdot 9 \cdot 8 \quad D: 10^{3}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 535, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I
Final examination

Question 1: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: 20^{3} \quad B: \frac{20!}{3!} \quad C: 20 \cdot 19 \cdot 18 \quad D: 3^{20}$
Question 2: If G is a simple graph then
A : it has at least two vertices with odd degree. B : the number of its vertices with even degree is even. C : the number of its vertices with odd degree is not odd. D : it has at most two vertices with odd degree.

Question 3: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : side B has more vertices than side A. B : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad C$: there is always a perfect matching of the vertices of side $A . \quad D$: side A has more vertices than side B.
Question 4: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 5: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
A: 6!
$B: \frac{10!}{6!}$
$C: \frac{10!}{6!4!}$
D: 10^{4}

Question 6: If G is a connected simple graph with n vertices then
A : it must have at least $n-1$ edges. B : it must have at least n edges. C : it cannot contain cycles. D : it cannot have more than $n+1$ edges.

Question 7: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
A: $2^{n}+2^{n}$
$B: 2^{n}$
$C:\binom{n}{n / 2}$
$D: 3^{n}$

Question 8: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 9$! $B: 3^{11} \quad C: 11$! $D: 10$!
Question 9: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 536, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
A: 2^{n}
$B: 3^{n}$
$C: 2^{n}+2^{n}$
$D:\binom{n}{n / 2}$
Question 2: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $2(m+n) \quad B: m+n \quad C: m(n-1)+n(m-1) \quad D: m \cdot n$
Question 3: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 11$! $B: 10!C: 2^{10} \quad D: 10 \times 10$
Question 4: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 5: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 6: If G is a connected simple graph with n vertices then
A : it must have at least $n-1$ edges. B : it must have at least n edges. C : it cannot have more than $n+1$ edges. D : it cannot contain cycles.
Question 7: If G is a simple graph then
A : the number of its vertices with even degree is even. B : the number of its vertices with odd degree is not odd. C : it has at most two vertices with odd degree. D : it has at least two vertices with odd degree.

Question 8: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 10^{3} \quad B: 3^{10} \quad C: 30 \quad D: 10 \cdot 9 \cdot 8$
Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!4!} \quad B: 10^{4} \quad C: \frac{10!}{6!} \quad D: 6!$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 537, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I
 Final examination

Question 1: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 9$! $B: 3^{11} \quad C: 11$! $D: 10$!
Question 2: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 3: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 4: If G is a simple graph then
A : it has at least two vertices with odd degree. B : the number of its vertices with odd degree is not odd.
C : the number of its vertices with even degree is even. D : it has at most two vertices with odd degree.
Question 5: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad B$: there is always a perfect matching of the vertices of side $A . \quad C$: side A has more vertices than side $B . \quad D$: side B has more vertices than side A.

Question 6: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 3^{10} \quad B: 10 \cdot 9 \cdot 8 \quad C: 30 \quad D: 10^{3}$
Question 7: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!} \quad B: \frac{10!}{6!4!} \quad C: 10^{4} \quad D: 6!$
Question 8: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
$A: n^{m} \quad B: m \cdot n \quad C: n(n-1) \cdots(n-m+1) \quad D: m^{n}$
Question 9: In a bipartite graph with vertex sets A and B which has a perfect matching of side A
A : each vertex of side A is connected with all vertices of side B. $\quad B$: the number of vertices of side B is at least the number of vertices of side $A . \quad C$: the number of vertices of side A is at least the number of vertices of side B. $\quad D$: each vertex of side B is connected to some vertex in side A.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 538, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 11$! $B: 3^{11} \quad C: 10!\quad D: 9$!
Question 2: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 1 exactly when there is a path that connect i to j. B : equal to 0 exactly when i is not connected to $j \quad C$: equal to 1 exactly when i is not connected to $j \quad D$: equal to the degree of vertex i
Question 3: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $2(m+n) \quad B: m \cdot n \quad C: m(n-1)+n(m-1) \quad D: m+n$
Question 4: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
A: $10 \cdot 9 \cdot 8 \quad B: 10^{3} \quad C: 30 \quad D: 3^{10}$
Question 5: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 6: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : each vertex of side B is connected to some vertex in side $A . \quad B$: each vertex of side A is connected with all vertices of side $B . \quad C$: the number of vertices of side A is at least the number of vertices of side B. D : the number of vertices of side B is at least the number of vertices of side A.

Question 7: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A:\binom{n}{n / 2} \quad B: 3^{n} \quad C: 2^{n} \quad D: 2^{n}+2^{n}$
Question 8: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10 \times 10 \quad B: 11$! $C: 10!\quad D: 2^{10}$
Question 9: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
A: $10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 539, Answers: 1:2:3:4:5:6:7:8:9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I
 Final examination

Question 1: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 10$! $B: 3^{11} \quad C: 11$! $D: 9$!
Question 2: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : side B has more vertices than side $A . \quad B$: side A has more vertices than side $B . \quad C$: there is always a perfect matching of the vertices of side $A . \quad D$: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J.

Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
A: $20 \cdot 19 \cdot 18 \quad B: 20^{3} \quad C: 3^{20} \quad D: \frac{20!}{3!}$
Question 4: If G is a connected simple graph with n vertices then
A : it must have at least $n-1$ edges. $\quad B$: it cannot have more than $n+1$ edges. $\quad C$: it must have at least n edges. $\quad D$: it cannot contain cycles.
Question 5: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 6: In a simple graph with 100 vertices
A : the maximum vertex degree is $\leq 99 . \quad B$: the minimum vertex degree is $\geq 1 . \quad C$: it is possible that all vertices have different degrees. D : not all vertex degrees can be odd.
Question 7: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 10^{4} \quad B: \frac{10!}{6!4!} \quad C: 6!\quad D: \frac{10!}{6!}$
Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 9: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 2^{n}+2^{n} \quad B: 2^{n} \quad C:\binom{n}{n / 2} \quad D: 3^{n}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 540, Answers: 1:2:3:4:5:6:7:8:9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : the number of vertices of side B is at least the number of vertices of side A. $\quad B$: each vertex of side B is connected to some vertex in side $A . \quad C$: each vertex of side A is connected with all vertices of side B. D : the number of vertices of side A is at least the number of vertices of side B.

Question 2: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 10^{4} \quad B: 6!\quad C: \frac{10!}{6!} \quad D: \frac{10!}{6!4!}$
Question 3: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
A: $n(n-1) \cdots(n-m+1) \quad B: m^{n} \quad C: n^{m} \quad D: m \cdot n$
Question 4: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 5: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 0 exactly when i is not connected to $j \quad B$: equal to 1 exactly when i is not connected to j C : equal to the degree of vertex $i \quad D$: equal to 1 exactly when there is a path that connect i to j.
Question 6: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 10^{3} \quad B: 3^{10} \quad C: 30 \quad D: 10 \cdot 9 \cdot 8$
Question 7: If G is a simple graph then
A : the number of its vertices with odd degree is not odd. B : it has at most two vertices with odd degree.
C : the number of its vertices with even degree is even. D : it has at least two vertices with odd degree.
Question 8: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 11$! $B: 3^{11} \quad C: 9$! $D: 10$!
Question 9: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 541, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I
 Final examination

Question 1: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 0 exactly when i is not connected to $j \quad B$: equal to 1 exactly when i is not connected to j C : equal to 1 exactly when there is a path that connect i to j. $\quad D$: equal to the degree of vertex i

Question 2: If G is a connected simple graph with n vertices then
A : it cannot have more than $n+1$ edges. B : it must have at least n edges. C : it cannot contain cycles. D : it must have at least $n-1$ edges.

Question 3: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : side A has more vertices than side B. $\quad B$: For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad C$: there is always a perfect matching of the vertices of side $A . \quad D$: side B has more vertices than side A.

Question 4: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 3^{11} \quad B: 9$! $C: 10$! $D: 11$!
Question 5: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 6: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 7: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 2^{n}+2^{n} \quad B:\binom{n}{n / 2} \quad C: 3^{n} \quad D: 2^{n}$
Question 8: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10 \times 10 \quad B: 11$! $C: 10$! $D: 2^{10}$
Question 9: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 30 \quad B: 3^{10} \quad C: 10 \cdot 9 \cdot 8 \quad D: 10^{3}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 542, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I
 Final examination

Question 1: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 6!\quad B: 10^{4} \quad C: \frac{10!}{6!} \quad D: \frac{10!}{6!4!}$
Question 2: In a simple graph with 100 vertices
A : it is possible that all vertices have different degrees. B : the minimum vertex degree is $\geq 1 . \quad C$: not all vertex degrees can be odd. D : the maximum vertex degree is ≤ 99.

Question 3: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
$A: 10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 4: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 11$! $B: 10!~ C: 10 \times 10 \quad D: 2^{10}$
Question 5: If G is a connected simple graph with n vertices then
A : it cannot contain cycles. B : it must have at least $n-1$ edges. C : it must have at least n edges.
D : it cannot have more than $n+1$ edges.
Question 6: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n(n-1) \cdots(n-m+1) \quad B: m^{n} \quad C: m \cdot n \quad D: n^{m}$
Question 7: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 1 exactly when there is a path that connect i to j. $\quad B$: equal to 1 exactly when i is not connected to $j \quad C$: equal to the degree of vertex $i \quad D$: equal to 0 exactly when i is not connected to j

Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 9: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: 20^{3} \quad B: 20 \cdot 19 \cdot 18 \quad C: \frac{20!}{3!} \quad D: 3^{20}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 543, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
$A: m \cdot n \quad B: m(n-1)+n(m-1) \quad C: m+n \quad D: 2(m+n)$
Question 2: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n(n-1) \cdots(n-m+1) \quad B: m^{n} \quad C: n^{m} \quad D: m \cdot n$
Question 3: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10$! $B: 2^{10} \quad C: 11$! $D: 10 \times 10$
Question 4: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
A: $\binom{n}{n / 2}$
$B: 3^{n}$
$C: 2^{n}+2^{n} \quad D: 2^{n}$

Question 5: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 6: If G is a connected simple graph with n vertices then
A : it must have at least $n-1$ edges. B : it must have at least n edges. C : it cannot contain cycles. D : it cannot have more than $n+1$ edges.

Question 7: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : each vertex of side A is connected with all vertices of side B. B : the number of vertices of side B is at least the number of vertices of side $A . \quad C$: each vertex of side B is connected to some vertex in side A. D : the number of vertices of side A is at least the number of vertices of side B.

Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 6!\quad B: \frac{10!}{6!} \quad C: \frac{10!}{6!4!} \quad D: 10^{4}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 544, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 10^{4} \quad B: 6!\quad C: \frac{10!}{6!4!} \quad D: \frac{10!}{6!}$
Question 2: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : the number of vertices of side B is at least the number of vertices of side $A . B$: each vertex of side A is connected with all vertices of side $B . \quad C$: each vertex of side B is connected to some vertex in side A. D : the number of vertices of side A is at least the number of vertices of side B.

Question 3: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 4: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $2(m+n) \quad B: m(n-1)+n(m-1) \quad C: m \cdot n \quad D: m+n$
Question 5: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 6: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: \frac{20!}{3!} \quad B: 3^{20} \quad C: 20 \cdot 19 \cdot 18 \quad D: 20^{3}$
Question 7: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 3^{n} \quad B: 2^{n}+2^{n} \quad C: 2^{n} \quad D:\binom{n}{n / 2}$
Question 8: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 10$! $B: 11$! $C: 9$! $D: 3^{11}$
Question 9: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : side A has more vertices than side $B . \quad B$: side B has more vertices than side $A . \quad C$: For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad D$: there is always a perfect matching of the vertices of side A.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 545, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : each vertex of side B is connected to some vertex in side $A . \quad B$: the number of vertices of side B is at least the number of vertices of side A. $\quad C$: each vertex of side A is connected with all vertices of side B. D : the number of vertices of side A is at least the number of vertices of side B.

Question 2: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 3: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
A: $10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 4: If G is a simple graph then
A : the number of its vertices with even degree is even. B : the number of its vertices with odd degree is not odd. C : it has at most two vertices with odd degree. D : it has at least two vertices with odd degree.
Question 5: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: \frac{20!}{3!} \quad B: 20 \cdot 19 \cdot 18 \quad C: 20^{3} \quad D: 3^{20}$
Question 6: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 11!B: 3^{11} C: 10!D: 9$!
Question 7: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to the degree of vertex $i \quad B$: equal to 0 exactly when i is not connected to $j \quad C$: equal to 1 exactly when i is not connected to $j \quad D$: equal to 1 exactly when there is a path that connect i to j.
Question 8: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 10 \times 10 \quad C: 11$! $D: 10$!
Question 9: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n^{m} \quad B: n(n-1) \cdots(n-m+1) \quad C: m^{n} \quad D: m \cdot n$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 546, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
A: $2^{n}+2^{n}$
$B: 2^{n} \quad C:\binom{n}{n / 2}$
D: 3^{n}

Question 2: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 3^{11} \quad B: 9$! $C: 10$! $D: 11$!
Question 3: If G is a simple graph then
A : it has at most two vertices with odd degree. B : the number of its vertices with odd degree is not odd.
C : it has at least two vertices with odd degree. D : the number of its vertices with even degree is even.
Question 4: If G is a connected simple graph with n vertices then
A : it cannot contain cycles. B : it cannot have more than $n+1$ edges. C : it must have at least $n-1$ edges. $\quad D$: it must have at least n edges.

Question 5: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
A: 3^{20}
B: $20 \cdot 19 \cdot 18$
$C: 20^{3} \quad D: \frac{20!}{3!}$

Question 6: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 6!\quad B: 10^{4} \quad C: \frac{10!}{6!4!} \quad D: \frac{10!}{6!}$
Question 7: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
A: $\frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 8: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : each vertex of side A is connected with all vertices of side B. B : the number of vertices of side B is at least the number of vertices of side $A . \quad C$: each vertex of side B is connected to some vertex in side A. D : the number of vertices of side A is at least the number of vertices of side B.

Question 9: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis

Serial Number: 547, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In a simple graph with 100 vertices
A : not all vertex degrees can be odd. B : the minimum vertex degree is $\geq 1 . \quad C$: it is possible that all vertices have different degrees. D : the maximum vertex degree is ≤ 99.

Question 2: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 10^{3} \quad B: 30 \quad C: 3^{10} \quad D: 10 \cdot 9 \cdot 8$
Question 3: In a bipartite graph with vertex sets A and B which has a perfect matching of side A
A : the number of vertices of side A is at least the number of vertices of side $B . \quad B$: each vertex of side B is connected to some vertex in side $A . \quad C$: each vertex of side A is connected with all vertices of side B. D : the number of vertices of side B is at least the number of vertices of side A.

Question 4: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 10$! $B: 11$! $C: 3^{11} \quad D: 9$!
Question 5: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1} \quad B: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1}$
Question 6: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 2^{n} \quad B:\binom{n}{n / 2} \quad C: 2^{n}+2^{n} \quad D: 3^{n}$
Question 7: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 8: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!4!} \quad B: \frac{10!}{6!} \quad C: 6!\quad D: 10^{4}$
Question 9: If G is a connected simple graph with n vertices then
A : it cannot contain cycles. B : it must have at least $n-1$ edges. C : it must have at least n edges.
D : it cannot have more than $n+1$ edges.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 548, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $m(n-1)+n(m-1) \quad B: m+n \quad C: m \cdot n \quad D: 2(m+n)$
Question 2: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 0 exactly when i is not connected to $j \quad B$: equal to the degree of vertex $i \quad C$: equal to 1 exactly when i is not connected to $j \quad D$: equal to 1 exactly when there is a path that connect i to j.

Question 3: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 10^{3} \quad B: 3^{10} \quad C: 10 \cdot 9 \cdot 8 \quad D: 30$
Question 4: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : each vertex of side A is connected with all vertices of side B. B : the number of vertices of side A is at least the number of vertices of side $B . \quad C$: the number of vertices of side B is at least the number of vertices of side $A . \quad D$: each vertex of side B is connected to some vertex in side A.

Question 5: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n(n-1) \cdots(n-m+1) \quad B: m \cdot n \quad C: n^{m} \quad D: m^{n}$

Question 6: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 7: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 8: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10 \times 10 \quad B: 11$! $C: 10!\quad D: 2^{10}$
Question 9: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 3^{11} \quad B: 11$! $C: 9$! $D: 10$!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 549, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 11$! $B: 10$! $C: 9$! $D: 3^{11}$
Question 2: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
A: $10 \cdot 9 \cdot 8 \quad B: 30 \quad C: 3^{10} \quad D: 10^{3}$
Question 3: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1} \quad B: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1}$
Question 4: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 6!\quad B: 10^{4}$
$C: \frac{10!}{6!}$
$D: \frac{10!}{6!4!}$

Question 5: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 6: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
A: $n(n-1) \cdots(n-m+1) \quad B: m^{n} \quad C: m \cdot n \quad D: n^{m}$
Question 7: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : the number of vertices of side A is at least the number of vertices of side B. B : each vertex of side B is connected to some vertex in side $A . \quad C$: each vertex of side A is connected with all vertices of side B. D : the number of vertices of side B is at least the number of vertices of side A.

Question 8: In a simple graph with 100 vertices
A : it is possible that all vertices have different degrees. B : the maximum vertex degree is $\leq 99 . \quad C$: the minimum vertex degree is ≥ 1. D : not all vertex degrees can be odd.
Question 9: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : side A has more vertices than side B. B : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad C$: side B has more vertices than side $A . \quad D$: there is always a perfect matching of the vertices of side A.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Serial Number: 550, Answers: 1: 2: 3: 4:5:6:7:8:9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
$A: n^{m} \quad B: n(n-1) \cdots(n-m+1) \quad C: m \cdot n \quad D: m^{n}$
Question 2: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 10$! $B: 3^{11} \quad C: 9$! $D: 11$!
Question 3: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 3^{n} \quad B:\binom{n}{n / 2} \quad C: 2^{n} \quad D: 2^{n}+2^{n}$
Question 4: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!4!} \quad B: 10^{4} \quad C: 6!\quad D: \frac{10!}{6!}$
Question 5: In a simple graph with 100 vertices
A : the minimum vertex degree is $\geq 1 . \quad B$: the maximum vertex degree is $\leq 99 . \quad C$: not all vertex degrees can be odd. D : it is possible that all vertices have different degrees.

Question 6: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : there is always a perfect matching of the vertices of side $A . \quad B$: For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad C$: side B has more vertices than side $A . \quad D$: side A has more vertices than side B.

Question 7: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $m \cdot n \quad B: m(n-1)+n(m-1) \quad C: 2(m+n) \quad D: m+n$
Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 9: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A: 10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

Serial Number: 551, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1} \quad B: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots \cdot 2 \cdot 1}$
Question 2: If G is a connected simple graph with n vertices then
A : it cannot have more than $n+1$ edges. $\quad B$: it cannot contain cycles. C : it must have at least $n-1$ edges. $\quad D$: it must have at least n edges.

Question 3: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 4: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10 \times 10 \quad B: 2^{10} \quad C: 10$! $D: 11$!
Question 5: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
$A: m+n \quad B: m(n-1)+n(m-1) \quad C: m \cdot n \quad D: 2(m+n)$
Question 6: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
A: $\frac{10!}{6!4!} \quad B: \frac{10!}{6!} \quad C: 6!\quad D: 10^{4}$
Question 7: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 3^{n} \quad B:\binom{n}{n / 2} \quad C: 2^{n} \quad D: 2^{n}+2^{n}$
Question 8: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: 20^{3} \quad B: \frac{20!}{3!} \quad C: 3^{20} \quad D: 20 \cdot 19 \cdot 18$
Question 9: If G is a simple graph then
A : it has at least two vertices with odd degree. B : it has at most two vertices with odd degree. C : the number of its vertices with odd degree is not odd. D : the number of its vertices with even degree is even.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 552, Answers: 1:2:3:4:5:6:7:8:9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: If G is a connected simple graph with n vertices then
A : it must have at least $n-1$ edges. B : it must have at least n edges. C : it cannot contain cycles. D : it cannot have more than $n+1$ edges.

Question 2: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 10!\quad C: 10 \times 10 \quad D: 11!$
Question 3: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
A: $10 \cdot 9 \cdot 8 \quad B: 10^{3} \quad C: 3^{10} \quad D: 30$
Question 4: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 1 exactly when i is not connected to $j \quad B$: equal to the degree of vertex $i \quad C$: equal to 0 exactly when i is not connected to $j \quad D$: equal to 1 exactly when there is a path that connect i to j.

Question 5: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : each vertex of side B is connected to some vertex in side $A . \quad B$: the number of vertices of side B is at least the number of vertices of side $A . \quad C$: each vertex of side A is connected with all vertices of side B. D : the number of vertices of side A is at least the number of vertices of side B.

Question 6: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 9$! $B: 3^{11} \quad C: 11$! $D: 10$!
Question 7: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 3^{n} \quad B: 2^{n} \quad C: 2^{n}+2^{n} \quad D:\binom{n}{n / 2}$
Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 9: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis

Serial Number: 553, Answers: 1: 2: 3: 4:5:6:7: 8:9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I
 Final examination

Question 1: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 0 exactly when i is not connected to $j \quad B$: equal to 1 exactly when i is not connected to j C : equal to 1 exactly when there is a path that connect i to j. $\quad D$: equal to the degree of vertex i

Question 2: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
A: $\frac{20!}{3!}$
$B: 3^{20}$
$C: 20 \cdot 19 \cdot 18$
D: 20^{3}

Question 4: If G is a connected simple graph with n vertices then
A : it must have at least n edges. B : it cannot contain cycles. C : it cannot have more than $n+1$ edges. D : it must have at least $n-1$ edges.

Question 5: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 10!B: 9!\quad C: 11!\quad D: 3^{11}$
Question 6: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 6!\quad B: 10^{4} \quad C: \frac{10!}{6!4!} \quad D: \frac{10!}{6!}$
Question 7: If G is a simple graph then
A : it has at least two vertices with odd degree. B : the number of its vertices with odd degree is not odd.
C : it has at most two vertices with odd degree. D : the number of its vertices with even degree is even.
Question 8: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A: 10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 9: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 3^{10} \quad B: 10^{3} \quad C: 10 \cdot 9 \cdot 8 \quad D: 30$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 554, Answers: 1:2:3:4:5:6:7:8:9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to the degree of vertex $i \quad B$: equal to 0 exactly when i is not connected to $j \quad C$: equal to 1 exactly when there is a path that connect i to j. $\quad D$: equal to 1 exactly when i is not connected to j
Question 2: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 3: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 4: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad B$: there is always a perfect matching of the vertices of side $A . \quad C$: side B has more vertices than side $A . \quad D$: side A has more vertices than side B.
Question 5: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10$! $B: 10 \times 10 \quad C: 11$! $D: 2^{10}$
Question 6: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
A: $10 \cdot 9 \cdot 8 \quad B: 10^{3} \quad C: 3^{10} \quad D: 30$
Question 7: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
A: $m \cdot n \quad B: n(n-1) \cdots(n-m+1) \quad C: n^{m} \quad D: m^{n}$
Question 8: If G is a connected simple graph with n vertices then
A : it must have at least $n-1$ edges. B : it must have at least n edges. C : it cannot contain cycles. D : it cannot have more than $n+1$ edges.

Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 6!\quad B: 10^{4} \quad C: \frac{10!}{6!}$
$D: \frac{10!}{6!4!}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 555, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 2: In a simple graph with 100 vertices
A : the maximum vertex degree is $\leq 99 . B$: it is possible that all vertices have different degrees. C : not all vertex degrees can be odd. D : the minimum vertex degree is ≥ 1.

Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: \frac{20!}{3!} \quad B: 20 \cdot 19 \cdot 18 \quad C: 20^{3} \quad D: 3^{20}$
Question 4: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
$A: m \cdot n \quad B: m(n-1)+n(m-1) \quad C: m+n \quad D: 2(m+n)$
Question 5: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 3^{11} \quad B: 10$! $C: 9$! $D: 11$!
Question 6: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A:\binom{n}{n / 2} \quad B: 2^{n} \quad C: 2^{n}+2^{n} \quad D: 3^{n}$
Question 7: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 8: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10 \times 10 \quad B: 10$! $C: 11$! $D: 2^{10}$
Question 9: If G is a connected simple graph with n vertices then A : it must have at least n edges. B : it must have at least $n-1$ edges. C : it cannot have more than $n+1$ edges. D : it cannot contain cycles.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 556, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 2: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 0 exactly when i is not connected to $j \quad B$: equal to the degree of vertex $i \quad C$: equal to 1 exactly when i is not connected to $j \quad D$: equal to 1 exactly when there is a path that connect i to j.
Question 3: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A:\binom{n}{n / 2} \quad B: 2^{n}+2^{n} \quad C: 3^{n} \quad D: 2^{n}$
Question 4: If G is a simple graph then
A : it has at most two vertices with odd degree. B : the number of its vertices with even degree is even.
C : it has at least two vertices with odd degree. D : the number of its vertices with odd degree is not odd.

Question 5: In a simple graph with 100 vertices
A : the minimum vertex degree is $\geq 1 . \quad B$: it is possible that all vertices have different degrees. C : the maximum vertex degree is ≤ 99. D : not all vertex degrees can be odd.

Question 6: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 6!\quad B: 10^{4} \quad C: \frac{10!}{6!} \quad D: \frac{10!}{6!4!}$
Question 7: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 10!\quad C: 10 \times 10 \quad D: 11!$
Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 9: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: 20^{3} \quad B: 3^{20} \quad C: 20 \cdot 19 \cdot 18 \quad D: \frac{20!}{3!}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 557, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
A: 3^{11}
$B: 9$!
$C: 10$!
$D: 11$!

Question 2: If G is a simple graph then
A : it has at least two vertices with odd degree. B : the number of its vertices with odd degree is not odd.
C : the number of its vertices with even degree is even. D : it has at most two vertices with odd degree.
Question 3: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
$A: 10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 4: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : each vertex of side A is connected with all vertices of side B. B : the number of vertices of side A is at least the number of vertices of side $B . \quad C$: each vertex of side B is connected to some vertex in side A. D : the number of vertices of side B is at least the number of vertices of side A.

Question 5: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
A: $m^{n} \quad B: m \cdot n \quad C: n(n-1) \cdots(n-m+1) \quad D: n^{m}$
Question 6: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: \frac{20!}{3!} \quad B: 20 \cdot 19 \cdot 18 \quad C: 3^{20} \quad D: 20^{3}$
Question 7: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k}$. B: 0 if $k=0$.
Question 8: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 1 exactly when i is not connected to $j \quad B$: equal to the degree of vertex $i \quad C$: equal to 1 exactly when there is a path that connect i to j. $\quad D$: equal to 0 exactly when i is not connected to j

Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!4!} \quad B: 10^{4} \quad C: \frac{10!}{6!} \quad D: 6!$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 558, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $m(n-1)+n(m-1) \quad B: m+n \quad C: m \cdot n \quad D: 2(m+n)$
Question 2: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 10!\quad C: 10 \times 10 \quad D: 11!$
Question 3: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 30 \quad B: 3^{10} \quad C: 10^{3} \quad D: 10 \cdot 9 \cdot 8$
Question 4: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A: 10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 5: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : each vertex of side A is connected with all vertices of side $B . \quad B$: the number of vertices of side B is at least the number of vertices of side $A . \quad C$: each vertex of side B is connected to some vertex in side A. D : the number of vertices of side A is at least the number of vertices of side B.

Question 6: If G is a connected simple graph with n vertices then
A : it cannot contain cycles. B : it cannot have more than $n+1$ edges. C : it must have at least $n-1$ edges. $\quad D$: it must have at least n edges.
Question 7: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n^{m} \quad B: m^{n} \quad C: n(n-1) \cdots(n-m+1) \quad D: m \cdot n$

Question 8: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 10^{4} \quad B: 6!\quad C: \frac{10!}{6!4!} \quad D: \frac{10!}{6!}$
Question 9: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 559, Answers: 1:2:3:4:5:6:7:8:9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
A: 3^{20}
B: $20 \cdot 19 \cdot 18$
$C: 20^{3} \quad D: \frac{20!}{3!}$

Question 2: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 3: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!} \quad B: 10^{4} \quad C: \frac{10!}{6!4!} \quad D: 6!$
Question 4: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A: 10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 5: In a bipartite graph with vertex sets A and B which has a perfect matching of side A
A : the number of vertices of side B is at least the number of vertices of side $A . \quad B$: each vertex of side B is connected to some vertex in side $A . \quad C$: the number of vertices of side A is at least the number of vertices of side B. $\quad D$: each vertex of side A is connected with all vertices of side B.

Question 6: In a simple graph with 100 vertices
A : the minimum vertex degree is ≥ 1. B : it is possible that all vertices have different degrees. C : the maximum vertex degree is ≤ 99. D : not all vertex degrees can be odd.
Question 7: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 3^{11} \quad B: 10$! $C: 11!\quad D: 9$!
Question 8: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $m(n-1)+n(m-1) \quad B: m+n \quad C: m \cdot n \quad D: 2(m+n)$
Question 9: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 2^{n} \quad B:\binom{n}{n / 2} \quad C: 3^{n} \quad D: 2^{n}+2^{n}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 560, Answers: 1:2:3:4:5:6:7:8:9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I
 Final examination

Question 1: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 6!\quad B: 10^{4} \quad C: \frac{10!}{6!} \quad D: \frac{10!}{6!4!}$
Question 2: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: 3^{20} \quad B: 20^{3} \quad C: \frac{20!}{3!} \quad D: 20 \cdot 19 \cdot 18$
Question 3: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 4: If G is a connected simple graph with n vertices then
A : it cannot have more than $n+1$ edges. $\quad B$: it must have at least $n-1$ edges. $\quad C$: it must have at least n edges. $\quad D$: it cannot contain cycles.

Question 5: In a simple graph with 100 vertices
A : the minimum vertex degree is ≥ 1. B : not all vertex degrees can be odd. C : it is possible that all vertices have different degrees. D : the maximum vertex degree is ≤ 99.

Question 6: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 3^{10} \quad B: 30 \quad C: 10^{3} \quad D: 10 \cdot 9 \cdot 8$
Question 7: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : each vertex of side B is connected to some vertex in side A. $\quad B$: each vertex of side A is connected with all vertices of side $B . \quad C$: the number of vertices of side A is at least the number of vertices of side B. D : the number of vertices of side B is at least the number of vertices of side A.

Question 8: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 9$! $B: 11$! $C: 10$! $D: 3^{11}$
Question 9: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 561, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I
 Final examination

Question 1: In a simple graph with 100 vertices
A : the minimum vertex degree is $\geq 1 . \quad B$: the maximum vertex degree is $\leq 99 . \quad C$: it is possible that all vertices have different degrees. D : not all vertex degrees can be odd.
Question 2: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 2^{n} \quad B: 2^{n}+2^{n} \quad C:\binom{n}{n / 2} \quad D: 3^{n}$
Question 3: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 4: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 5: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10 \times 10 \quad B: 2^{10} \quad C: 11!\quad D: 10$!
Question 6: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : side B has more vertices than side $A . \quad B$: there is always a perfect matching of the vertices of side A.
C : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad D$: side A has more vertices than side B.

Question 7: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 10^{3} \quad B: 30 \quad C: 3^{10} \quad D: 10 \cdot 9 \cdot 8$
Question 8: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 6!\quad B: \frac{10!}{6!4!} \quad C: 10^{4} \quad D: \frac{10!}{6!}$
Question 9: If G is a connected simple graph with n vertices then
A : it cannot contain cycles. B : it must have at least $n-1$ edges. C : it must have at least n edges. D : it cannot have more than $n+1$ edges.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 562, Answers: 1:2:3:4:5:6:7:8:9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I
Final examination

Question 1: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
A: $10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 2: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 30 \quad B: 10 \cdot 9 \cdot 8 \quad C: 10^{3} \quad D: 3^{10}$
Question 3: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to the degree of vertex $i \quad B$: equal to 0 exactly when i is not connected to $j \quad C$: equal to 1 exactly when there is a path that connect i to j. D : equal to 1 exactly when i is not connected to j
Question 4: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $m \cdot n \quad B: m^{n} \quad C: n^{m} \quad D: n(n-1) \cdots(n-m+1)$
Question 5: If G is a simple graph then
A : the number of its vertices with even degree is even. B : it has at least two vertices with odd degree.
C : it has at most two vertices with odd degree. D : the number of its vertices with odd degree is not odd.

Question 6: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10 \times 10 \quad B: 11$! $C: 10$! $D: 2^{10}$
Question 7: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 8: In a simple graph with 100 vertices
A : not all vertex degrees can be odd. B : it is possible that all vertices have different degrees. C : the maximum vertex degree is ≤ 99. D : the minimum vertex degree is ≥ 1.

Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 6!\quad B: 10^{4} \quad C: \frac{10!}{6!}$
$D: \frac{10!}{6!4!}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 563, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : the number of vertices of side B is at least the number of vertices of side $A . \quad B$: the number of vertices of side A is at least the number of vertices of side B. $\quad C$: each vertex of side B is connected to some vertex in side $A . \quad D$: each vertex of side A is connected with all vertices of side B.

Question 2: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $2(m+n) \quad B: m(n-1)+n(m-1) \quad C: m \cdot n \quad D: m+n$
Question 3: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
$A: m \cdot n \quad B: m^{n} \quad C: n^{m} \quad D: n(n-1) \cdots(n-m+1)$
Question 4: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1} \quad B: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1}$
Question 5: If G is a connected simple graph with n vertices then
A : it cannot contain cycles. B : it cannot have more than $n+1$ edges. C : it must have at least n edges. D : it must have at least $n-1$ edges.
Question 6: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 7: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!4!} \quad B: \frac{10!}{6!} \quad C: 10^{4} \quad D: 6!$
Question 8: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 10$! $B: 3^{11} \quad C: 9!\quad D: 11$!
Question 9: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: 20^{3} \quad B: 20 \cdot 19 \cdot 18 \quad C: 3^{20} \quad D: \frac{20!}{3!}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 564, Answers: 1: 2: 3: 4:5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 11$! $B: 9$! $C: 3^{11} \quad D: 10$!
Question 2: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
A: $n(n-1) \cdots(n-m+1) \quad B: m^{n} \quad C: m \cdot n \quad D: n^{m}$
Question 3: If G is a connected simple graph with n vertices then
A : it cannot have more than $n+1$ edges. $\quad B$: it must have at least $n-1$ edges. C : it cannot contain cycles. $\quad D$: it must have at least n edges.
Question 4: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : the number of vertices of side B is at least the number of vertices of side $A . B$: the number of vertices of side A is at least the number of vertices of side B. $\quad C$: each vertex of side B is connected to some vertex in side A. $\quad D$: each vertex of side A is connected with all vertices of side B.
Question 5: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 6: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to the degree of vertex $i \quad B$: equal to 1 exactly when i is not connected to $j \quad C$: equal to 1 exactly when there is a path that connect i to j. D : equal to 0 exactly when i is not connected to j
Question 7: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 10!\quad C: 11$! $D: 10 \times 10$
Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 9: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
A: $\binom{n}{n / 2}$
$B: 3^{n}$
$C: 2^{n}+2^{n} \quad D: 2^{n}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 565, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I
 Final examination

Question 1: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
A: $10 \cdot 9 \cdot 8$
$B: 10^{3}$
$C: 3^{10}$
D: 30

Question 2: If G is a simple graph then
A : it has at least two vertices with odd degree. B : the number of its vertices with even degree is even. C : it has at most two vertices with odd degree. D : the number of its vertices with odd degree is not odd.

Question 3: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 3^{11} \quad B: 9$! $C: 10$! $D: 11$!
Question 4: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : side B has more vertices than side $A . \quad B$: there is always a perfect matching of the vertices of side A.
C : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad D$: side A has more vertices than side B.

Question 5: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 10^{4} \quad B: 6!\quad C: \frac{10!}{6!4!} \quad D: \frac{10!}{6!}$
Question 6: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 2^{n}+2^{n} \quad B: 2^{n} \quad C: 3^{n} \quad D:\binom{n}{n / 2}$
Question 7: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
A: $10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 8: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 9: If G is a connected simple graph with n vertices then
A : it cannot have more than $n+1$ edges. B : it must have at least n edges. C : it must have at least $n-1$ edges. D : it cannot contain cycles.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis

Serial Number: 566, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: 20^{3} \quad B: 3^{20} \quad C: 20 \cdot 19 \cdot 18 \quad D: \frac{20!}{3!}$
Question 2: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 9$! $B: 11$! $C: 10!D: 3^{11}$
Question 3: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10$! $B: 10 \times 10 \quad C: 2^{10} \quad D: 11$!
Question 4: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 2^{n} \quad B: 3^{n} \quad C: 2^{n}+2^{n} \quad D:\binom{n}{n / 2}$
Question 5: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $m \cdot n \quad B: m+n \quad C: 2(m+n) \quad D: m(n-1)+n(m-1)$
Question 6: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8$, 9 . Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 7: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 8: In a bipartite graph with vertex sets A and B which has a perfect matching of side A
A : the number of vertices of side A is at least the number of vertices of side $B . \quad B$: each vertex of side A is connected with all vertices of side $B . \quad C$: the number of vertices of side B is at least the number of vertices of side A. $\quad D$: each vertex of side B is connected to some vertex in side A.

Question 9: If G is a connected simple graph with n vertices then
A : it cannot contain cycles. B : it cannot have more than $n+1$ edges. C : it must have at least n edges. D : it must have at least $n-1$ edges.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 567, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 2: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $m^{n} \quad B: m \cdot n \quad C: n(n-1) \cdots(n-m+1) \quad D: n^{m}$

Question 3: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8$, 9 . Two quadruples differing only in order are not considered different.
$A: 10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 4: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
$A: m \cdot n \quad B: m+n \quad C: m(n-1)+n(m-1) \quad D: 2(m+n)$
Question 5: If G is a simple graph then
A : it has at most two vertices with odd degree. B : the number of its vertices with even degree is even. C : the number of its vertices with odd degree is not odd. D : it has at least two vertices with odd degree.

Question 6: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : the number of vertices of side A is at least the number of vertices of side $B . \quad B$: the number of vertices of side B is at least the number of vertices of side $A . \quad C$: each vertex of side A is connected with all vertices of side B. $\quad D$: each vertex of side B is connected to some vertex in side A.

Question 7: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
A: $10 \cdot 9 \cdot 8 \quad B: 30 \quad C: 3^{10} \quad D: 10^{3}$
Question 8: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 11$! $B: 3^{11} \quad C: 10$! $D: 9$!
Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!} \quad B: 10^{4} \quad C: \frac{10!}{6!4!} \quad D: 6!$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 568, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 11$! $B: 3^{11} \quad C: 9$! $D: 10$!
Question 2: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : the number of vertices of side B is at least the number of vertices of side $A . \quad B$: the number of vertices of side A is at least the number of vertices of side B. $\quad C$: each vertex of side B is connected to some vertex in side A. $\quad D$: each vertex of side A is connected with all vertices of side B.

Question 3: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
A: $10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 4: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 5: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
A: $\binom{n}{n / 2}$
$B: 2^{n}$
$C: 2^{n}+2^{n} \quad D: 3^{n}$

Question 6: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: 3^{20} \quad B: 20^{3} \quad C: \frac{20!}{3!} \quad D: 20 \cdot 19 \cdot 18$
Question 7: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $2(m+n) \quad B: m+n \quad C: m \cdot n \quad D: m(n-1)+n(m-1)$
Question 8: If G is a connected simple graph with n vertices then
A : it cannot contain cycles. $\quad B$: it must have at least n edges. $\quad C$: it must have at least $n-1$ edges. D : it cannot have more than $n+1$ edges.

Question 9: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 10!\quad C: 10 \times 10 \quad D: 11$!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 569, Answers: 1: 2: 3: 4:5:6:7: 8: 9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: If G is a simple graph then
A : it has at least two vertices with odd degree. B : it has at most two vertices with odd degree. C : the number of its vertices with even degree is even. D : the number of its vertices with odd degree is not odd.

Question 2: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10 \times 10 \quad B: 10$! $C: 2^{10} \quad D: 11$!
Question 3: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1} \quad B: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1}$
Question 4: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 5: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
A: 30
$B: 10^{3}$
$C: 3^{10}$
D: $10 \cdot 9 \cdot 8$

Question 6: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 3^{n} \quad B:\binom{n}{n / 2} \quad C: 2^{n} \quad D: 2^{n}+2^{n}$
Question 7: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 1 exactly when i is not connected to $j \quad B$: equal to 1 exactly when there is a path that connect i to j. $\quad C$: equal to the degree of vertex $i \quad D$: equal to 0 exactly when i is not connected to j
Question 8: If G is a connected simple graph with n vertices then
A : it cannot contain cycles. B : it must have at least n edges. C : it cannot have more than $n+1$ edges.
D : it must have at least $n-1$ edges.
Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 6!\quad B: \frac{10!}{6!4!} \quad C: 10^{4} \quad D: \frac{10!}{6!}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Serial Number: 570, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 10^{4} \quad B: \frac{10!}{6!4!} \quad C: \frac{10!}{6!} \quad D: 6!$
Question 2: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
A: 10 ! $B: 11!\quad C: 10 \times 10 \quad D: 2^{10}$
Question 3: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
A: $10 \cdot 9 \cdot 8 \quad B: 10^{3} \quad C: 3^{10} \quad D: 30$
Question 4: In a simple graph with 100 vertices
A : it is possible that all vertices have different degrees. B : the maximum vertex degree is $\leq 99 . \quad C$: not all vertex degrees can be odd. D : the minimum vertex degree is ≥ 1.

Question 5: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 1 exactly when i is not connected to $j \quad B$: equal to 0 exactly when i is not connected to j C : equal to 1 exactly when there is a path that connect i to j. D : equal to the degree of vertex i

Question 6: If G is a connected simple graph with n vertices then
A : it must have at least n edges. $\quad B$: it cannot contain cycles. $\quad C$: it must have at least $n-1$ edges.
D : it cannot have more than $n+1$ edges.
Question 7: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k}$. B: 0 if $k=0$.
Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 9: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
A: $3^{20} \quad B: 20 \cdot 19 \cdot 18$
$C: \frac{20!}{3!} \quad D: 20^{3}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 571, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
A: $\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 2: If G is a connected simple graph with n vertices then
A : it must have at least $n-1$ edges. B : it must have at least n edges. C : it cannot contain cycles. D : it cannot have more than $n+1$ edges.
Question 3: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10$! $B: 10 \times 10 \quad C: 2^{10} \quad D: 11$!
Question 4: If G is a simple graph then
A : it has at most two vertices with odd degree. B : the number of its vertices with even degree is even.
C : it has at least two vertices with odd degree. D : the number of its vertices with odd degree is not odd.

Question 5: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 2^{n} \quad B: 3^{n} \quad C: 2^{n}+2^{n} \quad D:\binom{n}{n / 2}$
Question 6: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 7: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
A: $m^{n} \quad B: m \cdot n \quad C: n^{m} \quad D: n(n-1) \cdots(n-m+1)$
Question 8: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!} \quad B: \frac{10!}{6!4!} \quad C: 10^{4} \quad D: 6!$
Question 9: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : there is always a perfect matching of the vertices of side $A . \quad B$: For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad C$: side A has more vertices than side $B . \quad D$: side B has more vertices than side A.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis

Serial Number: 572, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 3^{n} \quad B: 2^{n}+2^{n} \quad C:\binom{n}{n / 2} \quad D: 2^{n}$
Question 2: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 3^{11} \quad B: 10$! $C: 11$! $D: 9$!
Question 3: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $m(n-1)+n(m-1) \quad B: m \cdot n \quad C: 2(m+n) \quad D: m+n$
Question 4: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 10 \times 10 \quad C: 11$! $D: 10$!
Question 5: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
A: $10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 6: In a simple graph with 100 vertices
A : the minimum vertex degree is $\geq 1 . \quad B$: the maximum vertex degree is $\leq 99 . \quad C$: it is possible that all vertices have different degrees. D : not all vertex degrees can be odd.
Question 7: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? $A: n^{m} \quad B: m^{n} \quad C: n(n-1) \cdots(n-m+1) \quad D: m \cdot n$
Question 8: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 9: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to the degree of vertex $i \quad B$: equal to 0 exactly when i is not connected to $j \quad C$: equal to 1 exactly when i is not connected to $j \quad D$: equal to 1 exactly when there is a path that connect i to j.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 573, Answers: 1: 2: 3: 4:5:6:7:8:9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 10$! $B: 11$! $C: 9$! $D: 3^{11}$
Question 2: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 3^{n} \quad B: 2^{n} \quad C:\binom{n}{n / 2} \quad D: 2^{n}+2^{n}$
Question 3: In a simple graph with 100 vertices
A : it is possible that all vertices have different degrees. B : the minimum vertex degree is $\geq 1 . \quad C$: not all vertex degrees can be odd. D : the maximum vertex degree is ≤ 99.

Question 4: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 5: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 11$! $B: 10 \times 10 \quad C: 2^{10} \quad D: 10$!
Question 6: If G is a simple graph then
A : the number of its vertices with even degree is even. B : the number of its vertices with odd degree is not odd. C : it has at least two vertices with odd degree. D : it has at most two vertices with odd degree.
Question 7: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 8: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
$A: n^{m} \quad B: m \cdot n \quad C: m^{n} \quad D: n(n-1) \cdots(n-m+1)$
Question 9: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $m \cdot n \quad B: 2(m+n) \quad C: m+n \quad D: m(n-1)+n(m-1)$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 574, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
$A: m \cdot n \quad B: m(n-1)+n(m-1) \quad C: m+n \quad D: 2(m+n)$
Question 2: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 11!C: 10 \times 10 \quad D: 10$!
Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: \frac{20!}{3!} \quad B: 20 \cdot 19 \cdot 18 \quad C: 3^{20} \quad D: 20^{3}$
Question 4: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1} \quad B: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots \cdot 2 \cdot 1}$
Question 5: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 1 exactly when i is not connected to $j \quad B$: equal to the degree of vertex $i \quad C$: equal to 0 exactly when i is not connected to $j \quad D$: equal to 1 exactly when there is a path that connect i to j.
Question 6: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 3^{n} \quad B:\binom{n}{n / 2} \quad C: 2^{n} \quad D: 2^{n}+2^{n}$
Question 7: If G is a simple graph then
A : it has at least two vertices with odd degree. B : the number of its vertices with even degree is even. C : it has at most two vertices with odd degree. D : the number of its vertices with odd degree is not odd.

Question 8: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 10^{4} \quad B: \frac{10!}{6!4!} \quad C: 6!\quad D: \frac{10!}{6!}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 575, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
A: $10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 2: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 3^{n} \quad B: 2^{n}+2^{n} \quad C: 2^{n} \quad D:\binom{n}{n / 2}$
Question 3: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 4: In a simple graph with 100 vertices
A : it is possible that all vertices have different degrees. B : the minimum vertex degree is ≥ 1. C : the maximum vertex degree is ≤ 99. D : not all vertex degrees can be odd.
Question 5: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $m(n-1)+n(m-1) \quad B: 2(m+n) \quad C: m+n \quad D: m \cdot n$
Question 6: In a bipartite graph with vertex sets A and B which has a perfect matching of side A
A : the number of vertices of side B is at least the number of vertices of side $A . \quad B$: each vertex of side B is connected to some vertex in side $A . \quad C$: each vertex of side A is connected with all vertices of side B. D : the number of vertices of side A is at least the number of vertices of side B.

Question 7: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 10^{4} \quad B: 6!\quad C: \frac{10!}{6!} \quad D: \frac{10!}{6!4!}$
Question 8: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10 \times 10 \quad B: 2^{10} \quad C: 11!\quad D: 10!$
Question 9: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 3^{10} \quad B: 10 \cdot 9 \cdot 8 \quad C: 30 \quad D: 10^{3}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 576, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
A: $20 \cdot 19 \cdot 18 \quad B: 20^{3} \quad C: \frac{20!}{3!} \quad D: 3^{20}$
Question 2: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 3^{10} \quad B: 10 \cdot 9 \cdot 8 \quad C: 10^{3} \quad D: 30$
Question 3: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : side A has more vertices than side B. $\quad B$: For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad C$: side B has more vertices than side $A . \quad D$: there is always a perfect matching of the vertices of side A.

Question 4: If G is a simple graph then
A : it has at most two vertices with odd degree. $\quad B$: it has at least two vertices with odd degree. C : the number of its vertices with even degree is even. D : the number of its vertices with odd degree is not odd.

Question 5: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!4!} \quad B: \frac{10!}{6!} \quad C: 6!\quad D: 10^{4}$
Question 6: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 7: In a simple graph with 100 vertices
A : the maximum vertex degree is $\leq 99 . \quad B$: the minimum vertex degree is $\geq 1 . \quad C$: not all vertex degrees can be odd. D : it is possible that all vertices have different degrees.

Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 9: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 10!C: 11!\quad D: 10 \times 10$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis

Serial Number: 577, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 2: In a simple graph with 100 vertices
A : the maximum vertex degree is $\leq 99 . \quad B$: the minimum vertex degree is $\geq 1 . \quad C$: not all vertex degrees can be odd. D : it is possible that all vertices have different degrees.
Question 3: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 4: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
$A: m^{n} \quad B: m \cdot n \quad C: n(n-1) \cdots(n-m+1) \quad D: n^{m}$
Question 5: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 9$! $B: 10!\quad C: 11$! $D: 3^{11}$
Question 6: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : the number of vertices of side A is at least the number of vertices of side $B . \quad B$: the number of vertices of side B is at least the number of vertices of side $A . \quad C$: each vertex of side B is connected to some vertex in side $A . \quad D$: each vertex of side A is connected with all vertices of side B.

Question 7: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 10!\quad C: 10 \times 10 \quad D: 11!$
Question 8: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
$A: m(n-1)+n(m-1) \quad B: m \cdot n \quad C: 2(m+n) \quad D: m+n$
Question 9: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
A: $20^{3} \quad B: \frac{20!}{3!} \quad C: 3^{20} \quad D: 20 \cdot 19 \cdot 18$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Serial Number: 578, Answers: 1:2:3:4:5:6:7:8:9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I
 Final examination

Question 1: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
A: 6!
$B: \frac{10!}{6!}$
$C: \frac{10!}{6!4!}$
D: 10^{4}
Question 2: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: \frac{20!}{3!} \quad B: 20 \cdot 19 \cdot 18 \quad C: 20^{3} \quad D: 3^{20}$
Question 3: If G is a connected simple graph with n vertices then
A : it must have at least $n-1$ edges. $\quad B$: it cannot have more than $n+1$ edges. C : it cannot contain cycles. D : it must have at least n edges.
Question 4: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : side B has more vertices than side A. B : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad C$: side A has more vertices than side B. $\quad D$: there is always a perfect matching of the vertices of side A.

Question 5: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 30 \quad B: 3^{10} \quad C: 10 \cdot 9 \cdot 8 \quad D: 10^{3}$
Question 6: In a simple graph with 100 vertices
A : the minimum vertex degree is ≥ 1. B: not all vertex degrees can be odd. C : the maximum vertex degree is ≤ 99. D : it is possible that all vertices have different degrees.

Question 7: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
A: $10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 9: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10$! $B: 10 \times 10 \quad C: 2^{10} \quad D: 11$!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 579, Answers: 1: 2: 3: 4:5:6:7:8:9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 6!\quad B: \frac{10!}{6!} \quad C: 10^{4} \quad D: \frac{10!}{6!4!}$
Question 2: In a simple graph with 100 vertices
A : it is possible that all vertices have different degrees. B : not all vertex degrees can be odd. C : the minimum vertex degree is $\geq 1 . \quad D$: the maximum vertex degree is ≤ 99.
Question 3: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
A: $m^{n} \quad B: n(n-1) \cdots(n-m+1) \quad C: n^{m} \quad D: m \cdot n$
Question 4: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 5: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 6: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 11$! $B: 10!~ C: 10 \times 10 \quad D: 2^{10}$
Question 7: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
A: 10^{3}
B: 30
$C: 3^{10}$
D: $10 \cdot 9 \cdot 8$

Question 8: If G is a connected simple graph with n vertices then
A : it must have at least $n-1$ edges. $\quad B$: it cannot have more than $n+1$ edges. C : it cannot contain cycles. $\quad D$: it must have at least n edges.

Question 9: If G is a simple graph then
A : the number of its vertices with odd degree is not odd. B : the number of its vertices with even degree is even. C : it has at least two vertices with odd degree. D : it has at most two vertices with odd degree.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Serial Number: 580, Answers: 1: 2: 3: 4:5:6:7:8:9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination
Question 1: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 2: If G is a connected simple graph with n vertices then
A : it cannot contain cycles. B : it must have at least $n-1$ edges. C : it must have at least n edges.
D : it cannot have more than $n+1$ edges.
Question 3: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : side A has more vertices than side B. B : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad C$: there is always a perfect matching of the vertices of side $A . \quad D$: side B has more vertices than side A.

Question 4: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
A: $2^{n}+2^{n}$
$B:\binom{n}{n / 2}$
$C: 3^{n} \quad D: 2^{n}$

Question 5: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 3^{10} \quad B: 10^{3} \quad C: 30 \quad D: 10 \cdot 9 \cdot 8$
Question 6: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!4!} \quad B: \frac{10!}{6!} \quad C: 10^{4} \quad D: 6!$
Question 7: In a simple graph with 100 vertices
A : the maximum vertex degree is $\leq 99 . \quad B$: the minimum vertex degree is $\geq 1 . \quad C$: it is possible that all vertices have different degrees. D : not all vertex degrees can be odd.
Question 8: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 9: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 11$! $B: 10 \times 10 \quad C: 2^{10} \quad D: 10$!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 581, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : each vertex of side A is connected with all vertices of side B. B : the number of vertices of side A is at least the number of vertices of side $B . \quad C$: the number of vertices of side B is at least the number of vertices of side $A . \quad D$: each vertex of side B is connected to some vertex in side A.

Question 2: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 3: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10!\quad B: 10 \times 10 \quad C: 2^{10} \quad D: 11$!
Question 4: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : there is always a perfect matching of the vertices of side $A . \quad B$: side B has more vertices than side A.
C : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad D$: side A has more vertices than side B.

Question 5: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 3^{10} \quad B: 10 \cdot 9 \cdot 8 \quad C: 30 \quad D: 10^{3}$
Question 6: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 3^{11} \quad B: 10$! $C: 9$! $D: 11$!
Question 7: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 8: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A:\binom{n}{n / 2} \quad B: 3^{n} \quad C: 2^{n} \quad D: 2^{n}+2^{n}$
Question 9: If G is a simple graph then
A : it has at least two vertices with odd degree. B : the number of its vertices with even degree is even. C : it has at most two vertices with odd degree. D : the number of its vertices with odd degree is not odd.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis

Serial Number: 582, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In a simple graph with 100 vertices
A : not all vertex degrees can be odd. B : the minimum vertex degree is ≥ 1. C : the maximum vertex degree is ≤ 99. D : it is possible that all vertices have different degrees.

Question 2: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1} \quad B: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1}$
Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
A: $20 \cdot 19 \cdot 18$
$B: 3^{20}$
$C: 20^{3}$
D: $\frac{20!}{3!}$

Question 4: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
A: $10 \cdot 9 \cdot 8 \quad B: 30 \quad C: 3^{10} \quad D: 10^{3}$
Question 5: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : there is always a perfect matching of the vertices of side $A . \quad B$: side B has more vertices than side A.
C : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad D$: side A has more vertices than side B.

Question 6: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 7: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
$A: 2(m+n) \quad B: m \cdot n \quad C: m+n \quad D: m(n-1)+n(m-1)$
Question 8: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!} \quad B: 6!\quad C: \frac{10!}{6!4!} \quad D: 10^{4}$
Question 9: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10 \times 10 \quad B: 2^{10} \quad C: 10!\quad D: 11$!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 583, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!4!} \quad B: 6!\quad C: \frac{10!}{6!} \quad D: 10^{4}$
Question 2: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 0 exactly when i is not connected to $j \quad B$: equal to 1 exactly when there is a path that connect i to j. $\quad C$: equal to 1 exactly when i is not connected to $j \quad D$: equal to the degree of vertex i

Question 3: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
A: $10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 4: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 2^{n} \quad B:\binom{n}{n / 2} \quad C: 3^{n} \quad D: 2^{n}+2^{n}$
Question 5: If G is a connected simple graph with n vertices then
A : it must have at least $n-1$ edges. $\quad B$: it must have at least n edges. C : it cannot have more than $n+1$ edges. D : it cannot contain cycles.

Question 6: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 7: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 10^{3} \quad B: 3^{10} \quad C: 30 \quad D: 10 \cdot 9 \cdot 8$
Question 8: In a simple graph with 100 vertices
A : the minimum vertex degree is ≥ 1. B : not all vertex degrees can be odd. C : it is possible that all vertices have different degrees. D : the maximum vertex degree is ≤ 99.

Question 9: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 11!~ C: 10 \times 10 \quad D: 10$!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 584, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In a simple graph with 100 vertices
A : the maximum vertex degree is ≤ 99. B : not all vertex degrees can be odd. C : the minimum vertex degree is ≥ 1. $\quad D:$ it is possible that all vertices have different degrees.

Question 2: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to the degree of vertex $i \quad B$: equal to 1 exactly when there is a path that connect i to j. C : equal to 1 exactly when i is not connected to $j \quad D$: equal to 0 exactly when i is not connected to j
Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
A: $20 \cdot 19 \cdot 18$
$B: 3^{20}$
$C: 20^{3} \quad D: \frac{20!}{3!}$

Question 4: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : each vertex of side A is connected with all vertices of side B. B : the number of vertices of side B is at least the number of vertices of side $A . \quad C$: each vertex of side B is connected to some vertex in side A. D : the number of vertices of side A is at least the number of vertices of side B.
Question 5: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 3^{n} \quad B: 2^{n}+2^{n} \quad C: 2^{n} \quad D:\binom{n}{n / 2}$
Question 6: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
A: $10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 7: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 9$! $B: 3^{11} \quad C: 10$! $D: 11$!
Question 8: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10 \times 10 \quad B: 10!\quad C: 11!\quad D: 2^{10}$
Question 9: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 585, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
A: 11! $B: 10 \times 10 \quad C: 10$! $D: 2^{10}$
Question 2: In a bipartite graph with vertex sets A and B which has a perfect matching of side A
A : each vertex of side A is connected with all vertices of side B. B : the number of vertices of side B is at least the number of vertices of side $A . \quad C$: the number of vertices of side A is at least the number of vertices of side B. $\quad D$: each vertex of side B is connected to some vertex in side A.

Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
A: $20 \cdot 19 \cdot 18 \quad B: 3^{20} \quad C: \frac{20!}{3!} \quad D: 20^{3}$
Question 4: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 5: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!} \quad B: 6!\quad C: \frac{10!}{6!4!} \quad D: 10^{4}$
Question 6: In a simple graph with 100 vertices
A : the maximum vertex degree is ≤ 99. B : not all vertex degrees can be odd. C : it is possible that all vertices have different degrees. D : the minimum vertex degree is ≥ 1.
Question 7: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
A: $10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 8: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A:\binom{n}{n / 2} \quad B: 2^{n} \quad C: 3^{n} \quad D: 2^{n}+2^{n}$
Question 9: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 1 exactly when there is a path that connect i to j. $\quad B$: equal to 0 exactly when i is not connected to $j \quad C$: equal to 1 exactly when i is not connected to $j \quad D$: equal to the degree of vertex i

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 586, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 9$! $B: 3^{11} \quad C: 11$! $D: 10$!
Question 2: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!} \quad B: 6!\quad C: 10^{4} \quad D: \frac{10!}{6!4!}$
Question 3: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
A: $2^{n}+2^{n}$
$B:\binom{n}{n / 2}$
$C: 3^{n} \quad D: 2^{n}$

Question 4: In a simple graph with 100 vertices
A : it is possible that all vertices have different degrees. B : the minimum vertex degree is $\geq 1 . \quad C$: not all vertex degrees can be odd. D : the maximum vertex degree is ≤ 99.

Question 5: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 6: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 7: If G is a connected simple graph with n vertices then
A : it must have at least n edges. $\quad B$: it cannot contain cycles. $\quad C$: it must have at least $n-1$ edges. D : it cannot have more than $n+1$ edges.

Question 8: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
$A: 2(m+n) \quad B: m(n-1)+n(m-1) \quad C: m \cdot n \quad D: m+n$
Question 9: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 10^{3} \quad B: 3^{10} \quad C: 30 \quad D: 10 \cdot 9 \cdot 8$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 587, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 3^{n} \quad B: 2^{n} \quad C:\binom{n}{n / 2} \quad D: 2^{n}+2^{n}$
Question 2: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!4!} \quad B: \frac{10!}{6!} \quad C: 6!\quad D: 10^{4}$
Question 3: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
$A: n^{m} \quad B: m^{n} \quad C: m \cdot n \quad D: n(n-1) \cdots(n-m+1)$
Question 4: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1} \quad B: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots \cdot 2 \cdot 1}$
Question 5: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 9$! $B: 11$! $C: 10$! $D: 3^{11}$
Question 6: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 7: If G is a connected simple graph with n vertices then
A : it must have at least n edges. $\quad B$: it cannot have more than $n+1$ edges. C : it cannot contain cycles. D : it must have at least $n-1$ edges.
Question 8: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $m \cdot n \quad B: 2(m+n) \quad C: m+n \quad D: m(n-1)+n(m-1)$
Question 9: If G is a simple graph then
A : it has at least two vertices with odd degree. $\quad B$: the number of its vertices with odd degree is not odd.
C : it has at most two vertices with odd degree. D : the number of its vertices with even degree is even.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 588, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!} \quad B: 6!\quad C: \frac{10!}{6!4!} \quad D: 10^{4}$
Question 2: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
A: $\frac{20!}{3!}$
$B: 3^{20}$
$C: 20^{3}$
D: $20 \cdot 19 \cdot 18$

Question 3: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A: 10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 4: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 5: If G is a connected simple graph with n vertices then
A : it cannot have more than $n+1$ edges. B : it must have at least $n-1$ edges. C : it cannot contain cycles. $\quad D$: it must have at least n edges.

Question 6: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
A: $10 \cdot 9 \cdot 8 \quad B: 30 \quad C: 3^{10} \quad D: 10^{3}$
Question 7: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : there is always a perfect matching of the vertices of side $A . \quad B$: For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad C$: side B has more vertices than side $A . \quad D$: side A has more vertices than side B.

Question 8: In a simple graph with 100 vertices
A : not all vertex degrees can be odd. B : the maximum vertex degree is $\leq 99 . \quad C$: it is possible that all vertices have different degrees. D : the minimum vertex degree is ≥ 1.
Question 9: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10$! $B: 2^{10} \quad C: 10 \times 10 \quad D: 11$!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 589, Answers: 1: 2: 3: 4:5:6:7:8:9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
A: 3^{10}
B: 30
$C: 10 \cdot 9 \cdot 8$
$D: 10^{3}$

Question 2: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!} \quad B: 6!\quad C: \frac{10!}{6!4!} \quad D: 10^{4}$
Question 3: In a bipartite graph with vertex sets A and B which has a perfect matching of side A
A : the number of vertices of side B is at least the number of vertices of side $A . \quad B$: each vertex of side B is connected to some vertex in side $A . \quad C$: each vertex of side A is connected with all vertices of side B. D : the number of vertices of side A is at least the number of vertices of side B.
Question 4: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 5: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 6: In a simple graph with 100 vertices
A : the minimum vertex degree is $\geq 1 . \quad B$: it is possible that all vertices have different degrees. C : the maximum vertex degree is ≤ 99. D : not all vertex degrees can be odd.
Question 7: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $m \cdot n \quad B: m+n \quad C: 2(m+n) \quad D: m(n-1)+n(m-1)$
Question 8: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 3^{11} \quad B: 10$! $C: 9$! $D: 11$!
Question 9: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 2^{n}+2^{n} \quad B: 2^{n} \quad C: 3^{n} \quad D:\binom{n}{n / 2}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 590, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 10$! $B: 11!C: 2^{10} \quad D: 10 \times 10$
Question 2: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 3^{11} \quad B: 9!C: 10!\quad D: 11$!
Question 3: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
$A: m \cdot n \quad B: n(n-1) \cdots(n-m+1) \quad C: m^{n} \quad D: n^{m}$
Question 4: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 5: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $m+n \quad B: m(n-1)+n(m-1) \quad C: 2(m+n) \quad D: m \cdot n$
Question 6: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 7: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: 3^{20} \quad B: \frac{20!}{3!} \quad C: 20 \cdot 19 \cdot 18 \quad D: 20^{3}$
Question 8: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : each vertex of side B is connected to some vertex in side A. $\quad B$: each vertex of side A is connected with all vertices of side $B . \quad C$: the number of vertices of side A is at least the number of vertices of side B. D : the number of vertices of side B is at least the number of vertices of side A.
Question 9: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to the degree of vertex $i \quad B$: equal to 1 exactly when there is a path that connect i to j. C : equal to 0 exactly when i is not connected to $j \quad D$: equal to 1 exactly when i is not connected to j

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 591, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 10^{4} \quad B: \frac{10!}{6!} \quad C: 6!\quad D: \frac{10!}{6!4!}$
Question 2: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 9$! $B: 3^{11} \quad C: 11$! $D: 10$!
Question 3: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 4: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: \frac{20!}{3!} \quad B: 20^{3} \quad C: 3^{20} \quad D: 20 \cdot 19 \cdot 18$
Question 5: In a simple graph with 100 vertices
A : the minimum vertex degree is ≥ 1. B : not all vertex degrees can be odd. C : it is possible that all vertices have different degrees. D : the maximum vertex degree is ≤ 99.

Question 6: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? $A: m^{n} \quad B: m \cdot n \quad C: n(n-1) \cdots(n-m+1) \quad D: n^{m}$
Question 7: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad B$: side B has more vertices than side $A . \quad C$: there is always a perfect matching of the vertices of side $A . \quad D$: side A has more vertices than side B.

Question 8: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to the degree of vertex $i \quad B$: equal to 1 exactly when there is a path that connect i to j. C : equal to 1 exactly when i is not connected to $j \quad D$: equal to 0 exactly when i is not connected to j
Question 9: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0 . \quad B:\binom{n}{n-k}$.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 592, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 10$! $B: 11$! $C: 9$! $D: 3^{11}$
Question 2: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
A: $10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 3: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
A: $n^{m} \quad B: m \cdot n \quad C: m^{n} \quad D: n(n-1) \cdots(n-m+1)$
Question 4: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $m(n-1)+n(m-1) \quad B: 2(m+n) \quad C: m+n \quad D: m \cdot n$
Question 5: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : there is always a perfect matching of the vertices of side $A . \quad B$: side B has more vertices than side A. C : side A has more vertices than side B. D : For every subset $J \subseteq A$ the set of all its neighbors has more elements than J.

Question 6: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A:\binom{n}{n / 2} \quad B: 2^{n} \quad C: 3^{n} \quad D: 2^{n}+2^{n}$
Question 7: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!} \quad B: 6!\quad C: 10^{4} \quad D: \frac{10!}{6!4!}$
Question 8: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 1 exactly when there is a path that connect i to j. $\quad B$: equal to 1 exactly when i is not connected to $j C$: equal to the degree of vertex $i \quad D$: equal to 0 exactly when i is not connected to j
Question 9: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Serial Number: 593, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 2: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
$A: 2(m+n) \quad B: m(n-1)+n(m-1) \quad C: m+n \quad D: m \cdot n$
Question 3: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 10 \times 10 \quad C: 10$! $D: 11$!
Question 4: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!4!} \quad B: 10^{4} \quad C: \frac{10!}{6!} \quad D: 6!$
Question 5: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 30 \quad B: 10 \cdot 9 \cdot 8 \quad C: 10^{3} \quad D: 3^{10}$
Question 6: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 7: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
A: $20 \cdot 19 \cdot 18 \quad B: 20^{3} \quad C: \frac{20!}{3!} \quad D: 3^{20}$
Question 8: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : each vertex of side A is connected with all vertices of side B. $\quad B$: each vertex of side B is connected to some vertex in side $A . \quad C$: the number of vertices of side B is at least the number of vertices of side A. D : the number of vertices of side A is at least the number of vertices of side B.
Question 9: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 0 exactly when i is not connected to $j \quad B$: equal to 1 exactly when there is a path that connect i to j. $\quad C$: equal to the degree of vertex $i \quad D$: equal to 1 exactly when i is not connected to j

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 594, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
$A: m^{n} \quad B: n^{m} \quad C: n(n-1) \cdots(n-m+1) \quad D: m \cdot n$
Question 2: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 10 \times 10 \quad C: 10!\quad D: 11$!
Question 3: In a simple graph with 100 vertices
A : the maximum vertex degree is $\leq 99 . \quad B$: the minimum vertex degree is $\geq 1 . \quad C$: it is possible that all vertices have different degrees. D : not all vertex degrees can be odd.
Question 4: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 2^{n} \quad B:\binom{n}{n / 2} \quad C: 3^{n} \quad D: 2^{n}+2^{n}$
Question 5: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: 6!\quad B: \frac{10!}{6!} \quad C: 10^{4} \quad D: \frac{10!}{6!4!}$
Question 6: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
A: $10 \cdot 9 \cdot 8 \cdot 7 \quad B:\binom{8}{4}+\binom{8}{3}+\binom{8}{2}$
Question 7: If G is a simple graph then
A : the number of its vertices with odd degree is not odd. B : it has at least two vertices with odd degree.
C : the number of its vertices with even degree is even. D : it has at most two vertices with odd degree.
Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 9: If G is a connected simple graph with n vertices then
A : it cannot have more than $n+1$ edges. B : it cannot contain cycles. C : it must have at least n edges. D : it must have at least $n-1$ edges.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 595, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In a simple graph with 100 vertices
A : the maximum vertex degree is $\leq 99 . \quad B$: the minimum vertex degree is $\geq 1 . \quad C$: not all vertex degrees can be odd. D : it is possible that all vertices have different degrees.

Question 2: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
A: $\binom{n}{n / 2}$
$B: 2^{n}+2^{n}$
$C: 3^{n} \quad D: 2^{n}$

Question 3: If G is a simple graph then
A : it has at most two vertices with odd degree. B : the number of its vertices with even degree is even. C : it has at least two vertices with odd degree. D : the number of its vertices with odd degree is not odd.

Question 4: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 11$! $B: 10!~ C: 2^{10} \quad D: 10 \times 10$
Question 5: How many different quadruples can one form from the objects $1,1,2,3,4,5,6,7,8,9$. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 6: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 7: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
A: 10^{4}
$B: 6$!
$C: \frac{10!}{6!}$
$D: \frac{10!}{6!4!}$

Question 8: In a bipartite graph with vertex sets A and B which has a perfect matching of side A
A : each vertex of side A is connected with all vertices of side B. B : the number of vertices of side A is at least the number of vertices of side $B . \quad C$: each vertex of side B is connected to some vertex in side A. D : the number of vertices of side B is at least the number of vertices of side A.

Question 9: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n^{m} \quad B: m \cdot n \quad C: m^{n} \quad D: n(n-1) \cdots(n-m+1)$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 596, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 11$! $B: 10 \times 10 \quad C: 2^{10} \quad D: 10$!
Question 2: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!} \quad B: \frac{10!}{6!4!} \quad C: 10^{4} \quad D: 6!$
Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: \frac{20!}{3!} \quad B: 20 \cdot 19 \cdot 18 \quad C: 20^{3} \quad D: 3^{20}$
Question 4: If G is a connected simple graph with n vertices then
A : it must have at least n edges. B : it cannot have more than $n+1$ edges. C : it cannot contain cycles. D : it must have at least $n-1$ edges.

Question 5: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 6: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
A: $m+n \quad B: m \cdot n \quad C: 2(m+n) \quad D: m(n-1)+n(m-1)$
Question 7: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 2^{n} \quad B: 3^{n} \quad C: 2^{n}+2^{n} \quad D:\binom{n}{n / 2}$
Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1} \quad B: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1}$
Question 9: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 1 exactly when i is not connected to $j \quad B$: equal to 0 exactly when i is not connected to j C : equal to the degree of vertex $i \quad D$: equal to 1 exactly when there is a path that connect i to j.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 597, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.
$A:\binom{8}{4}+\binom{8}{3}+\binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$
Question 2: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 3^{11} \quad B: 10$! $C: 9$! $D: 11$!
Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?
$A: \frac{20!}{3!}$
$B: 3^{20}$
$C: 20^{3}$
$D: 20 \cdot 19 \cdot 18$

Question 4: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
$A: 3^{10} \quad B: 10 \cdot 9 \cdot 8 \quad C: 10^{3} \quad D: 30$
Question 5: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 6: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to the degree of vertex $i \quad B$: equal to 0 exactly when i is not connected to $j \quad C$: equal to 1 exactly when i is not connected to $j \quad D$: equal to 1 exactly when there is a path that connect i to j.
Question 7: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!4!} \quad B: 10^{4} \quad C: 6!\quad D: \frac{10!}{6!}$
Question 8: In a bipartite graph with vertex sets A and B which has a perfect matching of side A
A : the number of vertices of side A is at least the number of vertices of side $B . B$: each vertex of side A is connected with all vertices of side $B . \quad C$: each vertex of side B is connected to some vertex in side A. D : the number of vertices of side B is at least the number of vertices of side A.

Question 9: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
$A: m+n \quad B: 2(m+n) \quad C: m \cdot n \quad D: m(n-1)+n(m-1)$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 598, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9 :
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to the degree of vertex $i \quad B$: equal to 1 exactly when i is not connected to $j \quad C$: equal to 0 exactly when i is not connected to $j \quad D$: equal to 1 exactly when there is a path that connect i to j.
Question 2: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?
A: $30 \quad B: 3^{10} \quad C: 10 \cdot 9 \cdot 8 \quad D: 10^{3}$
Question 3: In how many ways can the numbers $0,1, \ldots, 10$ be put in order?
$A: 2^{10} \quad B: 10 \times 10 \quad C: 10!\quad D: 11$!
Question 4: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n^{m} \quad B: n(n-1) \cdots(n-m+1) \quad C: m^{n} \quad D: m \cdot n$

Question 5: The number of edges of the complete bipartite graph $K_{m n}$, with vertex sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is
$A: m \cdot n \quad B: m+n \quad C: m(n-1)+n(m-1) \quad D: 2(m+n)$
Question 6: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!} \quad B: \frac{10!}{6!4!} \quad C: 10^{4} \quad D: 6!$
Question 7: The binomial coefficient $\binom{n}{k}$ equals
$A:\binom{n}{n-k} . \quad B: 0$ if $k=0$.
Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1} \quad B: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1}$
Question 9: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then
A : there is always a perfect matching of the vertices of side $A . \quad B$: side B has more vertices than side A.
C : For every subset $J \subseteq A$ the set of all its neighbors has more elements than $J . \quad D$: side A has more vertices than side B.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

Serial Number: 599, Answers: 1:2:3:4:5:6:7:8:9:
Name:

University of Crete - Department of Mathematics - Discrete Mathematics I

Final examination

Question 1: If G is a connected simple graph with n vertices then
A : it cannot have more than $n+1$ edges. $\quad B$: it must have at least $n-1$ edges. $\quad C$: it must have at least n edges. $\quad D$: it cannot contain cycles.

Question 2: If A is the adjacency matrix of the simple graph G with vertex set $V=\{1,2, \ldots, n\}$, then the entry $A_{i, j}$, with $i, j \in V$ is
A : equal to 1 exactly when i is not connected to $j \quad B$: equal to the degree of vertex $i \quad C$: equal to 0 exactly when i is not connected to $j \quad D$: equal to 1 exactly when there is a path that connect i to j.

Question 3: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A : each vertex of side B is connected to some vertex in side $A . \quad B$: the number of vertices of side A is at least the number of vertices of side $B . \quad C$: each vertex of side A is connected with all vertices of side B. D : the number of vertices of side B is at least the number of vertices of side A.

Question 4: How many circular orderings of the numbers $0,1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.)
$A: 3^{11} \quad B: 9$! $C: 11!\quad D: 10$!
Question 5: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?
$A: \frac{10!}{6!4!} \quad B: 10^{4} \quad C: 6!\quad D: \frac{10!}{6!}$
Question 6: The binomial coefficient $\binom{n}{k}$ equals
$A: 0$ if $k=0$. $\quad B:\binom{n}{n-k}$.
Question 7: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$?
$A: n^{m} \quad B: m \cdot n \quad C: m^{n} \quad D: n(n-1) \cdots(n-m+1)$
Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?
$A: \frac{k(k-1) \cdots(k-n+1)}{n \cdot(n-1) \cdots 2 \cdot 1} \quad B: \frac{n(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}$
Question 9: In how many ways can we select two disjoint subsets A and B of $\{1,2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.)
$A: 3^{n} \quad B: 2^{n} \quad C: 2^{n}+2^{n} \quad D:\binom{n}{n / 2}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0 . There is precisely one correct answer per question.
Instructor: Mihalis Kolountzakis
Iraklio, 7 February 2004

RETURN THIS PAPER!

