Serial Number: 500, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 10! *B*: 3^{11} *C*: 11! *D*: 9!

Question 2: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. B: side B has more vertices than side A. C: side A has more vertices than side B. D: there is always a perfect matching of the vertices of side A.

Question 3: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: n^m B: m^n C: $n(n-1)\cdots(n-m+1)$ D: $m \cdot n$

Question 4: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 5: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member? A: $20^3 B: \frac{20!}{2!} C: 20 \cdot 19 \cdot 18 D: 3^{20}$

Question 6: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 7: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is

 $A: 2(m+n) \quad B: \ m+n \quad C: \ m(n-1)+n(m-1) \quad D: \ m\cdot n$

Question 8: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 10×10 C: 10! D: 11!

Question 9: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side B is connected to some vertex in side A. B: the number of vertices of side B is at least the number of vertices of side A. C: the number of vertices of side A is at least the number of vertices of side B. D: each vertex of side A is connected with all vertices of side B.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 501, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

 $A: 3^{10}$ $B: 10 \cdot 9 \cdot 8$ $C: 10^3$ D: 30

Question 2: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 10×10 C: 10! D: 11!

Question 3: In a simple graph with 100 vertices

A: not all vertex degrees can be odd. B: the minimum vertex degree is ≥ 1 . C: it is possible that all vertices have different degrees. D: the maximum vertex degree is ≤ 99 .

Question 4: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1} \quad B: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1}$

Question 5: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to the degree of vertex i B: equal to 1 exactly when there is a path that connect i to j. C: equal to 1 exactly when i is not connected to j D: equal to 0 exactly when i is not connected to j

Question 6: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: n^m B: $m \cdot n$ C: $n(n-1) \cdots (n-m+1)$ D: m^n

Question 7: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 8: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: $\frac{10!}{6!}$ B: 6! C: $\frac{10!}{6!4!}$ D: 10^4

Question 9: If G is a connected simple graph with n vertices then

A: it cannot have more than n + 1 edges. B: it must have at least n - 1 edges. C: it must have at least n edges. D: it cannot contain cycles.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 502, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 10! *B*: 11! *C*: 9! *D*: 3^{11}

Question 2: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 3: In how many ways can we choose *n* objects from *k* different objects, if the order of choice does not matter? $A = \frac{k(k-1)\cdots(k-n+1)}{k(k-1)\cdots(k-n+1)} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots(k-n+1)}$

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1} \quad B: \ \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1}$

Question 4: If G is a simple graph then

A: it has at most two vertices with odd degree. B: it has at least two vertices with odd degree. C: the number of its vertices with odd degree is not odd. D: the number of its vertices with even degree is even.

Question 5: In a simple graph with 100 vertices

A: not all vertex degrees can be odd. B: the maximum vertex degree is ≤ 99 . C: the minimum vertex degree is ≥ 1 . D: it is possible that all vertices have different degrees.

Question 6: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: $10 \cdot 9 \cdot 8$ B: 10^3 C: 3^{10} D: 30

Question 7: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 2^n B: $2^n + 2^n$ C: 3^n D: $\binom{n}{n/2}$

Question 8: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: $\frac{10!}{6!4!}$ B: 6! C: $\frac{10!}{6!}$ D: 10^4

Question 9: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: there is always a perfect matching of the vertices of side A. B: side B has more vertices than side A. C: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. D: side A has more vertices than side B.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 503, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 11! B: 10! C: 2^{10} D: 10×10

Question 2: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $\binom{n}{n/2}$ B: 2^n C: 3^n D: $2^n + 2^n$

Question 3: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 4: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 5: If G is a connected simple graph with n vertices then A: it cannot have more than n + 1 edges. B: it cannot contain cycles. C: it must have at least n - 1 edges. D: it must have at least n edges.

Question 6: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 11! B: 3^{11} C: 10! D: 9!

Question 7: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: m \cdot n \quad B: 2(m+n) \quad C: m(n-1) + n(m-1) \quad D: m+n$

Question 8: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n(n-1)\cdots(n-m+1)$ B: n^m C: $m \cdot n$ D: m^n

Question 9: In a simple graph with 100 vertices

A: the minimum vertex degree is ≥ 1 . B: not all vertex degrees can be odd. C: it is possible that all vertices have different degrees. D: the maximum vertex degree is ≤ 99 .

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **504**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: If G is a connected simple graph with n vertices then A: it must have at least n-1 edges. B: it cannot contain cycles. C: it must have at least n edges.

D: it cannot have more than n+1 edges. Question 2: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings

which differ only by a rotation are not considered different.) A: 9! B: 3^{11} C: 10! D: 11!

Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member? A: 3^{20} B: $\frac{20!}{3!}$ C: 20^3 D: $20 \cdot 19 \cdot 18$

Question 4: In how many ways can we choose n objects from k different objects, if the order of choice does not matter? A: $\frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot1}$

 $B: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots 2\cdot 1}$

Question 5: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: m^n B: $m \cdot n$ C: $n(n-1) \cdots (n-m+1)$ D: n^m

Question 6: In a simple graph with 100 vertices

A: it is possible that all vertices have different degrees. B: not all vertex degrees can be odd. C: the maximum vertex degree is ≤ 99 . D: the minimum vertex degree is ≥ 1 .

Question 7: If G is a simple graph then

A: it has at most two vertices with odd degree. B: the number of its vertices with odd degree is not odd. C: the number of its vertices with even degree is even. D: it has at least two vertices with odd degree.

Question 8: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 9: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 11! C: 10! D: 10×10

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 505, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is

A: $m \cdot n$ B: 2(m+n) C: m+n D: m(n-1) + n(m-1)

Question 2: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member? A: 3^{20} B: 20^3 C: $\frac{20!}{3!}$ D: $20 \cdot 19 \cdot 18$

Question 3: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) $A: 3^{11} \quad B: 10! \quad C: 11! \quad D: 9!$

Question 4: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters? A: 10^4 B: 6! C: $\frac{10!}{6!4!}$ D: $\frac{10!}{6!}$

Question 5: In a simple graph with 100 vertices

A: the minimum vertex degree is ≥ 1 . B: it is possible that all vertices have different degrees. C: the maximum vertex degree is ≤ 99 . D: not all vertex degrees can be odd.

Question 6: If G is a simple graph then

A: it has at least two vertices with odd degree. B: the number of its vertices with odd degree is not odd. C: it has at most two vertices with odd degree. D: the number of its vertices with even degree is even.

Question 7: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n \cdot (n-1)\cdots 2 \cdot 1} \quad B: \ \frac{n(n-1)\cdots(n-k+1)}{k \cdot (k-1)\cdots 2 \cdot 1}$

Question 8: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 9: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 2^n B: $2^n + 2^n$ C: 3^n D: $\binom{n}{n/2}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 506, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

A: 20^3 B: $20 \cdot 19 \cdot 18$ C: 3^{20} D: $\frac{20!}{3!}$

Question 2: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side B is connected to some vertex in side A. B: each vertex of side A is connected with all vertices of side B. C: the number of vertices of side B is at least the number of vertices of side A. D: the number of vertices of side A is at least the number of vertices of side B.

Question 3: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 4: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 10! *B*: 11! *C*: 9! *D*: 3¹¹

Question 5: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 6: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is

 $A: m(n-1) + n(m-1) \quad B: 2(m+n) \quad C: m+n \quad D: m \cdot n$

Question 7: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: $\frac{10!}{6!}$ B: 10^4 C: 6! D: $\frac{10!}{6!4!}$

Question 8: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: $10 \cdot 9 \cdot 8$ B: 3^{10} C: 30 D: 10^3

Question 9: In a simple graph with 100 vertices

A: the maximum vertex degree is ≤ 99 . B: it is possible that all vertices have different degrees. C: the minimum vertex degree is ≥ 1 . D: not all vertex degrees can be odd.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 507, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

 $A: \frac{10!}{6!4!}$ $B: \frac{10!}{6!}$ C: 6! $D: 10^4$

Question 2: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: m \cdot n \quad B: m(n-1) + n(m-1) \quad C: m+n \quad D: 2(m+n)$

Question 3: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 4: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 1 exactly when i is not connected to j B: equal to the degree of vertex i C: equal to 0 exactly when i is not connected to j D: equal to 1 exactly when there is a path that connect i to j.

Question 5: If G is a simple graph then

A: the number of its vertices with even degree is even. B: the number of its vertices with odd degree is not odd. C: it has at most two vertices with odd degree. D: it has at least two vertices with odd degree.

Question 6: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $m^n \quad B: n(n-1)\cdots(n-m+1) \quad C: m \cdot n \quad D: n^m$

Question 7: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 11! *B*: 9! *C*: 3^{11} *D*: 10!

Question 8: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: 10^3 B: 30 C: 3^{10} D: $10 \cdot 9 \cdot 8$

Question 9: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1} \quad B: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1}$

Question 2: In a simple graph with 100 vertices

A: not all vertex degrees can be odd. B: the minimum vertex degree is ≥ 1 . C: the maximum vertex degree is ≤ 99 . D: it is possible that all vertices have different degrees.

Question 3: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n(n-1)\cdots(n-m+1)$ B: m^n C: n^m D: $m \cdot n$

Question 4: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: m+n \quad B: 2(m+n) \quad C: m \cdot n \quad D: m(n-1) + n(m-1)$

Question 5: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 3^{11} B: 11! C: 9! D: 10!

Question 6: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side A is connected with all vertices of side B. B: the number of vertices of side A is at least the number of side B is connected to some vertex in side A. D: the number of vertices of side A is at least the number of vertices of side B.

Question 7: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 8: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 10! C: 10×10 D: 11!

Question 9: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member? $4 a^{20} = B = 20 - 10 - 10 = C = 20^3 = D = 20^{10}$

A: 3^{20} B: $20 \cdot 19 \cdot 18$ C: 20^3 D: $\frac{20!}{3!}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 509, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: If G is a simple graph then

A: it has at most two vertices with odd degree.B: the number of its vertices with even degree is even.C: it has at least two vertices with odd degree.D: the number of its vertices with odd degree is not odd.

Question 2: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

 $A: \frac{20!}{3!}$ $B: 20^3$ $C: 3^{20}$ $D: 20 \cdot 19 \cdot 18$

Question 3: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters? $A: \frac{10!}{6!4!} \quad B: 6! \quad C: 10^4 \quad D: \frac{10!}{6!}$

Question 4: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n(n-1)\cdots(n-m+1)$ B: n^m C: $m \cdot n$ D: m^n

Question 5: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 6: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 7: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 3^{11} B: 11! C: 10! D: 9!

Question 8: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. B: side B has more vertices than side A. C: there is always a perfect matching of the vertices of side A. D: side A has more vertices than side B.

Question 9: If G is a connected simple graph with n vertices then

A: it must have at least n edges. B: it cannot contain cycles. C: it must have at least n-1 edges. D: it cannot have more than n+1 edges.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 510, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: If G is a connected simple graph with n vertices then

A: it cannot have more than n + 1 edges. B: it must have at least n - 1 edges. C: it cannot contain cycles. D: it must have at least n edges.

Question 2: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to the degree of vertex i B: equal to 1 exactly when i is not connected to j C: equal to 0 exactly when i is not connected to j D: equal to 1 exactly when there is a path that connect i to j.

Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

A: 20^3 B: 3^{20} C: $20 \cdot 19 \cdot 18$ D: $\frac{20!}{3!}$

Question 4: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: side B has more vertices than side A. B: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. C: side A has more vertices than side B. D: there is always a perfect matching of the vertices of side A.

Question 5: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 6! B: 10^4 C: $\frac{10!}{6!}$ D: $\frac{10!}{6!4!}$

Question 6: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10! B: 11! C: 2^{10} D: 10×10

Question 7: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 8: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

 $A{:}\ 10^{3} \quad B{:}\ 3^{10} \quad C{:}\ 30 \quad D{:}\ 10\cdot9\cdot8$

Question 9: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 511, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n(n-1)\cdots(n-m+1)$ B: m^n C: $m \cdot n$ D: n^m

Question 2: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1} \quad B: \ \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1}$

Question 3: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: side A has more vertices than side B. B: there is always a perfect matching of the vertices of side A. C: side B has more vertices than side A. D: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J.

Question 4: If G is a simple graph then

A: it has at least two vertices with odd degree. B: the number of its vertices with odd degree is not odd. C: it has at most two vertices with odd degree. D: the number of its vertices with even degree is even.

Question 5: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 11! *B*: 9! *C*: 10! *D*: 3¹¹

Question 6: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

 $A: \frac{10!}{6!4!}$ $B: 10^4$ C: 6! $D: \frac{10!}{6!}$

Question 7: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 2^n B: $\binom{n}{n/2}$ C: 3^n D: $2^n + 2^n$

Question 8: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: the number of vertices of side A is at least the number of vertices of side B. B: the number of vertices of side B is at least the number of vertices of side A. C: each vertex of side A is connected with all vertices of side B. D: each vertex of side B is connected to some vertex in side A.

Question 9: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 512, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10! B: 11! C: 2^{10} D: 10×10

Question 2: If G is a connected simple graph with n vertices then

A: it cannot have more than n + 1 edges. B: it must have at least n edges. C: it must have at least n - 1 edges. D: it cannot contain cycles.

Question 3: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 10^4 B: $\frac{10!}{6!4!}$ C: 6! D: $\frac{10!}{6!}$

Question 4: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 5: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: 30 B: 10^3 C: 3^{10} D: $10 \cdot 9 \cdot 8$

Question 6: In a simple graph with 100 vertices

A: the maximum vertex degree is ≤ 99 . B: not all vertex degrees can be odd. C: it is possible that all vertices have different degrees. D: the minimum vertex degree is ≥ 1 .

Question 7: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 1 exactly when there is a path that connect i to j. B: equal to 1 exactly when i is not connected to j C: equal to 0 exactly when i is not connected to j D: equal to the degree of vertex i

Question 8: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member? $A: 20^3 \quad B: \frac{20!}{3!} \quad C: 3^{20} \quad D: 20 \cdot 19 \cdot 18$

Question 9: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two

quadruples differing only in order are not considered different. A: $10 \cdot 9 \cdot 8 \cdot 7$ B: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **513**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. A: $10 \cdot 9 \cdot 8 \cdot 7$ B: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 2: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, ..., b_n\}$ is A: m + n B: m(n-1) + n(m-1) C: $m \cdot n$ D: 2(m+n)

Question 3: In how many ways can we choose n objects from k different objects, if the order of choice

Question 4: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: m^n B: $m \cdot n$ C: n^m D: $n(n-1) \cdots (n-m+1)$

Question 5: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) $A: 3^{11}$ B: 10! C: 11! D: 9!

Question 6: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. B: side B has more vertices than side A. C: there is always a perfect matching of the vertices of side A. D: side A has more vertices than side B.

Question 7: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

A: 3^{20} B: $\frac{20!}{3!}$ C: $20 \cdot 19 \cdot 18$ D: 20^3

Question 8: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10×10 B: 11! C: 10! D: 2^{10}

Question 9: If G is a simple graph then

A: the number of its vertices with even degree is even. B: it has at most two vertices with odd degree. C: it has at least two vertices with odd degree. D: the number of its vertices with odd degree is not odd.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 514, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. B: there is always a perfect matching of the vertices of side A. C: side A has more vertices than side B. D: side B has more vertices than side A.

Question 2: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side A is connected with all vertices of side B. B: the number of vertices of side A is at least the number of vertices of side B. C: each vertex of side B is connected to some vertex in side A. D: the number of vertices of side B is at least the number of vertices of side A.

Question 3: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 11! B: 2^{10} C: 10×10 D: 10!

Question 4: If G is a simple graph then

A: the number of its vertices with even degree is even. B: it has at most two vertices with odd degree. C: it has at least two vertices with odd degree. D: the number of its vertices with odd degree is not odd.

Question 5: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: n^m B: m^n C: $m \cdot n$ D: $n(n-1) \cdots (n-m+1)$

Question 6: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 9! B: 11! C: 10! D: 3^{11}

Question 7: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 8: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 9: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $\binom{n}{n/2}$ B: 3^n C: 2^n D: $2^n + 2^n$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 515, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 2: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

 $A: 10^3 \quad B: 30 \quad C: 10 \cdot 9 \cdot 8 \quad D: 3^{10}$

Question 3: If G is a simple graph then

A: it has at least two vertices with odd degree.B: the number of its vertices with even degree is even.C: it has at most two vertices with odd degree.D: the number of its vertices with odd degree is not odd.

Question 4: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: $\frac{10!}{6!}$ B: 6! C: 10^4 D: $\frac{10!}{6!4!}$

Question 5: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 1 exactly when there is a path that connect i to j. B: equal to 1 exactly when i is not connected to j C: equal to 0 exactly when i is not connected to j D: equal to the degree of vertex i

Question 6: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: n^m B: $m \cdot n$ C: m^n D: $n(n-1) \cdots (n-m+1)$

Question 7: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: side B has more vertices than side A. B: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. C: side A has more vertices than side B. D: there is always a perfect matching of the vertices of side A.

Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot1} \quad B: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot1}$

Question 9: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 10×10 C: 11! D: 10!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 516, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

A: 20^3 B: $\frac{20!}{3!}$ C: 3^{20} D: $20 \cdot 19 \cdot 18$

Question 2: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

 $A: \frac{10!}{6!4!}$ B: 6! $C: 10^4$ $D: \frac{10!}{6!}$

Question 3: In how many ways can we choose *n* objects from *k* different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1} \quad B: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1}$

Question 4: In a simple graph with 100 vertices

A: the minimum vertex degree is ≥ 1 . B: the maximum vertex degree is ≤ 99 . C: it is possible that all vertices have different degrees. D: not all vertex degrees can be odd.

Question 5: If G is a connected simple graph with n vertices then

A: it must have at least n edges. B: it cannot contain cycles. C: it cannot have more than n+1 edges. D: it must have at least n-1 edges.

Question 6: If G is a simple graph then

A: the number of its vertices with even degree is even. B: it has at least two vertices with odd degree. C: the number of its vertices with odd degree is not odd. D: it has at most two vertices with odd degree.

Question 7: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 10×10 C: 11! D: 10!

Question 8: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 9: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: $10 \cdot 9 \cdot 8$ B: 3^{10} C: 30 D: 10^3

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 517, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: If G is a simple graph then

A: it has at least two vertices with odd degree. B: the number of its vertices with even degree is even. C: the number of its vertices with odd degree is not odd. D: it has at most two vertices with odd degree.

Question 2: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots 2\cdot 1} \quad B: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots 2\cdot 1}$

Question 3: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10×10 B: 11! C: 10! D: 2^{10}

Question 4: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: side B has more vertices than side A. B: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. C: side A has more vertices than side B. D: there is always a perfect matching of the vertices of side A.

Question 5: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: m \cdot n \quad B: m + n \quad C: m(n-1) + n(m-1) \quad D: 2(m+n)$

Question 6: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 7: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 10^4 B: $\frac{10!}{6!4!}$ C: 6! D: $\frac{10!}{6!}$

Question 8: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n(n-1)\cdots(n-m+1)$ B: n^m C: $m \cdot n$ D: m^n

Question 9: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $\binom{n}{n/2}$ B: 2^n C: 3^n D: $2^n + 2^n$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 518, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. B: side B has more vertices than side A. C: there is always a perfect matching of the vertices of side A. D: side A has more vertices than side B.

Question 2: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: $10 \cdot 9 \cdot 8$ B: 30 C: 10^3 D: 3^{10}

Question 3: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot1} \quad B: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot1}$

Question 4: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 6! B: $\frac{10!}{6!4!}$ C: $\frac{10!}{6!}$ D: 10^4

Question 5: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side B is connected to some vertex in side A. B: the number of vertices of side A is at least the number of vertices of side B. C: each vertex of side A is connected with all vertices of side B. D: the number of vertices of side B is at least the number of vertices of side A.

Question 6: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: n^m B: m^n C: $n(n-1)\cdots(n-m+1)$ D: $m \cdot n$

Question 7: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 8: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 11! B: 10×10 C: 10! D: 2^{10}

Question 9: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: m \cdot n \quad B: m + n \quad C: m(n-1) + n(m-1) \quad D: 2(m+n)$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 519, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: the number of vertices of side A is at least the number of vertices of side B. B: each vertex of side Ais connected with all vertices of side B. C: each vertex of side B is connected to some vertex in side A. D: the number of vertices of side B is at least the number of vertices of side A.

Question 2: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 11! B: 10! C: 10×10 D: 2^{10}

Question 3: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 4: If G is a simple graph then

A: the number of its vertices with even degree is even. B: it has at least two vertices with odd degree. C: the number of its vertices with odd degree is not odd. D: it has at most two vertices with odd degree.

Question 5: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 6: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $m \cdot n$ B: n^m C: m^n D: $n(n-1)\cdots(n-m+1)$

Question 7: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: 2(m+n) \quad B: m \cdot n \quad C: m(n-1) + n(m-1) \quad D: m+n$

Question 8: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member? $A: 3^{20} \quad B: \frac{20!}{3!} \quad C: 20 \cdot 19 \cdot 18 \quad D: 20^3$

Question 9: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 11! *B*: 10! *C*: 9! *D*: 3^{11}

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 520, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: $10 \cdot 9 \cdot 8$ B: 3^{10} C: 30 D: 10^3

Question 2: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 3: If G is a connected simple graph with n vertices then A: it cannot contain cycles. B: it must have at least n - 1 edges. C: it cannot have more than n + 1 edges. D: it must have at least n edges.

Question 4: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: 2(m+n) \quad B: m(n-1) + n(m-1) \quad C: m \cdot n \quad D: m+n$

Question 5: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 10! *B*: 3^{11} *C*: 9! *D*: 11!

Question 6: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 10×10 C: 10! D: 11!

Question 7: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side A is connected with all vertices of side B. B: the number of vertices of side A is at least the number of vertices of side B. C: each vertex of side B is connected to some vertex in side A. D: the number of vertices of side B is at least the number of vertices of side A.

Question 8: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: m^n B: $n(n-1)\cdots(n-m+1)$ C: $m \cdot n$ D: n^m

Question 9: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \begin{array}{c} \underbrace{n(n-1)\cdots(n-k+1)}_{k\cdot(k-1)\cdots2\cdot1} & B: \begin{array}{c} \underbrace{k(k-1)\cdots(k-n+1)}_{n\cdot(n-1)\cdots2\cdot1} \end{array}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 521, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: the number of vertices of side A is at least the number of vertices of side B. B: each vertex of side B is connected to some vertex in side A. C: the number of vertices of side B is at least the number of vertices of side A is connected with all vertices of side B.

Question 2: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: side A has more vertices than side B. B: there is always a perfect matching of the vertices of side A. C: side B has more vertices than side A. D: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J.

Question 3: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 11! *B*: 9! *C*: 10! *D*: 3^{11}

Question 4: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

A: $20 \cdot 19 \cdot 18$ B: 3^{20} C: 20^3 D: $\frac{20!}{3!}$

Question 5: In how many ways can we choose *n* objects from *k* different objects, if the order of choice does not matter? $k^{k(n-1)} = n^{n(n-1)} = n^{n(n-1)$

 $A: \frac{k(k-1)\cdots(k-n+1)}{n \cdot (n-1)\cdots 2 \cdot 1} \quad B: \ \frac{n(n-1)\cdots(n-k+1)}{k \cdot (k-1)\cdots 2 \cdot 1}$

Question 6: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: $10 \cdot 9 \cdot 8$ B: 30 C: 3^{10} D: 10^3

Question 7: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 8: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: $\frac{10!}{6!}$ B: $\frac{10!}{6!4!}$ C: 10^4 D: 6!

Question 9: If G is a simple graph then

A: it has at least two vertices with odd degree.B: the number of its vertices with even degree is even.C: it has at most two vertices with odd degree.D: the number of its vertices with odd degree is not odd.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 522, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is

 $A{:}\ 2(m+n) \quad B{:}\ m\cdot n \quad C{:}\ m(n-1)+n(m-1) \quad D{:}\ m+n$

Question 2: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 3: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side A is connected with all vertices of side B. B: the number of vertices of side A is at least the number of side B is connected to some vertex in side A. D: the number of vertices of side A is at least the number of vertices of side B.

Question 4: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 10! *B*: 9! *C*: 11! *D*: 3¹¹

Question 5: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. B: there is always a perfect matching of the vertices of side A. C: side B has more vertices than side A. D: side A has more vertices than side B.

Question 6: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 11! C: 10×10 D: 10!

Question 7: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 8: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 3^n B: $2^n + 2^n$ C: 2^n D: $\binom{n}{n/2}$

Question 9: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible? A: 20 $P: 2^{10}$ $C: 10^3$ D: 10.0 8

A: 30 B: 3^{10} C: 10^3 D: $10 \cdot 9 \cdot 8$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 523, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 3^n B: $2^n + 2^n$ C: $\binom{n}{n/2}$ D: 2^n

Question 2: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10×10 B: 2^{10} C: 11! D: 10!

Question 3: If G is a simple graph then

A: the number of its vertices with odd degree is not odd. B: the number of its vertices with even degree is even. C: it has at least two vertices with odd degree. D: it has at most two vertices with odd degree.

Question 4: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot1} \quad B: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot1}$

Question 5: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: m \cdot n \quad B: 2(m+n) \quad C: m(n-1) + n(m-1) \quad D: m+n$

Question 6: In a simple graph with 100 vertices

A: the minimum vertex degree is ≥ 1 . B: not all vertex degrees can be odd. C: the maximum vertex degree is ≤ 99 . D: it is possible that all vertices have different degrees.

Question 7: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: 3^{10} B: 30 C: 10^3 D: $10 \cdot 9 \cdot 8$

Question 8: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. A: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$ B: $10 \cdot 9 \cdot 8 \cdot 7$

Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: $\frac{10!}{6!4!}$ B: 6! C: 10^4 D: $\frac{10!}{6!}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **524**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $m \cdot n$ B: $n(n-1) \cdots (n-m+1)$ C: n^m D: m^n

Question 2: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 3: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: $\frac{10!}{6!}$ B: 6! C: $\frac{10!}{6!4!}$ D: 10^4

Question 4: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 10! B: 3^{11} C: 11! D: 9!

Question 5: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, ..., b_n\}$ is A: m + n B: m(n-1) + n(m-1) C: 2(m+n) D: $m \cdot n$

Question 6: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. A: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2} = B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 7: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A: each vertex of side A is connected with all vertices of side B. B: the number of vertices of side B is at least the number of vertices of side A. C: each vertex of side B is connected to some vertex in side A. D: the number of vertices of side A is at least the number of vertices of side B.

Question 8: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible? A: 3^{10} B: $10 \cdot 9 \cdot 8$ C: 30 D: 10^3

Question 9: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the

same degree r. Then

A: there is always a perfect matching of the vertices of side A. B: side B has more vertices than side A. C: side A has more vertices than side B. D: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **525**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) $A: 3^{11}$ B: 11! C: 9! D: 10!

Question 2: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: 30 B: $10 \cdot 9 \cdot 8$ C: 10^3 D: 3^{10}

Question 3: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, ..., b_n\}$ is A: m + n B: $m \cdot n$ C: 2(m + n) D: m(n - 1) + n(m - 1)

Question 4: In how many ways can we choose n objects from k different objects, if the order of choice does not matter? A: $\frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot1}$

 $B: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots 2\cdot 1}$

Question 5: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. A: $10 \cdot 9 \cdot 8 \cdot 7$ B: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 6: In how many ways can we select two disjoint subsets A and B of $\{1, 2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 2^n B: $2^n + 2^n$ C: $\binom{n}{n/2}$ D: 3^n

Question 7: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A: each vertex of side A is connected with all vertices of side B. B: the number of vertices of side A is at least the number of vertices of side B. C: each vertex of side B is connected to some vertex in side A. D: the number of vertices of side B is at least the number of vertices of side A.

Question 8: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 6! B: 10^4 C: $\frac{10!}{6!}$ D: $\frac{10!}{6!4!}$

Question 9: If G is a connected simple graph with n vertices then

A: it must have at least n edges. B: it cannot contain cycles. C: it must have at least n-1 edges. D: it cannot have more than n+1 edges.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **526**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot1} \quad B: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot1}$

Question 2: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 10^4 B: $\frac{10!}{6!}$ C: 6! D: $\frac{10!}{6!4!}$

Question 3: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: the number of vertices of side A is at least the number of vertices of side B. B: each vertex of side A is connected with all vertices of side B. C: the number of vertices of side B is at least the number of vertices of side A. D: each vertex of side B is connected to some vertex in side A.

Question 4: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $m \cdot n$ B: m^n C: $n(n-1) \cdots (n-m+1)$ D: n^m

Question 5: If G is a connected simple graph with n vertices then A: it cannot have more than n + 1 edges. B: it must have at least n - 1 edges. C: it cannot contain cycles. D: it must have at least n edges.

Question 6: In a simple graph with 100 vertices

A: the minimum vertex degree is ≥ 1 . B: it is possible that all vertices have different degrees. C: not all vertex degrees can be odd. D: the maximum vertex degree is ≤ 99 .

Question 7: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 8: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: 3^{10} B: 30 C: $10 \cdot 9 \cdot 8$ D: 10^3

Question 9: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 11! B: 2^{10} C: 10×10 D: 10!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 527, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: If G is a simple graph then

A: the number of its vertices with odd degree is not odd. B: it has at least two vertices with odd degree. C: the number of its vertices with even degree is even. D: it has at most two vertices with odd degree.

Question 2: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A \text{:} \ \tfrac{k(k-1)\cdots(k-n+1)}{n \cdot (n-1)\cdots 2 \cdot 1} \quad B \text{:} \ \tfrac{n(n-1)\cdots(n-k+1)}{k \cdot (k-1)\cdots 2 \cdot 1}$

Question 3: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 9! B: 3^{11} C: 10! D: 11!

Question 4: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: $10 \cdot 9 \cdot 8$ B: 30 C: 3^{10} D: 10^3

Question 5: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n^m \quad B: m \cdot n \quad C: m^n \quad D: n(n-1) \cdots (n-m+1)$

Question 6: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 0 exactly when i is not connected to j B: equal to 1 exactly when there is a path that connect i to j. C: equal to the degree of vertex i D: equal to 1 exactly when i is not connected to j

Question 7: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: side B has more vertices than side A. B: side A has more vertices than side B. C: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. D: there is always a perfect matching of the vertices of side A.

Question 8: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. A: $10 \cdot 9 \cdot 8 \cdot 7$ $B: \binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 6! B: $\frac{10!}{6!}$ C: $\frac{10!}{6!4!}$ D: 10^4

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 528, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 3^{11} B: 9! C: 11! D: 10!

Question 2: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 1 exactly when i is not connected to j B: equal to 1 exactly when there is a path that connect i to j. C: equal to the degree of vertex i D: equal to 0 exactly when i is not connected to j

Question 3: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 4: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 11! B: 10! C: 2^{10} D: 10×10

Question 5: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 6: If G is a simple graph then

A: the number of its vertices with even degree is even. B: it has at least two vertices with odd degree. C: the number of its vertices with odd degree is not odd. D: it has at most two vertices with odd degree.

Question 7: In a simple graph with 100 vertices

A: not all vertex degrees can be odd. B: the maximum vertex degree is ≤ 99 . C: it is possible that all vertices have different degrees. D: the minimum vertex degree is ≥ 1 .

Question 8: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 3^n B: 2^n C: $\binom{n}{n/2}$ D: $2^n + 2^n$

Question 9: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: 30 B: $10 \cdot 9 \cdot 8$ C: 10^3 D: 3^{10}

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **529**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 11! C: 10×10 D: 10!

Question 2: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member? $A: 20 \cdot 19 \cdot 18 \quad B: 20^3 \quad C: 3^{20} \quad D: \frac{20!}{3!}$

Question 4: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 1 exactly when there is a path that connect i to j. B: equal to the degree of vertex i C: equal to 0 exactly when i is not connected to j D: equal to 1 exactly when i is not connected to j

Question 5: If G is a connected simple graph with n vertices then A: it cannot have more than n+1 edges. B: it cannot contain cycles. C: it must have at least n edges. D: it must have at least n-1 edges.

Question 6: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is

A: 2(m+n) B: m(n-1) + n(m-1) C: m+n D: $m \cdot n$

Question 7: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

does not matter? $A: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1} \quad B: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1}$

Question 8: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n(n-1)\cdots(n-m+1)$ B: $m \cdot n$ C: n^m D: m^n

Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 6! B: 10^4 C: $\frac{10!}{6!}$ D: $\frac{10!}{6!4!}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **530**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 2: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1} \quad B: \ \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1}$

Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

A: 3^{20} B: $20 \cdot 19 \cdot 18$ C: $\frac{20!}{3!}$ D: 20^3

Question 4: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: $10 \cdot 9 \cdot 8$ B: 3^{10} C: 10^3 D: 30

Question 5: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. B: side B has more vertices than side A. C: side A has more vertices than side B. D: there is always a perfect matching of the vertices of side A.

Question 6: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 10! B: 3^{11} C: 9! D: 11!

Question 7: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

 $A: 10^4 \quad B: \frac{10!}{6!} \quad C: 6! \quad D: \frac{10!}{6!4!}$

Question 8: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: the number of vertices of side A is at least the number of vertices of side B. B: each vertex of side B is connected to some vertex in side A. C: each vertex of side A is connected with all vertices of side B. D: the number of vertices of side B is at least the number of vertices of side A.

Question 9: If G is a simple graph then

A: the number of its vertices with even degree is even. B: it has at most two vertices with odd degree. C: it has at least two vertices with odd degree. D: the number of its vertices with odd degree is not odd.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Serial Number: **531**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: the number of vertices of side A is at least the number of vertices of side B. B: each vertex of side B is connected to some vertex in side A. C: each vertex of side A is connected with all vertices of side B. D: the number of vertices of side B is at least the number of vertices of side A.

Question 2: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n(n-1)\cdots(n-m+1)$ B: $m \cdot n$ C: m^n D: n^m

Question 3: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 4: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 3^{11} B: 9! C: 10! D: 11!

Question 5: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: side A has more vertices than side B. B: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. C: there is always a perfect matching of the vertices of side A. D: side B has more vertices than side A.

Question 6: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 7: If G is a connected simple graph with n vertices then

A: it must have at least n - 1 edges. B: it must have at least n edges. C: it cannot contain cycles. D: it cannot have more than n + 1 edges.

Question 8: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible? $4 \cdot 2^{10} = B \cdot 20 = C \cdot 10 = 0 = 8 = D \cdot 10^3$

A: 3^{10} B: 30 C: $10 \cdot 9 \cdot 8$ D: 10^3

Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters? $A: \frac{10!}{6!} \quad B: 10^4 \quad C: \frac{10!}{6!4!} \quad D: 6!$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **532**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: there is always a perfect matching of the vertices of side A. B: side A has more vertices than side B. C: side B has more vertices than side A. D: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J.

Question 2: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 3: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. A: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$ B: $10 \cdot 9 \cdot 8 \cdot 7$

Question 4: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

A: 20^3 B: $20 \cdot 19 \cdot 18$ C: 3^{20} D: $\frac{20!}{3!}$

Question 5: If G is a connected simple graph with n vertices then A: it must have at least n - 1 edges. B: it cannot contain cycles. C: it cannot have more than n + 1 edges. D: it must have at least n edges.

Question 6: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 2^n B: $2^n + 2^n$ C: $\binom{n}{n/2}$ D: 3^n

Question 7: If G is a simple graph then

A: the number of its vertices with even degree is even. B: the number of its vertices with odd degree is not odd. C: it has at most two vertices with odd degree. D: it has at least two vertices with odd degree.

Question 8: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 10! *B*: 11! *C*: 3¹¹ *D*: 9!

Question 9: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 11! B: 2^{10} C: 10×10 D: 10!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **533**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: If G is a simple graph then

A: the number of its vertices with even degree is even. B: it has at most two vertices with odd degree. C: it has at least two vertices with odd degree. D: the number of its vertices with odd degree is not odd.

Question 2: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 6! B: $\frac{10!}{6!}$ C: $\frac{10!}{6!4!}$ D: 10^4

Question 3: If G is a connected simple graph with n vertices then A: it cannot contain cycles. B: it cannot have more than n+1 edges. C: it must have at least n edges. D: it must have at least n-1 edges.

Question 4: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 5: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 6: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is

A: 2(m+n) B: m(n-1) + n(m-1) C: $m \cdot n$ D: m+n

Question 7: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $2^n + 2^n$ B: 3^n C: 2^n D: $\binom{n}{n/2}$

Question 8: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 10! C: 10×10 D: 11!

Question 9: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $m \cdot n$ B: n^m C: m^n D: $n(n-1)\cdots(n-m+1)$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **534**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we select two disjoint subsets A and B of $\{1, 2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 3^n B: 2^n C: $2^n + 2^n$ D: $\binom{n}{n/2}$

Question 2: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. A: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2} = B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 3: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10×10 B: 10! C: 11! D: 2^{10}

Question 4: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: there is always a perfect matching of the vertices of side A. B: side A has more vertices than side B. C: side B has more vertices than side A. D: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J.

Question 5: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 6: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: $\frac{10!}{6!4!}$ B: 6! C: 10^4 D: $\frac{10!}{6!}$

Question 7: If G is a connected simple graph with n vertices then A: it cannot contain cycles. B: it must have at least n-1 edges. C: it cannot have more than n+1edges. D: it must have at least n edges.

Question 8: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, ..., b_n\}$ is

A: 2(m+n) B: m(n-1) + n(m-1) C: $m \cdot n$ D: m+n

Question 9: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: 3^{10} B: 30 C: $10 \cdot 9 \cdot 8$ D: 10^3

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 535, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

A: 20^3 B: $\frac{20!}{3!}$ C: $20 \cdot 19 \cdot 18$ D: 3^{20}

Question 2: If G is a simple graph then

A: it has at least two vertices with odd degree. B: the number of its vertices with even degree is even. C: the number of its vertices with odd degree is not odd. D: it has at most two vertices with odd degree.

Question 3: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: side B has more vertices than side A. B: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. C: there is always a perfect matching of the vertices of side A. D: side A has more vertices than side B.

Question 4: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 5: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 6! B: $\frac{10!}{6!}$ C: $\frac{10!}{6!4!}$ D: 10^4

Question 6: If G is a connected simple graph with n vertices then A: it must have at least n - 1 edges. B: it must have at least n edges. C: it cannot contain cycles. D: it cannot have more than n + 1 edges.

Question 7: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $2^n + 2^n$ B: 2^n C: $\binom{n}{n/2}$ D: 3^n

Question 8: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 9! *B*: 3^{11} *C*: 11! *D*: 10!

Question 9: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot1} \quad B: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot1}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!
Serial Number: **536**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 2^n B: 3^n C: $2^n + 2^n$ D: $\binom{n}{n/2}$

Question 2: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: 2(m+n) \quad B: m+n \quad C: m(n-1) + n(m-1) \quad D: m \cdot n$

Question 3: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 11! B: 10! C: 2^{10} D: 10×10

Question 4: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 5: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 6: If G is a connected simple graph with n vertices then

A: it must have at least n - 1 edges. B: it must have at least n edges. C: it cannot have more than n + 1 edges. D: it cannot contain cycles.

Question 7: If G is a simple graph then

A: the number of its vertices with even degree is even. B: the number of its vertices with odd degree is not odd. C: it has at most two vertices with odd degree. D: it has at least two vertices with odd degree.

Question 8: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: 10^3 B: 3^{10} C: 30 D: $10 \cdot 9 \cdot 8$

Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: $\frac{10!}{6!4!}$ B: 10^4 C: $\frac{10!}{6!}$ D: 6!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **537**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 9! B: 3^{11} C: 11! D: 10!

Question 2: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 3: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 4: If G is a simple graph then

A: it has at least two vertices with odd degree. B: the number of its vertices with odd degree is not odd. C: the number of its vertices with even degree is even. D: it has at most two vertices with odd degree.

Question 5: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. B: there is always a perfect matching of the vertices of side A. C: side A has more vertices than side B. D: side B has more vertices than side A.

Question 6: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: 3^{10} B: $10 \cdot 9 \cdot 8$ C: 30 D: 10^3

Question 7: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: $\frac{10!}{6!}$ B: $\frac{10!}{6!4!}$ C: 10^4 D: 6!

Question 8: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: n^m B: $m \cdot n$ C: $n(n-1) \cdots (n-m+1)$ D: m^n

Question 9: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side A is connected with all vertices of side B. B: the number of vertices of side B is at least the number of vertices of side A. C: the number of vertices of side A is at least the number of vertices of side B. D: each vertex of side B is connected to some vertex in side A.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Serial Number: **538**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 11! B: 3^{11} C: 10! D: 9!

Question 2: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 1 exactly when there is a path that connect i to j. B: equal to 0 exactly when i is not connected to j C: equal to 1 exactly when i is not connected to j D: equal to the degree of vertex i

Question 3: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is

 $A{:}\ 2(m+n) \quad B{:}\ m\cdot n \quad C{:}\ m(n-1)+n(m-1) \quad D{:}\ m+n$

Question 4: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: $10 \cdot 9 \cdot 8$ B: 10^3 C: 30 D: 3^{10}

Question 5: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 6: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side B is connected to some vertex in side A. B: each vertex of side A is connected with all vertices of side B. C: the number of vertices of side A is at least the number of vertices of side B. D: the number of vertices of side B is at least the number of vertices of side A.

Question 7: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $\binom{n}{n/2}$ B: 3^n C: 2^n D: $2^n + 2^n$

Question 8: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10×10 B: 11! C: 10! D: 2^{10}

Question 9: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **539**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 10! B: 3^{11} C: 11! D: 9!

Question 2: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: side B has more vertices than side A. B: side A has more vertices than side B. C: there is always a perfect matching of the vertices of side A. D: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J.

Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

A: $20 \cdot 19 \cdot 18$ B: 20^3 C: 3^{20} D: $\frac{20!}{3!}$

Question 4: If G is a connected simple graph with n vertices then

A: it must have at least n-1 edges. B: it cannot have more than n+1 edges. C: it must have at least n edges. D: it cannot contain cycles.

Question 5: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 6: In a simple graph with 100 vertices

A: the maximum vertex degree is ≤ 99 . B: the minimum vertex degree is ≥ 1 . C: it is possible that all vertices have different degrees. D: not all vertex degrees can be odd.

Question 7: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 10^4 B: $\frac{10!}{6!4!}$ C: 6! D: $\frac{10!}{6!}$

Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $B: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots 2\cdot 1}$ $A \text{:} \ \tfrac{k(k-1)\cdots(k-n+1)}{n \cdot (n-1)\cdots 2 \cdot 1}$

Question 9: In how many ways can we select two disjoint subsets A and B of $\{1, 2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $2^n + 2^n$ B: 2^n C: $\binom{n}{n/2}$ D: 3^n

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 540, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: the number of vertices of side B is at least the number of vertices of side A. B: each vertex of side B is connected to some vertex in side A. C: each vertex of side A is connected with all vertices of side B. D: the number of vertices of side A is at least the number of vertices of side B.

Question 2: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 10^4 B: 6! C: $\frac{10!}{6!}$ D: $\frac{10!}{6!4!}$

Question 3: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n(n-1)\cdots(n-m+1)$ B: m^n C: n^m D: $m \cdot n$

Question 4: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1} \quad B: \ \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1}$

Question 5: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 0 exactly when i is not connected to j B: equal to 1 exactly when i is not connected to jC: equal to the degree of vertex i D: equal to 1 exactly when there is a path that connect i to j.

Question 6: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: 10^3 B: 3^{10} C: 30 D: $10 \cdot 9 \cdot 8$

Question 7: If G is a simple graph then

A: the number of its vertices with odd degree is not odd. B: it has at most two vertices with odd degree. C: the number of its vertices with even degree is even. D: it has at least two vertices with odd degree.

Question 8: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 11! B: 3^{11} C: 9! D: 10!

Question 9: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 541, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 0 exactly when i is not connected to j B: equal to 1 exactly when i is not connected to jC: equal to 1 exactly when there is a path that connect i to j. D: equal to the degree of vertex i

Question 2: If G is a connected simple graph with n vertices then A: it cannot have more than n+1 edges. B: it must have at least n edges. C: it cannot contain cycles. D: it must have at least n-1 edges.

Question 3: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: side A has more vertices than side B. B: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. C: there is always a perfect matching of the vertices of side A. D: side B has more vertices than side A.

Question 4: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 3^{11} B: 9! C: 10! D: 11!

Question 5: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. A: $\binom{8}{4} + \binom{8}{2} + \binom{8}{2} = B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 6: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 7: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $2^n + 2^n$ B: $\binom{n}{n/2}$ C: 3^n D: 2^n

Question 8: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10×10 B: 11! C: 10! D: 2^{10}

Question 9: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible? A: 30 B: 3^{10} C: $10 \cdot 9 \cdot 8$ D: 10^3

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 542, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 6! B: 10^4 C: $\frac{10!}{6!}$ D: $\frac{10!}{6!4!}$

Question 2: In a simple graph with 100 vertices

A: it is possible that all vertices have different degrees. B: the minimum vertex degree is ≥ 1 . C: not all vertex degrees can be odd. D: the maximum vertex degree is ≤ 99 .

Question 3: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 4: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 11! B: 10! C: 10×10 D: 2^{10}

Question 5: If G is a connected simple graph with n vertices then A: it cannot contain cycles. B: it must have at least n - 1 edges. C: it must have at least n edges. D: it cannot have more than n + 1 edges.

Question 6: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n(n-1)\cdots(n-m+1)$ B: m^n C: $m \cdot n$ D: n^m

Question 7: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 1 exactly when there is a path that connect i to j. B: equal to 1 exactly when i is not connected to j C: equal to the degree of vertex i D: equal to 0 exactly when i is not connected to j

Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1} \quad B: \ \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1}$

Question 9: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

A: 20^3 B: $20 \cdot 19 \cdot 18$ C: $\frac{20!}{3!}$ D: 3^{20}

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 543, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is

A: $m \cdot n$ B: m(n-1) + n(m-1) C: m + n D: 2(m+n)

Question 2: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n(n-1)\cdots(n-m+1)$ B: m^n C: n^m D: $m \cdot n$

Question 3: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10! B: 2^{10} C: 11! D: 10×10

Question 4: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $\binom{n}{n/2}$ B: 3^n C: $2^n + 2^n$ D: 2^n

Question 5: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 6: If G is a connected simple graph with n vertices then A: it must have at least n - 1 edges. B: it must have at least n edges. C: it cannot contain cycles. D: it cannot have more than n + 1 edges.

Question 7: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side A is connected with all vertices of side B. B: the number of vertices of side A. C: each vertex of side B is connected to some vertex in side A. D: the number of vertices of side A is at least the number of vertices of side B.

Question 8: In how many ways can we choose *n* objects from *k* different objects, if the order of choice does not matter? $k^{k(n-1)} = n^{k(n-1)} = n^{k(n-1)$

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1} \quad B: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1}$

Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 6! B: $\frac{10!}{6!}$ C: $\frac{10!}{6!4!}$ D: 10^4

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 544, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 10^4 B: 6! C: $\frac{10!}{6!4!}$ D: $\frac{10!}{6!}$

Question 2: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: the number of vertices of side B is at least the number of vertices of side A. B: each vertex of side Ais connected with all vertices of side B. C: each vertex of side B is connected to some vertex in side A. D: the number of vertices of side A is at least the number of vertices of side B.

Question 3: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

Question 4: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is

 $A{:}\ 2(m+n) \quad B{:}\ m(n-1)+n(m-1) \quad C{:}\ m\cdot n \quad D{:}\ m+n$

Question 5: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 6: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

 $A: \frac{20!}{3!}$ $B: 3^{20}$ $C: 20 \cdot 19 \cdot 18$ $D: 20^3$

Question 7: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 3^n B: $2^n + 2^n$ C: 2^n D: $\binom{n}{n/2}$

Question 8: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 10! *B*: 11! *C*: 9! *D*: 3^{11}

Question 9: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: side A has more vertices than side B. B: side B has more vertices than side A. C: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. D: there is always a perfect matching of the vertices of side A.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 545, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side B is connected to some vertex in side A. B: the number of vertices of side B is at least the number of vertices of side A. C: each vertex of side A is connected with all vertices of side B. B: the number of vertices of side A is at least the number of vertices of side B.

Question 2: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 3: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 4: If G is a simple graph then

A: the number of its vertices with even degree is even. B: the number of its vertices with odd degree is not odd. C: it has at most two vertices with odd degree. D: it has at least two vertices with odd degree.

Question 5: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

 $A: \frac{20!}{3!}$ $B: 20 \cdot 19 \cdot 18$ $C: 20^3$ $D: 3^{20}$

Question 6: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 11! *B*: 3^{11} *C*: 10! *D*: 9!

Question 7: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to the degree of vertex i B: equal to 0 exactly when i is not connected to j C: equal to 1 exactly when i is not connected to j D: equal to 1 exactly when there is a path that connect i to j.

Question 8: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 10×10 C: 11! D: 10!

Question 9: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: n^m B: $n(n-1)\cdots(n-m+1)$ C: m^n D: $m \cdot n$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 546, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $2^n + 2^n$ B: 2^n C: $\binom{n}{n/2}$ D: 3^n

Question 2: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 3^{11} *B*: 9! *C*: 10! *D*: 11!

Question 3: If G is a simple graph then

A: it has at most two vertices with odd degree. B: the number of its vertices with odd degree is not odd. C: it has at least two vertices with odd degree. D: the number of its vertices with even degree is even.

Question 4: If G is a connected simple graph with n vertices then A: it cannot contain cycles. B: it cannot have more than n + 1 edges. C: it must have at least n - 1 edges. D: it must have at least n edges.

Question 5: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member? $A: 3^{20} \quad B: 20 \cdot 19 \cdot 18 \quad C: 20^3 \quad D: \frac{20!}{3!}$

Question 6: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 6! B: 10^4 C: $\frac{10!}{6!4!}$ D: $\frac{10!}{6!}$

Question 7: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1} \quad B: \ \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1}$

Question 8: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side A is connected with all vertices of side B. B: the number of vertices of side A. C: each vertex of side B is connected to some vertex in side A. D: the number of vertices of side A is at least the number of vertices of side B.

Question 9: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different.

A: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2} = B: 10 \cdot 9 \cdot 8 \cdot 7$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 547, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In a simple graph with 100 vertices

A: not all vertex degrees can be odd. B: the minimum vertex degree is ≥ 1 . C: it is possible that all vertices have different degrees. D: the maximum vertex degree is ≤ 99 .

Question 2: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

 $A: \ 10^3 \quad B: \ 30 \quad C: \ 3^{10} \quad D: \ 10 \cdot 9 \cdot 8$

Question 3: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: the number of vertices of side A is at least the number of vertices of side B. B: each vertex of side B is connected to some vertex in side A. C: each vertex of side A is connected with all vertices of side B. D: the number of vertices of side B is at least the number of vertices of side A.

Question 4: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 10! *B*: 11! *C*: 3¹¹ *D*: 9!

Question 5: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots 2\cdot 1} \quad B: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots 2\cdot 1}$

Question 6: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 2^n B: $\binom{n}{n/2}$ C: $2^n + 2^n$ D: 3^n

Question 7: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 8: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: $\frac{10!}{6!4!}$ B: $\frac{10!}{6!}$ C: 6! D: 10^4

Question 9: If G is a connected simple graph with n vertices then

A: it cannot contain cycles. B: it must have at least n-1 edges. C: it must have at least n edges. D: it cannot have more than n+1 edges.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 548, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is

A: m(n-1) + n(m-1) B: m+n $C: m \cdot n$ D: 2(m+n)

Question 2: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 0 exactly when i is not connected to j B: equal to the degree of vertex i C: equal to 1 exactly when i is not connected to j D: equal to 1 exactly when there is a path that connect i to j.

Question 3: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible? A: 10^3 B: 3^{10} C: $10 \cdot 9 \cdot 8$ D: 30

Question 4: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side A is connected with all vertices of side B. B: the number of vertices of side A is at least the number of vertices of side B. C: the number of vertices of side B is at least the number of vertices of side A. D: each vertex of side B is connected to some vertex in side A.

Question 5: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n(n-1)\cdots(n-m+1)$ B: $m \cdot n$ C: n^m D: m^n

Question 6: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 7: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. A: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2} = B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 8: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10×10 B: 11! C: 10! D: 2^{10}

Question 9: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 3^{11} *B*: 11! *C*: 9! *D*: 10!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **549**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 11! B: 10! C: 9! D: 3^{11}

Question 2: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: $10 \cdot 9 \cdot 8$ B: 30 C: 3^{10} D: 10^3

Question 3: In how many ways can we choose n objects from k different objects, if the order of choice does not matter? A: $\frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot1}$ B: $\frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot1}$

Question 4: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 6! B: 10^4 C: $\frac{10!}{6!}$ $D: \frac{10!}{6!4!}$

Question 5: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. A: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2} = B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 6: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n(n-1)\cdots(n-m+1)$ B: m^n C: $m \cdot n$ D: n^m

Question 7: In a bipartite graph with vertex sets A and B which has a perfect matching of side A A: the number of vertices of side A is at least the number of vertices of side B. B: each vertex of side B is connected to some vertex in side A. C: each vertex of side A is connected with all vertices of side В. D: the number of vertices of side B is at least the number of vertices of side A.

Question 8: In a simple graph with 100 vertices

A: it is possible that all vertices have different degrees. B: the maximum vertex degree is ≤ 99 . C: the minimum vertex degree is ≥ 1 . D: not all vertex degrees can be odd.

Question 9: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: side A has more vertices than side B. B: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. C: side B has more vertices than side A. D: there is always a perfect matching of the vertices of side A.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 550, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: n^m B: $n(n-1)\cdots(n-m+1)$ C: $m \cdot n$ D: m^n

Question 2: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 10! *B*: 3^{11} *C*: 9! *D*: 11!

Question 3: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $3^n \quad B: \binom{n}{n/2} \quad C: 2^n \quad D: 2^n + 2^n$

Question 4: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

 $A: \frac{10!}{6!4!}$ $B: 10^4$ C: 6! $D: \frac{10!}{6!}$

Question 5: In a simple graph with 100 vertices

A: the minimum vertex degree is ≥ 1 . B: the maximum vertex degree is ≤ 99 . C: not all vertex degrees can be odd. D: it is possible that all vertices have different degrees.

Question 6: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: there is always a perfect matching of the vertices of side A. B: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. C: side B has more vertices than side A. D: side A has more vertices than side B.

Question 7: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: m \cdot n \quad B: m(n-1) + n(m-1) \quad C: 2(m+n) \quad D: m+n$

Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot1} \quad B: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot1}$

Question 9: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. A: $10 \cdot 9 \cdot 8 \cdot 7$ B: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 551, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1} \quad B: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1}$

Question 2: If G is a connected simple graph with n vertices then A: it cannot have more than n + 1 edges. B: it cannot contain cycles. C: it must have at least n - 1 edges. D: it must have at least n edges.

Question 3: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 4: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10×10 B: 2^{10} C: 10! D: 11!

Question 5: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: m+n \quad B: m(n-1) + n(m-1) \quad C: m \cdot n \quad D: 2(m+n)$

Question 6: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters? $A: \frac{10!}{6!4!} \quad B: \frac{10!}{6!} \quad C: 6! \quad D: 10^4$

Question 7: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $3^n \quad B: \binom{n}{n/2} \quad C: 2^n \quad D: 2^n + 2^n$

Question 8: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member? $A: 20^3 \quad B: \frac{20!}{3!} \quad C: 3^{20} \quad D: 20 \cdot 19 \cdot 18$

Question 9: If G is a simple graph then

A: it has at least two vertices with odd degree. B: it has at most two vertices with odd degree. C: the number of its vertices with odd degree is not odd. D: the number of its vertices with even degree is even.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 552, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: If G is a connected simple graph with n vertices then A: it must have at least n - 1 edges. B: it must have at least n edges. C: it cannot contain cycles. D: it cannot have more than n + 1 edges.

Question 2: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 10! C: 10×10 D: 11!

Question 3: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible? A: $10 \cdot 9 \cdot 8$ B: 10^3 C: 3^{10} D: 30

Question 4: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 1 exactly when i is not connected to j B: equal to the degree of vertex i C: equal to 0 exactly when i is not connected to j D: equal to 1 exactly when there is a path that connect i to j.

Question 5: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side B is connected to some vertex in side A. B: the number of vertices of side B is at least the number of vertices of side A. C: each vertex of side A is connected with all vertices of side B. D: the number of vertices of side A is at least the number of vertices of side B.

Question 6: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 9! *B*: 3^{11} *C*: 11! *D*: 10!

Question 7: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 3^n B: 2^n C: $2^n + 2^n$ D: $\binom{n}{n/2}$

Question 8: In how many ways can we choose *n* objects from *k* different objects, if the order of choice does not matter? *A*: $\frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot1}$ *B*: $\frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot1}$

Question 9: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 553, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 0 exactly when i is not connected to j B: equal to 1 exactly when i is not connected to jC: equal to 1 exactly when there is a path that connect i to j. D: equal to the degree of vertex i

Question 2: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member? $A: \frac{20!}{3!} \quad B: 3^{20} \quad C: 20 \cdot 19 \cdot 18 \quad D: 20^3$

Question 4: If G is a connected simple graph with n vertices then A: it must have at least n edges. B: it cannot contain cycles. C: it cannot have more than n+1 edges. D: it must have at least n-1 edges.

Question 5: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 10! *B*: 9! *C*: 11! *D*: 3^{11}

Question 6: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 6! B: 10^4 C: $\frac{10!}{6!4!}$ D: $\frac{10!}{6!}$

Question 7: If G is a simple graph then

A: it has at least two vertices with odd degree. B: the number of its vertices with odd degree is not odd. C: it has at most two vertices with odd degree. D: the number of its vertices with even degree is even.

Question 8: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 9: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: 3^{10} B: 10^3 C: $10 \cdot 9 \cdot 8$ D: 30

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 554, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to the degree of vertex i = B: equal to 0 exactly when i is not connected to j = C: equal to 1 exactly when there is a path that connect i to j. D: equal to 1 exactly when i is not connected to j

Question 2: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 3: In how many ways can we choose n objects from k different objects, if the order of choice does not matter? $B: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots 2\cdot 1}$

 $\frac{\underline{k(k-1)\cdots(k-n+1)}}{n\cdot(n-1)\cdots 2\cdot 1}$ A:

Question 4: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. B: there is always a perfect matching of the vertices of side A. C: side B has more vertices than side A. D: side A has more vertices than side B.

Question 5: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10! B: 10×10 C: 11! D: 2^{10}

Question 6: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: $10 \cdot 9 \cdot 8$ B: 10^3 C: 3^{10} D: 30

Question 7: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $m \cdot n$ B: $n(n-1) \cdots (n-m+1)$ C: n^m D: m^n

Question 8: If G is a connected simple graph with n vertices then

A: it must have at least n-1 edges. B: it must have at least n edges. C: it cannot contain cycles. D: it cannot have more than n+1 edges.

Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 6! B: 10^4 C: $\frac{10!}{6!}$ D: $\frac{10!}{6!4!}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1} \quad B: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1}$

Question 2: In a simple graph with 100 vertices

A: the maximum vertex degree is ≤ 99 . B: it is possible that all vertices have different degrees. C: not all vertex degrees can be odd. D: the minimum vertex degree is ≥ 1 .

Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member? $A: \frac{20!}{3!} \quad B: \ 20 \cdot 19 \cdot 18 \quad C: \ 20^3 \quad D: \ 3^{20}$

Question 4: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: m \cdot n \quad B: m(n-1) + n(m-1) \quad C: m+n \quad D: 2(m+n)$

Question 5: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 3^{11} *B*: 10! *C*: 9! *D*: 11!

Question 6: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $\binom{n}{n/2}$ B: 2^n C: $2^n + 2^n$ D: 3^n

Question 7: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 8: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10×10 B: 10! C: 11! D: 2^{10}

Question 9: If G is a connected simple graph with n vertices then A: it must have at least n edges. B: it must have at least n - 1 edges. C: it cannot have more than n + 1 edges. D: it cannot contain cycles.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 556, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 2: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 0 exactly when i is not connected to j B: equal to the degree of vertex i C: equal to 1 exactly when i is not connected to j D: equal to 1 exactly when there is a path that connect i to j.

Question 3: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $\binom{n}{n/2}$ B: $2^n + 2^n$ C: 3^n D: 2^n

Question 4: If G is a simple graph then

A: it has at most two vertices with odd degree.B: the number of its vertices with even degree is even.C: it has at least two vertices with odd degree.D: the number of its vertices with odd degree is not odd.

Question 5: In a simple graph with 100 vertices

A: the minimum vertex degree is ≥ 1 . B: it is possible that all vertices have different degrees. C: the maximum vertex degree is ≤ 99 . D: not all vertex degrees can be odd.

Question 6: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 6! B: 10^4 C: $\frac{10!}{6!}$ D: $\frac{10!}{6!4!}$

Question 7: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 10! C: 10×10 D: 11!

Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1} \quad B: \ \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1}$

Question 9: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

A: 20^3 B: 3^{20} C: $20 \cdot 19 \cdot 18$ D: $\frac{20!}{3!}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **557**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 3^{11} B: 9! C: 10! D: 11!

Question 2: If G is a simple graph then

A: it has at least two vertices with odd degree. B: the number of its vertices with odd degree is not odd. C: the number of its vertices with even degree is even. D: it has at most two vertices with odd degree.

Question 3: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 4: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side A is connected with all vertices of side B. B: the number of vertices of side A is at least the number of vertices of side B. C: each vertex of side B is connected to some vertex in side A. D: the number of vertices of side B is at least the number of vertices of side A.

Question 5: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $m^n \quad B: m \cdot n \quad C: n(n-1) \cdots (n-m+1) \quad D: n^m$

Question 6: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

 $A: \frac{20!}{3!} \quad B: \ 20 \cdot 19 \cdot 18 \quad C: \ 3^{20} \quad D: \ 20^3$

Question 7: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 8: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 1 exactly when i is not connected to j B: equal to the degree of vertex i C: equal to 1 exactly when there is a path that connect i to j. D: equal to 0 exactly when i is not connected to j

Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

 $A: \frac{10!}{6!4!}$ $B: 10^4$ $C: \frac{10!}{6!}$ D: 6!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **558**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is A: m(n-1) + n(m-1) B: m+n $C: m \cdot n$ D: 2(m+n)

Question 2: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 10! C: 10×10 D: 11!

Question 3: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible? A: 30 B: 3^{10} C: 10^3 D: $10 \cdot 9 \cdot 8$

Question 4: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 5: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side A is connected with all vertices of side B. B: the number of vertices of side A is at least the number of side B is connected to some vertex in side A. D: the number of vertices of side A is at least the number of vertices of side B.

Question 6: If G is a connected simple graph with n vertices then A: it cannot contain cycles. B: it cannot have more than n + 1 edges. C: it must have at least n - 1 edges. D: it must have at least n edges.

Question 7: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: n^m B: m^n C: $n(n-1)\cdots(n-m+1)$ D: $m \cdot n$

Question 8: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 10^4 B: 6! C: $\frac{10!}{6!4!}$ D: $\frac{10!}{6!}$

Question 9: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1} \quad B: \ \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 559, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

A: 3^{20} B: $20 \cdot 19 \cdot 18$ C: 20^3 D: $\frac{20!}{3!}$

Question 2: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 3: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

 $A: \frac{10!}{6!} \quad B: \ 10^4 \quad C: \ \frac{10!}{6!4!} \quad D: \ 6!$

Question 4: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. A: $10 \cdot 9 \cdot 8 \cdot 7$ $B: \binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 5: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: the number of vertices of side B is at least the number of vertices of side A. B: each vertex of side B is connected to some vertex in side A. C: the number of vertices of side A is at least the number of vertices of side B. D: each vertex of side A is connected with all vertices of side B.

Question 6: In a simple graph with 100 vertices

A: the minimum vertex degree is ≥ 1 . B: it is possible that all vertices have different degrees. C: the maximum vertex degree is ≤ 99 . D: not all vertex degrees can be odd.

Question 7: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 3^{11} *B*: 10! *C*: 11! *D*: 9!

Question 8: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is

 $A: m(n-1) + n(m-1) \quad B: m+n \quad C: m \cdot n \quad D: 2(m+n)$

Question 9: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 2^n B: $\binom{n}{n/2}$ C: 3^n D: $2^n + 2^n$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **560**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 6! B: 10^4 C: $\frac{10!}{6!}$ D: $\frac{10!}{6!4!}$

Question 2: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member? A: 3^{20} B: 20^3 C: $\frac{20!}{3!}$ D: $20 \cdot 19 \cdot 18$

Question 3: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 4: If G is a connected simple graph with n vertices then A: it cannot have more than n + 1 edges. B: it must have at least n - 1 edges. C: it must have at least n edges. D: it cannot contain cycles.

Question 5: In a simple graph with 100 vertices

A: the minimum vertex degree is ≥ 1 . B: not all vertex degrees can be odd. C: it is possible that all vertices have different degrees. D: the maximum vertex degree is ≤ 99 .

Question 6: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible? A: 3^{10} B: 30 C: 10^3 D: $10 \cdot 9 \cdot 8$

Question 7: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side B is connected to some vertex in side A. B: each vertex of side A is connected with all vertices of side B. C: the number of vertices of side A is at least the number of vertices of side B. D: the number of vertices of side B is at least the number of vertices of side A.

Question 8: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 9! *B*: 11! *C*: 10! *D*: 3^{11}

Question 9: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 561, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In a simple graph with 100 vertices

A: the minimum vertex degree is > 1. B: the maximum vertex degree is < 99. C: it is possible that all vertices have different degrees. D: not all vertex degrees can be odd.

Question 2: In how many ways can we select two disjoint subsets A and B of $\{1, 2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 2^n B: $2^n + 2^n$ C: $\binom{n}{n/2}$ D: 3^n

Question 3: In how many ways can we choose n objects from k different objects, if the order of choice

Question 4: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. A: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2} = B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 5: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10×10 B: 2^{10} C: 11! D: 10!

Question 6: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: side B has more vertices than side A. B: there is always a perfect matching of the vertices of side A. C: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. D: side A has more vertices than side B.

Question 7: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: 10^3 B: 30 C: 3^{10} D: $10 \cdot 9 \cdot 8$

Question 8: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters? A: 6! B: $\frac{10!}{6!4!}$ C: 10^4 D: $\frac{10!}{6!}$

Question 9: If G is a connected simple graph with n vertices then

A: it cannot contain cycles. B: it must have at least n-1 edges. C: it must have at least n edges. D: it cannot have more than n+1 edges.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 562, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 2: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

 $A{:}\ 30 \quad B{:}\ 10\cdot 9\cdot 8 \quad C{:}\ 10^3 \quad D{:}\ 3^{10}$

Question 3: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to the degree of vertex i B: equal to 0 exactly when i is not connected to j C: equal to 1 exactly when there is a path that connect i to j. D: equal to 1 exactly when i is not connected to j

Question 4: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $m \cdot n$ B: m^n C: n^m D: $n(n-1)\cdots(n-m+1)$

Question 5: If G is a simple graph then

A: the number of its vertices with even degree is even. B: it has at least two vertices with odd degree. C: it has at most two vertices with odd degree. D: the number of its vertices with odd degree is not odd.

Question 6: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10×10 B: 11! C: 10! D: 2^{10}

Question 7: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot1} \quad B: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot1}$

Question 8: In a simple graph with 100 vertices

A: not all vertex degrees can be odd. B: it is possible that all vertices have different degrees. C: the maximum vertex degree is ≤ 99 . D: the minimum vertex degree is ≥ 1 .

Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 6! B: 10^4 C: $\frac{10!}{6!}$ D: $\frac{10!}{6!4!}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 563, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: the number of vertices of side B is at least the number of vertices of side A. B: the number of vertices of side A is at least the number of vertices of side B. C: each vertex of side B is connected to some vertex in side A. D: each vertex of side A is connected with all vertices of side B.

Question 2: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: 2(m+n) \quad B: m(n-1) + n(m-1) \quad C: m \cdot n \quad D: m+n$

Question 3: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $m \cdot n$ B: m^n C: n^m D: $n(n-1)\cdots(n-m+1)$

Question 4: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1} \quad B: \ \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1}$

Question 5: If G is a connected simple graph with n vertices then

A: it cannot contain cycles. B: it cannot have more than n+1 edges. C: it must have at least n edges. D: it must have at least n-1 edges.

Question 6: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 7: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: $\frac{10!}{6!4!}$ B: $\frac{10!}{6!}$ C: 10^4 D: 6!

Question 8: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 10! *B*: 3^{11} *C*: 9! *D*: 11!

Question 9: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

A: 20^3 B: $20 \cdot 19 \cdot 18$ C: 3^{20} D: $\frac{20!}{3!}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 564, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 11! *B*: 9! *C*: 3^{11} *D*: 10!

Question 2: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n(n-1)\cdots(n-m+1)$ B: m^n C: $m \cdot n$ D: n^m

Question 3: If G is a connected simple graph with n vertices then A: it cannot have more than n + 1 edges. B: it must have at least n - 1 edges. C: it cannot contain cycles. D: it must have at least n edges.

Question 4: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: the number of vertices of side B is at least the number of vertices of side A. B: the number of vertices of side A is at least the number of vertices of side B. C: each vertex of side B is connected to some vertex in side A. D: each vertex of side A is connected with all vertices of side B.

Question 5: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 6: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to the degree of vertex i = B: equal to 1 exactly when i is not connected to j = C: equal to 1 exactly when there is a path that connect i to j. D: equal to 0 exactly when i is not connected to j

Question 7: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 10! C: 11! D: 10×10

Question 8: In how many ways can we choose *n* objects from *k* different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot1} \quad B: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot1}$

Question 9: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $\binom{n}{n/2}$ B: 3^n C: $2^n + 2^n$ D: 2^n

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 565, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

 $A: 10 \cdot 9 \cdot 8 \quad B: 10^3 \quad C: 3^{10} \quad D: 30$

Question 2: If G is a simple graph then

A: it has at least two vertices with odd degree.B: the number of its vertices with even degree is even.C: it has at most two vertices with odd degree.D: the number of its vertices with odd degree is not odd.

Question 3: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 3^{11} B: 9! C: 10! D: 11!

Question 4: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: side B has more vertices than side A. B: there is always a perfect matching of the vertices of side A. C: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. D: side A has more vertices than side B.

Question 5: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

 $A: 10^4 \quad B: 6! \quad C: \frac{10!}{6!4!} \quad D: \frac{10!}{6!}$

Question 6: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $2^n + 2^n$ B: 2^n C: 3^n D: $\binom{n}{n/2}$

Question 7: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 8: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 9: If G is a connected simple graph with n vertices then A: it cannot have more than n + 1 edges. B: it must have at least n edges. C: it must have at least n - 1 edges. D: it cannot contain cycles.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 566, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

A: 20^3 B: 3^{20} C: $20 \cdot 19 \cdot 18$ D: $\frac{20!}{3!}$

Question 2: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 9! *B*: 11! *C*: 10! *D*: 3^{11}

Question 3: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10! B: 10×10 C: 2^{10} D: 11!

Question 4: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 2^n B: 3^n C: $2^n + 2^n$ D: $\binom{n}{n/2}$

Question 5: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: m \cdot n \quad B: m + n \quad C: 2(m + n) \quad D: m(n - 1) + n(m - 1)$

Question 6: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 7: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 8: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: the number of vertices of side A is at least the number of vertices of side B. B: each vertex of side A is connected with all vertices of side B. C: the number of vertices of side B is at least the number of vertices of side A. D: each vertex of side B is connected to some vertex in side A.

Question 9: If G is a connected simple graph with n vertices then

A: it cannot contain cycles. B: it cannot have more than n+1 edges. C: it must have at least n edges. D: it must have at least n-1 edges.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 567, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 2: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? *A*: m^n *B*: $m \cdot n$ *C*: $n(n-1) \cdots (n-m+1)$ *D*: n^m

Question 3: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 4: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: m \cdot n \quad B: m + n \quad C: m(n-1) + n(m-1) \quad D: 2(m+n)$

Question 5: If G is a simple graph then

A: it has at most two vertices with odd degree. B: the number of its vertices with even degree is even. C: the number of its vertices with odd degree is not odd. D: it has at least two vertices with odd degree.

Question 6: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: the number of vertices of side A is at least the number of vertices of side B. B: the number of vertices of side B is at least the number of vertices of side A. C: each vertex of side A is connected with all vertices of side B. D: each vertex of side B is connected to some vertex in side A.

Question 7: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: $10 \cdot 9 \cdot 8$ B: 30 C: 3^{10} D: 10^3

Question 8: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 11! *B*: 3^{11} *C*: 10! *D*: 9!

Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

 $A: \frac{10!}{6!}$ $B: 10^4$ $C: \frac{10!}{6!4!}$ D: 6!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **568**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 11! *B*: 3^{11} *C*: 9! *D*: 10!

Question 2: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: the number of vertices of side B is at least the number of vertices of side A. B: the number of vertices of side A is at least the number of vertices of side B. C: each vertex of side B is connected to some vertex in side A. D: each vertex of side A is connected with all vertices of side B.

Question 3: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 4: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 5: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $\binom{n}{n/2}$ B: 2^n C: $2^n + 2^n$ D: 3^n

Question 6: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

A: 3^{20} B: 20^3 C: $\frac{20!}{3!}$ D: $20 \cdot 19 \cdot 18$

Question 7: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is

 $A{:}\ 2(m+n) \quad B{:}\ m+n \quad C{:}\ m\cdot n \quad D{:}\ m(n-1)+n(m-1)$

Question 8: If G is a connected simple graph with n vertices then A: it cannot contain cycles. B: it must have at least n edges. C: it must have at least n - 1 edges. D: it cannot have more than n + 1 edges.

Question 9: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 10! C: 10×10 D: 11!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 569, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: If G is a simple graph then

A: it has at least two vertices with odd degree. B: it has at most two vertices with odd degree. C: the number of its vertices with even degree is even. D: the number of its vertices with odd degree is not odd.

Question 2: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10×10 B: 10! C: 2^{10} D: 11!

Question 3: In how many ways can we choose n objects from k different objects, if the order of choice does not matter? A: $\frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot1}$ B: $\frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot1}$

Question 4: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 5: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: 30 B: 10^3 C: 3^{10} D: $10 \cdot 9 \cdot 8$

Question 6: In how many ways can we select two disjoint subsets A and B of $\{1, 2, \ldots, n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 3^n B: $\binom{n}{n/2}$ C: 2^n D: $2^n + 2^n$

Question 7: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,i}$, with $i, j \in V$ is

A: equal to 1 exactly when i is not connected to j = B: equal to 1 exactly when there is a path that connect i to j. C: equal to the degree of vertex i D: equal to 0 exactly when i is not connected to j

Question 8: If G is a connected simple graph with n vertices then

A: it cannot contain cycles. B: it must have at least n edges. C: it cannot have more than n+1 edges. D: it must have at least n-1 edges.

Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 6! B: $\frac{10!}{6!4!}$ C: 10^4 D: $\frac{10!}{6!}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 570, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 10^4 B: $\frac{10!}{6!4!}$ C: $\frac{10!}{6!}$ D: 6!

Question 2: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10! B: 11! C: 10×10 D: 2^{10}

Question 3: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible? A: $10 \cdot 9 \cdot 8$ B: 10^3 C: 3^{10} D: 30

Question 4: In a simple graph with 100 vertices

A: it is possible that all vertices have different degrees. B: the maximum vertex degree is ≤ 99 . C: not all vertex degrees can be odd. D: the minimum vertex degree is ≥ 1 .

Question 5: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 1 exactly when i is not connected to j B: equal to 0 exactly when i is not connected to jC: equal to 1 exactly when there is a path that connect i to j. D: equal to the degree of vertex i

Question 6: If G is a connected simple graph with n vertices then

A: it must have at least n edges. B: it cannot contain cycles. C: it must have at least n-1 edges. D: it cannot have more than n+1 edges.

Question 7: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1} \quad B: \ \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1}$

Question 9: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

A: 3^{20} B: $20 \cdot 19 \cdot 18$ C: $\frac{20!}{3!}$ D: 20^3

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 571, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 2: If G is a connected simple graph with n vertices then A: it must have at least n - 1 edges. B: it must have at least n edges. C: it cannot contain cycles. D: it cannot have more than n + 1 edges.

Question 3: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10! B: 10×10 C: 2^{10} D: 11!

Question 4: If G is a simple graph then

A: it has at most two vertices with odd degree.B: the number of its vertices with even degree is even.C: it has at least two vertices with odd degree.D: the number of its vertices with odd degree is not odd.

Question 5: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 2^n B: 3^n C: $2^n + 2^n$ D: $\binom{n}{n/2}$

Question 6: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 7: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $m^n \quad B: m \cdot n \quad C: n^m \quad D: n(n-1) \cdots (n-m+1)$

Question 8: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

 $A: \frac{10!}{6!}$ $B: \frac{10!}{6!4!}$ $C: 10^4$ D: 6!

Question 9: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: there is always a perfect matching of the vertices of side A. B: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. C: side A has more vertices than side B. D: side B has more vertices than side A.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!
Serial Number: **572**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 3^n B: $2^n + 2^n$ C: $\binom{n}{n/2}$ D: 2^n

Question 2: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 3^{11} B: 10! C: 11! D: 9!

Question 3: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is A: m(n-1) + n(m-1) $B: m \cdot n$ C: 2(m+n) D: m+n

Question 4: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 10×10 C: 11! D: 10!

Question 5: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 6: In a simple graph with 100 vertices

A: the minimum vertex degree is ≥ 1 . B: the maximum vertex degree is ≤ 99 . C: it is possible that all vertices have different degrees. D: not all vertex degrees can be odd.

Question 7: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: n^m B: m^n C: $n(n-1)\cdots(n-m+1)$ D: $m \cdot n$

Question 8: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 9: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to the degree of vertex i B: equal to 0 exactly when i is not connected to j C: equal to 1 exactly when i is not connected to j D: equal to 1 exactly when there is a path that connect i to j.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 573, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 10! *B*: 11! *C*: 9! *D*: 3^{11}

Question 2: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 3^n B: 2^n C: $\binom{n}{n/2}$ D: $2^n + 2^n$

Question 3: In a simple graph with 100 vertices A: it is possible that all vertices have different degrees. B: the minimum vertex degree is ≥ 1 . C: not all vertex degrees can be odd. D: the maximum vertex degree is ≤ 99 .

Question 4: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 5: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 11! B: 10×10 C: 2^{10} D: 10!

Question 6: If G is a simple graph then

A: the number of its vertices with even degree is even. B: the number of its vertices with odd degree is not odd. C: it has at least two vertices with odd degree. D: it has at most two vertices with odd degree.

Question 7: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1} \quad B: \ \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1}$

Question 8: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n^m \quad B: m \cdot n \quad C: m^n \quad D: n(n-1) \cdots (n-m+1)$

Question 9: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: m \cdot n \quad B: 2(m+n) \quad C: m+n \quad D: m(n-1) + n(m-1)$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 574, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is

A: $m \cdot n$ B: m(n-1) + n(m-1) C: m + n D: 2(m+n)

Question 2: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 11! C: 10×10 D: 10!

Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member? $A: \frac{20!}{2!} \quad B: \ 20 \cdot 19 \cdot 18 \quad C: \ 3^{20} \quad D: \ 20^3$

Question 4: In how many ways can we choose *n* objects from *k* different objects, if the order of choice does not matter? $k^{n(n-1)\cdots(n-k+1)} = k^{k(k-1)\cdots(k-n+1)}$

 $A: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots 2\cdot 1} \quad B: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots 2\cdot 1}$

Question 5: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 1 exactly when i is not connected to j B: equal to the degree of vertex i C: equal to 0 exactly when i is not connected to j D: equal to 1 exactly when there is a path that connect i to j.

Question 6: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $3^n \quad B: \binom{n}{n/2} \quad C: 2^n \quad D: 2^n + 2^n$

Question 7: If G is a simple graph then

A: it has at least two vertices with odd degree.B: the number of its vertices with even degree is even.C: it has at most two vertices with odd degree.D: the number of its vertices with odd degree is not odd.

Question 8: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 9: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 10^4 B: $\frac{10!}{6!4!}$ C: 6! D: $\frac{10!}{6!}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 575, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 2: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 3^n B: $2^n + 2^n$ C: 2^n D: $\binom{n}{n/2}$

Question 3: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 4: In a simple graph with 100 vertices

A: it is possible that all vertices have different degrees. B: the minimum vertex degree is ≥ 1 . C: the maximum vertex degree is ≤ 99 . D: not all vertex degrees can be odd.

Question 5: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is A: m(n-1) + n(m-1) B: 2(m+n) C: m+n D: $m \cdot n$

Question 6: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: the number of vertices of side B is at least the number of vertices of side A. B: each vertex of side B is connected to some vertex in side A. C: each vertex of side A is connected with all vertices of side B. D: the number of vertices of side A is at least the number of vertices of side B.

Question 7: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 10^4 B: 6! C: $\frac{10!}{6!}$ D: $\frac{10!}{6!4!}$

Question 8: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10×10 B: 2^{10} C: 11! D: 10!

Question 9: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible? A: 3^{10} B: $10 \cdot 9 \cdot 8$ C: 30 D: 10^3

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 576, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

A: $20 \cdot 19 \cdot 18$ B: 20^3 C: $\frac{20!}{3!}$ D: 3^{20}

Question 2: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: 3^{10} B: $10 \cdot 9 \cdot 8$ C: 10^3 D: 30

Question 3: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: side A has more vertices than side B. B: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. C: side B has more vertices than side A. D: there is always a perfect matching of the vertices of side A.

Question 4: If G is a simple graph then

A: it has at most two vertices with odd degree. B: it has at least two vertices with odd degree. C: the number of its vertices with even degree is even. D: the number of its vertices with odd degree is not odd.

Question 5: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

 $A: \frac{10!}{6!4!}$ $B: \frac{10!}{6!}$ C: 6! $D: 10^4$

Question 6: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 7: In a simple graph with 100 vertices

A: the maximum vertex degree is ≤ 99 . B: the minimum vertex degree is ≥ 1 . C: not all vertex degrees can be odd. D: it is possible that all vertices have different degrees.

Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot1} \quad B: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot1}$

Question 9: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 10! C: 11! D: 10×10

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **577**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 2: In a simple graph with 100 vertices

A: the maximum vertex degree is ≤ 99 . B: the minimum vertex degree is ≥ 1 . C: not all vertex degrees can be odd. D: it is possible that all vertices have different degrees.

Question 3: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 4: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $m^n \quad B$: $m \cdot n \quad C$: $n(n-1) \cdots (n-m+1) \quad D$: n^m

Question 5: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 9! B: 10! C: 11! D: 3^{11}

Question 6: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: the number of vertices of side A is at least the number of vertices of side B. B: the number of vertices of side B is at least the number of vertices of side A. C: each vertex of side B is connected to some vertex in side A. D: each vertex of side A is connected with all vertices of side B.

Question 7: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 10! C: 10×10 D: 11!

Question 8: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is A: m(n-1) + n(m-1) B: $m \cdot n$ C: 2(m+n) D: m+n

Question 9: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member? $A: 20^3 \quad B: \frac{20!}{3!} \quad C: 3^{20} \quad D: 20 \cdot 19 \cdot 18$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **578**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 6! B: $\frac{10!}{6!}$ C: $\frac{10!}{6!4!}$ D: 10^4

Question 2: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member? $A: \frac{20!}{3!} \quad B: 20 \cdot 19 \cdot 18 \quad C: 20^3 \quad D: 3^{20}$

Question 3: If G is a connected simple graph with n vertices then

A: it must have at least n - 1 edges. B: it cannot have more than n + 1 edges. C: it cannot contain cycles. D: it must have at least n edges.

Question 4: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: side B has more vertices than side A. B: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. C: side A has more vertices than side B. D: there is always a perfect matching of the vertices of side A.

Question 5: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible? A: 30 B: 3^{10} C: $10 \cdot 9 \cdot 8$ D: 10^3

Question 6: In a simple graph with 100 vertices

A: the minimum vertex degree is ≥ 1 . B: not all vertex degrees can be odd. C: the maximum vertex degree is ≤ 99 . D: it is possible that all vertices have different degrees.

Question 7: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 8: In how many ways can we choose *n* objects from *k* different objects, if the order of choice does not matter? $A = \frac{k(k-1)\cdots(k-n+1)}{(k-n+1)} = \frac{n(n-1)\cdots(n-k+1)}{(k-n+1)}$

 $A: \ \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1} \quad B: \ \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1}$

Question 9: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10! B: 10×10 C: 2^{10} D: 11!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **579**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 6! B: $\frac{10!}{6!}$ C: 10^4 D: $\frac{10!}{6!4!}$

Question 2: In a simple graph with 100 vertices

A: it is possible that all vertices have different degrees. B: not all vertex degrees can be odd. C: the minimum vertex degree is ≥ 1 . D: the maximum vertex degree is ≤ 99 .

Question 3: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: m^n B: $n(n-1)\cdots(n-m+1)$ C: n^m D: $m \cdot n$

Question 4: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 5: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. A: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2} = B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 6: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 11! B: 10! C: 10×10 D: 2^{10}

Question 7: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: 10^3 B: 30 C: 3^{10} D: $10 \cdot 9 \cdot 8$

Question 8: If G is a connected simple graph with n vertices then A: it must have at least n-1 edges. B: it cannot have more than n+1 edges. C: it cannot contain cycles. D: it must have at least n edges.

Question 9: If G is a simple graph then

A: the number of its vertices with odd degree is not odd. B: the number of its vertices with even degree C: it has at least two vertices with odd degree. D: it has at most two vertices with odd is even. degree.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **580**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 2: If G is a connected simple graph with n vertices then

A: it cannot contain cycles. B: it must have at least n - 1 edges. C: it must have at least n edges. D: it cannot have more than n + 1 edges.

Question 3: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: side A has more vertices than side B. B: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. C: there is always a perfect matching of the vertices of side A. D: side B has more vertices than side A.

Question 4: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $2^n + 2^n$ B: $\binom{n}{n/2}$ C: 3^n D: 2^n

Question 5: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible? A: 2^{10} B: 10^3 C: 20 D: 10 0. 8

A: 3^{10} B: 10^3 C: 30 D: $10 \cdot 9 \cdot 8$

Question 6: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: $\frac{10!}{6!4!}$ B: $\frac{10!}{6!}$ C: 10^4 D: 6!

Question 7: In a simple graph with 100 vertices

A: the maximum vertex degree is ≤ 99 . B: the minimum vertex degree is ≥ 1 . C: it is possible that all vertices have different degrees. D: not all vertex degrees can be odd.

Question 8: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 9: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 11! B: 10×10 C: 2^{10} D: 10!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 581, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side A is connected with all vertices of side B. B: the number of vertices of side A is at least the number of vertices of side B. C: the number of vertices of side B is at least the number of vertices of side A. D: each vertex of side B is connected to some vertex in side A.

Question 2: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n \cdot (n-1)\cdots 2 \cdot 1} \quad B: \ \frac{n(n-1)\cdots(n-k+1)}{k \cdot (k-1)\cdots 2 \cdot 1}$

Question 3: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10! B: 10×10 C: 2^{10} D: 11!

Question 4: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: there is always a perfect matching of the vertices of side A. B: side B has more vertices than side A. C: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. D: side A has more vertices than side B.

Question 5: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible? A: 3^{10} B: $10 \cdot 9 \cdot 8$ C: 30 D: 10^3

Question 6: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 3^{11} *B*: 10! *C*: 9! *D*: 11!

Question 7: The binomial coefficient $\binom{n}{k}$ equals

 $A: \binom{n}{n-k}. \quad B: 0 \text{ if } k = 0.$

Question 8: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $\binom{n}{n/2}$ B: 3^n C: 2^n D: $2^n + 2^n$

Question 9: If G is a simple graph then

A: it has at least two vertices with odd degree.B: the number of its vertices with even degree is even.C: it has at most two vertices with odd degree.D: the number of its vertices with odd degree is not odd.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Serial Number: **582**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In a simple graph with 100 vertices

A: not all vertex degrees can be odd. B: the minimum vertex degree is ≥ 1 . C: the maximum vertex degree is ≤ 99 . D: it is possible that all vertices have different degrees.

Question 2: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot1} \quad B: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot1}$

Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member? A: $20 \cdot 19 \cdot 18$ B: 3^{20} C: 20^3 D: $\frac{20!}{3!}$

Question 4: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

 $A{:}\ 10\cdot 9\cdot 8 \quad B{:}\ 30 \quad C{:}\ 3^{10} \quad D{:}\ 10^3$

Question 5: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: there is always a perfect matching of the vertices of side A. B: side B has more vertices than side A. C: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. D: side A has more vertices than side B.

Question 6: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 7: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: 2(m+n) \quad B: m \cdot n \quad C: m+n \quad D: m(n-1) + n(m-1)$

Question 8: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: $\frac{10!}{6!}$ B: 6! C: $\frac{10!}{6!4!}$ D: 10^4

Question 9: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10×10 B: 2^{10} C: 10! D: 11!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **583**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

 $A: \frac{10!}{6!4!}$ B: 6! $C: \frac{10!}{6!}$ $D: 10^4$

Question 2: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 0 exactly when i is not connected to j B: equal to 1 exactly when there is a path that connect i to j. C: equal to 1 exactly when i is not connected to j D: equal to the degree of vertex i

Question 3: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 4: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 2^n B: $\binom{n}{n/2}$ C: 3^n D: $2^n + 2^n$

Question 5: If G is a connected simple graph with n vertices then

A: it must have at least n - 1 edges. B: it must have at least n edges. C: it cannot have more than n + 1 edges. D: it cannot contain cycles.

Question 6: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n \cdot (n-1)\cdots 2 \cdot 1} \quad B: \ \frac{n(n-1)\cdots(n-k+1)}{k \cdot (k-1)\cdots 2 \cdot 1}$

Question 7: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: 10^3 B: 3^{10} C: 30 D: $10 \cdot 9 \cdot 8$

Question 8: In a simple graph with 100 vertices

A: the minimum vertex degree is ≥ 1 . B: not all vertex degrees can be odd. C: it is possible that all vertices have different degrees. D: the maximum vertex degree is ≤ 99 .

Question 9: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 11! C: 10×10 D: 10!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 584, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In a simple graph with 100 vertices

A: the maximum vertex degree is ≤ 99 . B: not all vertex degrees can be odd. C: the minimum vertex degree is ≥ 1 . D: it is possible that all vertices have different degrees.

Question 2: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to the degree of vertex i B: equal to 1 exactly when there is a path that connect i to j. C: equal to 1 exactly when i is not connected to j D: equal to 0 exactly when i is not connected to j

Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member? A: $20 \cdot 19 \cdot 18$ B: 3^{20} C: 20^3 D: $\frac{20!}{3!}$

Question 4: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side A is connected with all vertices of side B. B: the number of vertices of side A. C: each vertex of side B is connected to some vertex in side A. D: the number of vertices of side A is at least the number of vertices of side B.

Question 5: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 3^n B: $2^n + 2^n$ C: 2^n D: $\binom{n}{n/2}$

Question 6: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 7: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 9! B: 3^{11} C: 10! D: 11!

Question 8: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10×10 B: 10! C: 11! D: 2^{10}

Question 9: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 585, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 11! B: 10×10 C: 10! D: 2^{10}

Question 2: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side A is connected with all vertices of side B. B: the number of vertices of side B is at least the number of vertices of side A. C: the number of vertices of side A is at least the number of vertices of side B. D: each vertex of side B is connected to some vertex in side A.

Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member? $A: 20 \cdot 19 \cdot 18 \quad B: 3^{20} \quad C: \frac{20!}{3!} \quad D: 20^3$

Question 4: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 5: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: $\frac{10!}{6!}$ B: 6! C: $\frac{10!}{6!4!}$ D: 10^4

Question 6: In a simple graph with 100 vertices

A: the maximum vertex degree is ≤ 99 . B: not all vertex degrees can be odd. C: it is possible that all vertices have different degrees. D: the minimum vertex degree is ≥ 1 .

Question 7: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. A: $10 \cdot 9 \cdot 8 \cdot 7$ B: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 8: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $\binom{n}{n/2}$ B: 2^n C: 3^n D: $2^n + 2^n$

Question 9: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 1 exactly when there is a path that connect i to j. B: equal to 0 exactly when i is not connected to j C: equal to 1 exactly when i is not connected to j D: equal to the degree of vertex i

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **586**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 9! *B*: 3^{11} *C*: 11! *D*: 10!

Question 2: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

 $A: \frac{10!}{6!} \quad B: \ 6! \quad C: \ 10^4 \quad D: \ \frac{10!}{6!4!}$

Question 3: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $2^n + 2^n$ B: $\binom{n}{n/2}$ C: 3^n D: 2^n

Question 4: In a simple graph with 100 vertices

A: it is possible that all vertices have different degrees. B: the minimum vertex degree is ≥ 1 . C: not all vertex degrees can be odd. D: the maximum vertex degree is ≤ 99 .

Question 5: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

does not matter? A: $\frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot1}$ B: $\frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot1}$

Question 6: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 7: If G is a connected simple graph with n vertices then

A: it must have at least n edges. B: it cannot contain cycles. C: it must have at least n-1 edges. D: it cannot have more than n+1 edges.

Question 8: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: 2(m+n) \quad B: m(n-1) + n(m-1) \quad C: m \cdot n \quad D: m+n$

Question 9: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: 10^3 B: 3^{10} C: 30 D: $10 \cdot 9 \cdot 8$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **587**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 3^n B: 2^n C: $\binom{n}{n/2}$ D: $2^n + 2^n$

Question 2: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

 $A: \frac{10!}{6!4!} \quad B: \frac{10!}{6!} \quad C: 6! \quad D: 10^4$

Question 3: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: n^m B: m^n C: $m \cdot n$ D: $n(n-1) \cdots (n-m+1)$

Question 4: In how many ways can we choose *n* objects from *k* different objects, if the order of choice does not matter? $k^{n(n-1)\cdots(n-k+1)} = \sum_{k=1}^{k(k-1)\cdots(k-n+1)} k^{n(k-1)\cdots(k-n+1)}$

 $A: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot1} \quad B: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot1}$

Question 5: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 9! B: 11! C: 10! D: 3^{11}

Question 6: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 7: If G is a connected simple graph with n vertices then

A: it must have at least n edges. B: it cannot have more than n+1 edges. C: it cannot contain cycles. D: it must have at least n-1 edges.

Question 8: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: m \cdot n \quad B: 2(m+n) \quad C: m+n \quad D: m(n-1) + n(m-1)$

Question 9: If G is a simple graph then

A: it has at least two vertices with odd degree. B: the number of its vertices with odd degree is not odd. C: it has at most two vertices with odd degree. D: the number of its vertices with even degree is even.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **588**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

 $A: \frac{10!}{6!}$ B: 6! $C: \frac{10!}{6!4!}$ $D: 10^4$

Question 2: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

 $A: \frac{20!}{3!}$ $B: 3^{20}$ $C: 20^3$ $D: 20 \cdot 19 \cdot 18$

Question 3: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. A: $10 \cdot 9 \cdot 8 \cdot 7$ $B: \binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 4: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1} \quad B: \ \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1}$

Question 5: If G is a connected simple graph with n vertices then

A: it cannot have more than n + 1 edges. B: it must have at least n - 1 edges. C: it cannot contain cycles. D: it must have at least n edges.

Question 6: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

 $A: 10 \cdot 9 \cdot 8$ B: 30 $C: 3^{10}$ $D: 10^3$

Question 7: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: there is always a perfect matching of the vertices of side A. B: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. C: side B has more vertices than side A. D: side A has more vertices than side B.

Question 8: In a simple graph with 100 vertices

A: not all vertex degrees can be odd. B: the maximum vertex degree is ≤ 99 . C: it is possible that all vertices have different degrees. D: the minimum vertex degree is ≥ 1 .

Question 9: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10! B: 2^{10} C: 10×10 D: 11!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **589**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: 3^{10} B: 30 C: $10 \cdot 9 \cdot 8$ D: 10^3

Question 2: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: $\frac{10!}{6!}$ B: 6! C: $\frac{10!}{6!4!}$ D: 10^4

Question 3: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: the number of vertices of side B is at least the number of vertices of side A. B: each vertex of side B is connected to some vertex in side A. C: each vertex of side A is connected with all vertices of side B. D: the number of vertices of side A is at least the number of vertices of side B.

Question 4: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 5: In how many ways can we choose *n* objects from *k* different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1} \quad B: \ \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1}$

Question 6: In a simple graph with 100 vertices

A: the minimum vertex degree is ≥ 1 . B: it is possible that all vertices have different degrees. C: the maximum vertex degree is ≤ 99 . D: not all vertex degrees can be odd.

Question 7: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is

A: $m \cdot n$ B: m + n C: 2(m + n) D: m(n - 1) + n(m - 1)

Question 8: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 3^{11} *B*: 10! *C*: 9! *D*: 11!

Question 9: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $2^n + 2^n$ B: 2^n C: 3^n D: $\binom{n}{n/2}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **590**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 10! B: 11! C: 2^{10} D: 10×10

Question 2: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 3^{11} B: 9! C: 10! D: 11!

Question 3: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? $A: m \cdot n \quad B: n(n-1) \cdots (n-m+1) \quad C: m^n \quad D: n^m$

Question 4: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 5: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: m+n \quad B: m(n-1) + n(m-1) \quad C: 2(m+n) \quad D: m \cdot n$

Question 6: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 7: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member? $A: 3^{20} \quad B: \frac{20!}{3!} \quad C: 20 \cdot 19 \cdot 18 \quad D: 20^3$

Question 8: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side B is connected to some vertex in side A. B: each vertex of side A is connected with all vertices of side B. C: the number of vertices of side A is at least the number of vertices of side B. D: the number of vertices of side B is at least the number of vertices of side A.

Question 9: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to the degree of vertex i B: equal to 1 exactly when there is a path that connect i to j. C: equal to 0 exactly when i is not connected to j D: equal to 1 exactly when i is not connected to j

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **591**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

 $A: 10^4 \quad B: \frac{10!}{6!} \quad C: 6! \quad D: \frac{10!}{6!4!}$

Question 2: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 9! *B*: 3^{11} *C*: 11! *D*: 10!

Question 3: In how many ways can we choose *n* objects from *k* different objects, if the order of choice does not matter? $k^{k(k-1)\cdots(k-n+1)} = p^{n(n-1)\cdots(n-k+1)}$

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1} \quad B: \ \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1}$

Question 4: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member?

 $A: \frac{20!}{3!}$ $B: 20^3$ $C: 3^{20}$ $D: 20 \cdot 19 \cdot 18$

Question 5: In a simple graph with 100 vertices

A: the minimum vertex degree is ≥ 1 . B: not all vertex degrees can be odd. C: it is possible that all vertices have different degrees. D: the maximum vertex degree is ≤ 99 .

Question 6: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? $A: m^n \quad B: m \cdot n \quad C: n(n-1) \cdots (n-m+1) \quad D: n^m$

Question 7: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. B: side B has more vertices than side A. C: there is always a perfect matching of the vertices of side A. D: side A has more vertices than side B.

Question 8: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to the degree of vertex i B: equal to 1 exactly when there is a path that connect i to j. C: equal to 1 exactly when i is not connected to j D: equal to 0 exactly when i is not connected to j

Question 9: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Serial Number: **592**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many circular orderings of the numbers $0, 1, \ldots, 10$ are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 10! *B*: 11! *C*: 9! *D*: 3^{11}

Question 2: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. A: $10 \cdot 9 \cdot 8 \cdot 7$ B: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 3: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: n^m B: $m \cdot n$ C: m^n D: $n(n-1) \cdots (n-m+1)$

Question 4: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is A: m(n-1) + n(m-1) B: 2(m+n) C: m+n D: $m \cdot n$

Question 5: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: there is always a perfect matching of the vertices of side A. B: side B has more vertices than side A. C: side A has more vertices than side B. D: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J.

Question 6: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $\binom{n}{n/2}$ B: 2^n C: 3^n D: $2^n + 2^n$

Question 7: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: $\frac{10!}{6!}$ B: 6! C: 10^4 D: $\frac{10!}{6!4!}$

Question 8: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 1 exactly when there is a path that connect i to j. B: equal to 1 exactly when i is not connected to j C: equal to the degree of vertex i D: equal to 0 exactly when i is not connected to j

Question 9: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot1} \quad B: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot1}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **593**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 2: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is

A: 2(m+n) B: m(n-1) + n(m-1) C: m+n D: $m \cdot n$

Question 3: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 10×10 C: 10! D: 11!

Question 4: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters? $A: \frac{10!}{6!4!} \quad B: 10^4 \quad C: \frac{10!}{6!} \quad D: 6!$

Question 5: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: 30 B: $10 \cdot 9 \cdot 8$ C: 10^3 D: 3^{10}

Question 6: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 7: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member? $A: 20 \cdot 19 \cdot 18 \quad B: 20^3 \quad C: \frac{20!}{3!} \quad D: 3^{20}$

Question 8: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side A is connected with all vertices of side B. B: each vertex of side B is connected to some vertex in side A. C: the number of vertices of side B is at least the number of vertices of side A. D: the number of vertices of side A is at least the number of vertices of side B.

Question 9: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 0 exactly when i is not connected to j B: equal to 1 exactly when there is a path that connect i to j. C: equal to the degree of vertex i D: equal to 1 exactly when i is not connected to j

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **594**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $m^n \quad B$: $n^m \quad C$: $n(n-1)\cdots(n-m+1) \quad D$: $m \cdot n$

Question 2: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 10×10 C: 10! D: 11!

Question 3: In a simple graph with 100 vertices

A: the maximum vertex degree is ≤ 99 . B: the minimum vertex degree is ≥ 1 . C: it is possible that all vertices have different degrees. D: not all vertex degrees can be odd.

Question 4: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 2^n B: $\binom{n}{n/2}$ C: 3^n D: $2^n + 2^n$

Question 5: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 6! B: $\frac{10!}{6!}$ C: 10^4 D: $\frac{10!}{6!4!}$

Question 6: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. *A*: $10 \cdot 9 \cdot 8 \cdot 7$ *B*: $\binom{8}{4} + \binom{8}{3} + \binom{8}{2}$

Question 7: If G is a simple graph then

A: the number of its vertices with odd degree is not odd. B: it has at least two vertices with odd degree. C: the number of its vertices with even degree is even. D: it has at most two vertices with odd degree.

Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1} \quad B: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1}$

Question 9: If G is a connected simple graph with n vertices then

A: it cannot have more than n+1 edges. B: it cannot contain cycles. C: it must have at least n edges. D: it must have at least n-1 edges.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 595, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In a simple graph with 100 vertices

A: the maximum vertex degree is ≤ 99 . B: the minimum vertex degree is ≥ 1 . C: not all vertex degrees can be odd. D: it is possible that all vertices have different degrees.

Question 2: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: $\binom{n}{n/2}$ B: $2^n + 2^n$ C: 3^n D: 2^n

Question 3: If G is a simple graph then

A: it has at most two vertices with odd degree.B: the number of its vertices with even degree is even.C: it has at least two vertices with odd degree.D: the number of its vertices with odd degree is not odd.

Question 4: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 11! B: 10! C: 2^{10} D: 10×10

Question 5: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 6: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1} \quad B: \ \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1}$

Question 7: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: 10^4 B: 6! C: $\frac{10!}{6!}$ D: $\frac{10!}{6!4!}$

Question 8: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side A is connected with all vertices of side B. B: the number of vertices of side A is at least the number of vertices of side B. C: each vertex of side B is connected to some vertex in side A. D: the number of vertices of side B is at least the number of vertices of side A.

Question 9: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: n^m B: $m \cdot n$ C: m^n D: $n(n-1) \cdots (n-m+1)$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: 596, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 11! B: 10×10 C: 2^{10} D: 10!

Question 2: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

 $A: \frac{10!}{6!} \quad B: \frac{10!}{6!4!} \quad C: \ 10^4 \quad D: \ 6!$

Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member? $A: \frac{20!}{3!} \quad B: 20 \cdot 19 \cdot 18 \quad C: 20^3 \quad D: 3^{20}$

Question 4: If G is a connected simple graph with n vertices then

A: it must have at least n edges. B: it cannot have more than n+1 edges. C: it cannot contain cycles. D: it must have at least n-1 edges.

Question 5: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 6: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: m+n \quad B: m \cdot n \quad C: 2(m+n) \quad D: m(n-1) + n(m-1)$

Question 7: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 2^n B: 3^n C: $2^n + 2^n$ D: $\binom{n}{n/2}$

Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1} \quad B: \ \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1}$

Question 9: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 1 exactly when i is not connected to j B: equal to 0 exactly when i is not connected to jC: equal to the degree of vertex i D: equal to 1 exactly when there is a path that connect i to j.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **597**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: How many different quadruples can one form from the objects 1, 1, 2, 3, 4, 5, 6, 7, 8, 9. Two quadruples differing only in order are not considered different. $A: \binom{8}{4} + \binom{8}{3} + \binom{8}{2} \quad B: 10 \cdot 9 \cdot 8 \cdot 7$

Question 2: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) *A*: 3^{11} *B*: 10! *C*: 9! *D*: 11!

Question 3: In how many ways can we select, from a set of 20 people, a committee of 3 different persons with a chair, secretary and member? $A: \frac{20!}{3!} \quad B: 3^{20} \quad C: 20^3 \quad D: 20 \cdot 19 \cdot 18$

Question 4: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible? A: 3^{10} B: $10 \cdot 9 \cdot 8$ C: 10^3 D: 30

Question 5: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 6: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to the degree of vertex i B: equal to 0 exactly when i is not connected to j C: equal to 1 exactly when i is not connected to j D: equal to 1 exactly when there is a path that connect i to j.

Question 7: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: $\frac{10!}{6!4!}$ B: 10^4 C: 6! D: $\frac{10!}{6!}$

Question 8: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: the number of vertices of side A is at least the number of vertices of side B. B: each vertex of side Ais connected with all vertices of side B. C: each vertex of side B is connected to some vertex in side A. D: the number of vertices of side B is at least the number of vertices of side A.

Question 9: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: m+n \quad B: 2(m+n) \quad C: m \cdot n \quad D: m(n-1) + n(m-1)$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **598**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to the degree of vertex i B: equal to 1 exactly when i is not connected to j C: equal to 0 exactly when i is not connected to j D: equal to 1 exactly when there is a path that connect i to j.

Question 2: If we have 10 distinct objects and we can color each of them red, green or blue, how many different colorings are possible?

A: 30 B: 3^{10} C: $10 \cdot 9 \cdot 8$ D: 10^3

Question 3: In how many ways can the numbers $0, 1, \ldots, 10$ be put in order? A: 2^{10} B: 10×10 C: 10! D: 11!

Question 4: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? $A: n^m \quad B: n(n-1)\cdots(n-m+1) \quad C: m^n \quad D: m \cdot n$

Question 5: The number of edges of the complete bipartite graph K_{mn} , with vertex sets $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ is $A: m \cdot n \quad B: m + n \quad C: m(n-1) + n(m-1) \quad D: 2(m+n)$

Question 6: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters? $A: \frac{10!}{6!} \quad B: \frac{10!}{6!4!} \quad C: 10^4 \quad D: 6!$

Question 7: The binomial coefficient $\binom{n}{k}$ equals A: $\binom{n}{n-k}$. B: 0 if k = 0.

Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1} \quad B: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1}$

Question 9: A bipartite graph G with vertex sets A and B is r-regular. That is all its vertices have the same degree r. Then

A: there is always a perfect matching of the vertices of side A. B: side B has more vertices than side A. C: For every subset $J \subseteq A$ the set of all its neighbors has more elements than J. D: side A has more vertices than side B.

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!

Serial Number: **599**, Answers: 1: 2: 3: 4: 5: 6: 7: 8: 9: Name:

UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS – DISCRETE MATHEMATICS I

Final examination

Question 1: If G is a connected simple graph with n vertices then

A: it cannot have more than n + 1 edges. B: it must have at least n - 1 edges. C: it must have at least n edges. D: it cannot contain cycles.

Question 2: If A is the adjacency matrix of the simple graph G with vertex set $V = \{1, 2, ..., n\}$, then the entry $A_{i,j}$, with $i, j \in V$ is

A: equal to 1 exactly when i is not connected to j B: equal to the degree of vertex i C: equal to 0 exactly when i is not connected to j D: equal to 1 exactly when there is a path that connect i to j.

Question 3: In a bipartite graph with vertex sets A and B which has a perfect matching of side A. A: each vertex of side B is connected to some vertex in side A. B: the number of vertices of side A is at least the number of vertices of side B. C: each vertex of side A is connected with all vertices of side B. D: the number of vertices of side B is at least the number of vertices of side A.

Question 4: How many circular orderings of the numbers 0, 1, ..., 10 are there? (Two circular orderings which differ only by a rotation are not considered different.) A: 3^{11} B: 9! C: 11! D: 10!

Question 5: In how many ways can we choose 4 numbers from the set $\{1, \ldots, 10\}$ if the order in which we choose them matters?

A: $\frac{10!}{6!4!}$ B: 10^4 C: 6! D: $\frac{10!}{6!}$

Question 6: The binomial coefficient $\binom{n}{k}$ equals A: 0 if k = 0. B: $\binom{n}{n-k}$.

Question 7: How many different functions are there from the set $\{1, \ldots, m\}$ to the set $\{1, \ldots, n\}$? A: $n^m \quad B: m \cdot n \quad C: m^n \quad D: n(n-1) \cdots (n-m+1)$

Question 8: In how many ways can we choose n objects from k different objects, if the order of choice does not matter?

 $A: \frac{k(k-1)\cdots(k-n+1)}{n\cdot(n-1)\cdots2\cdot 1} \quad B: \ \frac{n(n-1)\cdots(n-k+1)}{k\cdot(k-1)\cdots2\cdot 1}$

Question 9: In how many ways can we select two disjoint subsets A and B of $\{1, 2, ..., n\}$? (The internal order in A and B is irrelevant, but it matters which set is A and which is B.) A: 3^n B: 2^n C: $2^n + 2^n$ D: $\binom{n}{n/2}$

The examination lasts 2 hours and all books are closed. Return only this paper with your answers. Record the serial number of your paper and your answers on a piece of paper and keep it. Wrong answers reduce your score. Not answering a question counts as 0. There is precisely one correct answer per question.

Instructor: Mihalis Kolountzakis

RETURN THIS PAPER!