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Abstract. Suppose L,M are full-rank lattices in Euclidean space, such that vol L <
vol M. Answering a question of Han and Wang [  HW01 ] from 2001, we show how to
construct a bounded measurable set F (we can even take F to be a finite union of
polytopes) such that F + L is a tiling and F +M is a packing. If we do not require
measurability of F it is often possible that a set F can be found tiling with both L and
M even when L and M have different volumes, for instance if L ∩M = {0}. We also
show here that such a set can never be bounded if vol L , vol M.
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1. Introduction

1.1. The concept of a lattice and its fundamental domains. A lattice L in
Rd is a discrete subgroup of Rd. The dimension of the R-linear subspace that is
spanned by L is called the rank of L. In particular if L spans Rd, we will call it a
full-rank lattice. It is known that any full-rank lattice on Rd is equal to AZd for
some non singular d × d matrix. A fundamental parallelepiped of the lattice AZd

is the set P = A[0, 1)d. Observe this is not uniquely defined as each lattice L admits
many matrices A such that L = AZd.The volume of P is called the volume of the
lattice and it is denoted by vol (L). The volume of the lattice does not depend on
which matrix A we use in the representation of the lattice as AZd.

For a given lattice L ⊆ Rd, any fundamental parallelepiped P of L has the property
of containing exactly one element from each class of the quotient group Rd/L (each
coset of L inRd). P is not the only set with this property. In fact there are many sets
with this property and each of them is called a fundamental domain for the lattice
L.

1.2. Lattice tilings. Suppose Ω ⊆ Rd is a measurable set and A ⊆ Rd is a discrete
set. We say that Ω packs Rd by translations by A, if the following inequality holds:
(1)

∑
t∈A

1Ω(x + t) ≤ 1

for almost every x ∈ Rd. If instead of inequality in ( 1 ) we have equality for almost
every x ∈ Rd, then we say that Ω tiles Rd by translations of the set A.

It is easy to see that a fundamental parallelepiped P of a full-rank lattice L ⊆ Rd,
forms a tiling of Rd by translations with the lattice. Since P contains exactly one
point from each class in Rd/L, we get that x can be uniquely written as an element
of P that belongs to the class x mod (L), translated by a point in the lattice L. In fact
every fundamental domain of L forms a tiling of Rd by translations with L, while
the converse is also true with a minor adjustment: every measurable set that tiles
Rd by translations with L, differs from a fundamental domain of L by a null set (a
set of measure 0). We call such sets almost fundamental domains of L.

By what we said previously, any measurable subset of an almost fundamental
domain for a lattice L ⊆ Rd, packs Rd by translations of L. For the converse we have
that a set which packs Rd by translations of L, is a subset of a fundamental domain
up to a null set.

1.3. Common fundamental domains. The study of the fundamental domains
for a lattice is related to the well-known Steinhaus tiling problem [ Sie58 ], in which
it is asked, whether there exists a set E ⊆ R2 that tiles R2 by translations of any
rotation of the lattice Z2. In other words we are seeking a common fundamental
domain for all lattices of the form RZ2, for R being a 2 × 2 rotation matrix in R2.
This problem has a set-theoretic and a measurable incarnation. In the first case we
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seek a precise (no exceptions), not necessarily measurable fundamental domain for
all these lattices (this was solved in the affirmative in [ JM02 ]). In the second case
we seek a measurable set that is an almost fundamental domain for each of these
lattices (this is still open in the plane and the best results so far are in [ KW99 ]).
We are mostly interested in the measurable version of the problem.

A sensible relaxation of this problem is to seek a common almost fundamental
domain for a finite family of lattices. These lattices must all have the same volume
for such a set to exist. In [  Kol97 ] it was proved that, whenever we have finitely many
full rank lattices on Rd with the same volume, such that their dual lattices have a
direct sum, there exists a measurable common fundamental domain for all the lat-
tices in that finite family. This set is generally unbounded. Under the assumption
that the sum of the lattices themselves is direct it was also proved that there exists
a not necessarily measurable but bounded common fundamental domain for all the
lattices in that finite family. Later Han and Wang in [ HW01 ] dropped the density
assumption for the sum of two lattices and showed the existence of a measurable,
in general not bounded, common fundamental domain for any two lattices of the
same volume. They also showed that this result cannot be generalized for more
than two lattices with the same volume, by giving a counterexample (as was done
in [  Kol97 ]).

Recently, Grepstad and Kolountzakis [ GK25 ] proved the existence of a measur-
able bounded common almost fundamental domain for any two lattices with the
same volume.

1.4. Bounded common fundamental domain requires equal volumes even
without measurability. A question that comes naturally from what we men-
tioned above, is whether these results can be generalized for any two full rank
lattices. In particular, can we have a common fundamental domain for two lattices
of different volume?

In the measurable case, it is obvious that such a set cannot exist since every tile
set of a lattice has measure that equals the volume of the lattice. However, if we
do not demand measurability it is unclear whether such a set exists. In [ Kol97 ,
Theorem 1] it is shown, among others, that if two lattices in Rd have a direct sum
then a common fundamental domain of them in Rd exists, but, of course, is not
measurable if the volumes are different.

It is also shown in [  Kol97 ] that if two lattices in Rd have a direct sum and the
same volume then they have a common, bounded fundamental domain, which is
not necessarily measurable. It is interesting in this result that the volume of the
lattices seems to play a role in the properties of the common fundamental domain
despite not requiring measurability of the domain.

We will show here that in the case where the sum of the two lattices is direct (i.e.,
they intersect only at the origin) and the lattices have unequal volumes, then any
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common fundamental domain must be an unbounded set, without assuming this
common fundamental domain is measurable. In other words we will prove:
Theorem 1.1. Assume that L,M are two-full rank lattices in Rd, with vol (L) <
vol (M) such that L∩M = {0}. Furthermore assume that F is a common fundamental
domain of L,M in Rd. Then F is unbounded.

Theorem  1.1 extends the corresponding result that was given in [  KP22 , Theorem
3.3] which concerned lattices that are dilates of each other.

1.5. Tiling with one lattice, packing with the other. In the case where the
volumes of two lattices L,M differ, say vol (L) < vol (M), Han and Wang [ HW01 ,
Theorem 1.2] showed the existence of a measurable set F that tiles Rd by transla-
tions with the lattice L and packs Rd by translations with the lattice M. Han and
Wang raised the question whether this set F can always be chosen to be bounded.
Our main result shows that such an F can indeed always be taken to be a bounded
set.
Theorem 1.2. Let L,M be two full rank lattices on Rd, such that vol (L) < vol (M).
There exists a bounded measurable set F that tiles Rd by translations with L and
packs Rd by translations with M.

In different language Theorem  1.2 says that we can find a bounded almost fun-
damental domain of the sparser lattice M which contains an almost fundamental
domain of the denser lattice L. One might think, especially in light of the recent
result in [ GK25 ] (any two lattices of equal volume have a bounded common almost
fundamental domain), that Theorem  1.2 might be proved by dilating the lattice L
to make it have equal volume with M, taking a common fundamental domain of
these two and pass to a subset of it that is a fundamental domain for L.

This plan however is not feasible: there are fundamental domains of the dilated
lattice which contain no fundamental domain of the original lattice. The easiest
way to see this is to consider in R the lattice L = Z and the lattice M = αZ, where
α > 1 is irrational. Using the density of M mod L it is easy to construct, for any
ϵ > 0, a fundamental domain of M which, taken mod 1, lands in [0, ϵ], so no subset
of it can be a fundamental domain of L.

In §  2 we will prove Theorem  1.1 , and in §  3 we will prove our main result, Theorem
 1.2 .

2. No bounded Common Fundamental Domain if volumes differ

In this section we will prove Theorem  1.1 . We should point out that in [ KP22 ] it
was shown that given the latticesZd and aZd where a is an irrational number there
does not exist a bounded common fundamental domain of them in Rd. Theorem 1.1 

generalizes this result.
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Proof of Theorem  1.1 . Without loss of generality we may assume that L = Zd and
M = AZd, for some A, d × d matrix with |det(A)| > 1. Assume that F, a common
fundamental domain of L and M, is bounded (no measurability is assumed). It is
enough for us to show that there is no bounded common fundamental domain K of
the lattices L,M in the group L +M. The reason for this is that if F were bounded
then we could define K, also bounded, as

K = F ∩ (L +M).

We can write L +M = {n + Am : n,m ∈ Zd} and all the sums n + Am are distinct
because of our assumption L∩M = {0}. We can also write K = {n+Amn : n,mn ∈ Zd}
for any common fundamental domain of L and M in L+M (the mn are a permutation
ofZd). Assume, in order to arrive at a contradiction, that K ⊆ Br := [−r, r]d, for some
constant r > 0. Take R → +∞ and observe that, since K ⊆ Br, if n ∈ BR then we get
that:
(2) Amn ∈ BR+r.

Therefore the number of different mn corresponding to all the n ∈ BR is

(3) ≲
|BR+r|
det A

=
2d(R + r)d

det(A)
.

As R → ∞ the number of values of n ∈ Zd ∩ BR is ≈ 2dRd. But to each of the n ∈ BR
corresponds a unique mn, so the number in ( 3 ) should be at least 2dRd, which it fails
to be if R is sufficiently large.

□

3. Proof of Theorem  1.2 

The closed subgroups of Rd are, up to a non-singular linear transformation, of
the form
(4) Zm ×Rn

where m + n = d, where m = 0, 1, ..., d (see Theorem 9.11 of [  HR12 ]). Thus we may
assume that L +M = Zm × Rn for some such decomposition d = m + n. We treat
separately the cases: m = 0, m = d and m ∈ {1, 2, ..d − 1}.

3.1. Dense on Rd (m = 0). This is the key case and it is proved by a careful imple-
mentation of the method first given in [  Kol97 ].

Theorem 3.1. Let L,M be two full-rank lattices on Rd, such that vol (L) < vol (M)
and L +M = Rd. There exists a bounded measurable set F that tiles Rd by transla-
tions of L and packs Rd by translations of M. In particular, F can be taken as a finite
union of polytopes.
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Figure 1. Construction of the set F onR2. The letters R j, Q j represent
cubes in P1, P2 respectively, while l j ∈ L, m j ∈M.

.

Proof. Without loss of generality we can assume that L = Zd and M = AZd, where
A ∈ Md(R) with |det(A)| > 1 and Zd + AZd = Rd (with Md(R), we denote the set
consisting of all the d × d matrices with real entries). Denote by P1 = [0, 1)d, a
fundamental parallelepiped of L, and let P2 be a fundamental parallelepiped of the
lattice M.

The idea of the proof is simple: We partition the d-dimensional unit cube P1, into
axis aligned, disjoint in measure cubes of the same length and for P2 we find axis-
aligned, disjoint in measure cubes of the same but slightly larger length so that
each of them lies inside P2 (here we don’t assume a partition of P2). Then, using the
density assumption of the group L+M, we can translate by an element of L+M every
cube in the partition of P1 inside a (different each time) translated by an element
of M, cube in P2. This can be done since the cubes in P2 are larger than the cubes
in the partition in P1. The fact that we can find more cubes in P2 than the ones in
the partition of P1 comes straight from our assumption: |det(M)| > 1. Finally the
union of these suitable translated cubes of P1 by elements of L is our set F.
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We start by finding these cubes for P1 and P2. Pick a number c
1
d ∈ (1, |det(M)| 1d )

and find a N ∈ N such that, when we impose a grid of side-length c
1
d /N on P2 and

keep only the whole (c
1
d /N)–cubes, the leftover measure of P2 is < |det(M)| − c. If

N is sufficiently large then it is clear that this can be achieved, as the leftover set
is contained in a C/N-neighborhood of the boundary of P2 so their total volume is
at most C′/N and we arrange this to be however small we want if we take N to be
large.

This implies that the number of cubes of volume cN−d is > Nd. For such a N call
these finitely many axis-aligned and disjoint in measure cubes that lie inside P2,
Qs with s ∈ {1, 2, . . . , S}, where S > Nd. Similarly call the axis-aligned disjoint in
measure cubes of length 1

N that partition P1 = [0, 1)d, Rs, for 1 ≤ s ≤ Nd.
Our set F will be of the form

(5) F =
⋃
j≤Nd

(
R j + l j

)
,

for appropriately chosen l j ∈ L. This set F clearly tiles with L for any choice of the
l j (notice also that all sets R j + l j are disjoint). Since L + M is dense we can find
l j +m j ∈ L+M such that R j + l j +m j is contained in the (slightly larger) cube Q j, for
j = 1, 2, . . . ,Nd. This process defined the l j. Notice also that

F ⊆
⋃
j≤Nd

(
Q j −m j

)
,

and the latter union is identical modM to a subset of P2. This means that F +M is
a packing as we had to show. □

3.2. The fully commensurable case (m = d). Here we treat the case where m = d
in (  4 ). For this case, the theorem below has been proved by Han and Wang [  HW01 ].
Theorem 3.2. Let L,M be two full rank lattices onRd, such that vol (L) ≤ vol (M) and
L +M = Zd. There exists a bounded measurable set F that tiles Rd by translations
of L and packs Rd by translations of M. Again F can be taken as a finite union of
polytopes.

Proof. Clearly we have that vol (L),vol (M) ∈ Z+. We shall first find a finite set F1
that tiles L +M = Zd by translations of L and packs Zd by translations of M. Then
we define

F = [0, 1]d + F1,

which is obviously a bounded and measurable set and satisfies the requirements of
the Theorem.

Let H = L∩M, G = Zd/H, L1 = L/H and M1 =M/H and notice that it is enough for
us to find a set E that tiles G by translations of L1 and packs G by translations of M1.
Then, since the group H in the quotient groups G,M1,L1 is the same, we can take
F1 := E. Keep in mind that F1 must contain exactly one element from every class
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mod (L) inZd, while the set E contains one element from each class in Z
d/H

L/H
= Zd/L.

Furthermore, each element of F1 must belong to a different class mod(M) while E

contains at most one element from each class in Z
d/H

M/H
= Zd/M.

Write l = [G : L1] and m = [G : M1]. From vol (L) ≤ vol (M), we clearly have
that l ≤ m. Write the elements of each quotient group as G/L1 = {g1, ..., gl} and
G/M1 = {h1, ..., hm}. By a slight abuse of notation, we can view the elements gi, hi as
elements of G, even though they are classes in the quotient groups G/L1,G/M1, by
picking arbitrary representatives for each class in the quotient groups. Since the
sum L1 +M1 = G is direct (L1 ∩M1 = {0}), we can further assume that gi ∈ M1 for
every i ≤ l, and hk ∈ L1 for every k ≤ m. Finally let E = {gi + hi : i ≤ l}. Notice that
E contains exactly one element from each class mod(L1) which means L1 + E = G,
that is, it tiles G by translations of L1. Also each element of E belongs to a different
class mod(M1) and so F1 packs G by translations of M1, as we had to prove.

□

3.3. The intermediate case (m ∈ {1, 2, ..., d− 1}). Finally we show the last case in
( 4 ) of our main result Theorem  1.2 , which completes our proof. Some notation that
we will use for the proof below: whenever we have two subgroups of a group G, call
them H1,H2, such that H1 ∩ H2 = {0} we will denote their sum as H1 ⊕ H2 instead
of H1 + H2 (we call this a direct sum). Also, for two sets A,B that don’t have the
structure of a group, we will denote their sum as A ⊕ B only in the case where the
translations by B copies of A do not overlap. In this case if C = A⊕ B, we say that A
is a tile of C by translations of B and symmetrically B is a tile of C by translations
of A.

Theorem 3.3. Let L,M be two full rank lattices on Rd, such that vol (L) < vol (M)
and L +M = Zm×Rn, where m ∈ {1, 2, ..., d−1} and n = d−m. There exists a bounded
measurable set F that tiles Rd by translations of L, and packs Rd by translations of
M.

Proof. Once again, it is enough to find a bounded measurable set F1 that tiles
L +M = Zm × Rn by translations of L and packs Zm × Rn by translations of M.
Then the set

F := [0, 1]m × {0}n + F1,

which is clearly a bounded and measurable set, satisfies the requirements of our
theorem. In particular we will show that F1 is a finite union of polytopes and,
therefore, so is F.

A brief description of what will follow: we will first split each of our lattices L, M
into two disjoint sublattices L1,L2 and M1,M2 respectively such that L = L1 ⊕ L2 and
M = M1 ⊕M2. The sublattices L2,M2 will lie in the subspace {0}m ×Rn having rank
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n, while L1,M1, which lie in Zm ×Rn, have rank m. Then we will show the following
two equalities
(6) L1 +M1 + {0}m ×Rn = Zm ×Rn

and
(7) L2 +M2 = {0}m ×Rn.

From (  7 ) with L2,M2 having rank n, we get that L2+M2 is dense on {0}m×Rn and so by
the Theorem  3.1 we can find a set E ⊆ {0}m×Rn that tiles {0}m×Rn by translations of
L2 and packs {0}m×Rn by translations of M2. Of course, in order to use Theorem  3.1 

for our cause, we also want to have vol n(L2) ≤ vol n(M2), where vol n(.) is simply the
n-dimensional volume. We achieve this by considering an appropriate superlattice
for L2 and M2 on {0}m × Rn with the desired volumes. Finally, we will find a set of
suitable, disjoint, finitely many translated copies of the set E which will tile/pack
all slices {k} ×Rn for k ∈ Zm by translations of L and M respectively. This set will be
the set F1.

We start by defining the lattices L2 = L∩ ({0}m ×Rn) and M2 =M∩ ({0}m ×Rn). We
will show that L2 has rank n and so has M2. Indeed if rank(L2) = r < n then there
exists a sub lattice L1 of L, of rank d− r > m, such that L = L1 ⊕ L2 [ Cas96 , Corollary
3, p. 14]. Let l1, ..., lm+1 be m + 1, R-linearly independent elements of L1. Denote
by π(li) the projection of li to the space Zm × {0}n and so π(l1), say, is a Z- linear
combination of π(l2), ..., π(lm+1) which implies that there exists a non zero element of
L1 which is a Z-linear combination of l1, ..., lm+1, that lies on {0}m ×Rn ∩ L = L2 which
contradicts with the fact that L1 ∩ L2 = {0}. In fact we showed something stronger:
given a Z basis of L1, {l1, .., lm}, then its projection to Zm × {0}n is a set consisting of
m, Z-linearly independent elements on Zm × {0}n. Equivalently every element in
L1 must belong to a different class mod({0}m × Rn). In other words we also showed
that:
(8) [Zm ×Rn : L1 ⊕ {0}m ×Rn] = vol m(L1).

Similarly we get
(9) [Zm ×Rn : M1 ⊕ {0}m ×Rn] = vol m(M1).

Now, since L2,M2 have rank n and L +M = Zm ×Rn, we get that the sum L2 +M2
is dense on {0}m ×Rn and so we obtain (  7 ). To obtain ( 6 ) we notice that

Zm ×Rn ⊇ L1 +M1 + {0}m ×Rn

= L1 +M1 + {0}m ×Rn

⊇ L1 +M1 + L2 +M2

= L +M
= Zm ×Rn.



BOUNDED LATTICES TILES THAT PACK 10

Abusing notation we can write L = LZd, M = MZd, where L,M are d × d nonsin-
gular matrices. The columns of these matrices can be any basis of the lattices so
we choose the first m to be a basis of L1 (resp. M1) and the last n to be a basis of L2
(resp. M2). The matrices L,M are now lower block triangular

L =
(
L1 0
⋆ L2

)
, M =

(
M1 0
⋆ M2

)
where the m ×m matrices L1,M1 have integer entries since these entries represent
the first m coordinates of a basis of L1,M1 ⊆ Zm × Rn. It follows that vol (L) =
det(L1) det(L2) and vol (M) = det(M1) det(M2). To avoid confusion, whenever det(Li)
or det(Mi) is written, we refer to Li or Mi as the diagonal block of the matrix L. In
every other case whenever Li or Mi appears in the text, we mean the sublattice Li
or Mi respectively for i = 1, 2.

Now that we are done with the splitting of the lattices L and M, we want to apply
Theorem  3.1 for the lattices L2,M2, but we do not know if det(L2) ≤ det(M2). For this
reason we consider superlattices L′2,M

′
2 of L2,M2 respectively inside {0}m × Rn such

that [L′2 : L2] = det(M1) and [M′
2 : M2] = det(L1). Clearly by our assumption that

det(L1) det(L2) = vol (L) < vol (M) = det(M1) det(M2)

we get that

det(L′2) =
det(L2)
det(M1)

<
det (M2)
det (L1)

= det(M2).

Due to L2 +M2 = {0}m × Rn we get that L′2 +M′
2 = {0}m × Rn and so by Theorem  3.1 

we find a bounded measurable set E (finite union of polytopes) of volume

(10) vol n(E) = det(L′2) =
det(L2)
det(M1)

,

that tiles {0}m ×Rn by translations with L′2 and packs {0}m ×Rn by translations with
M′

2.
Finally, in order to find the set F1 we need to find the suitable set of copies of the

set E that we mentioned at the start of the proof. For this, let us first find a finite
set J2 ⊆ L′2 and K2 ⊆ M′

2 such that L′2 = L2 ⊕ J2 and M′
2 = M2 ⊕ K2. The set J2 (and

similarly K2) can be obtained by taking a complete set of coset representatives of L2
in L′2 and of M2 in M′

2. Since [L′2 : L2] = det(M1) we get |J2| = det(M1) and similarly
|K2| = det(L1).

Now, regarding the lattices L1,M1, from (  6 ) we can get a finite set J1 ⊆ L1 and a
finite set K1 ⊆M1 such that
(11) J1 ⊕M1 ⊕ {0}m ×Rn = Zm ×Rn

and
(12) K1 ⊕ L1 ⊕ {0}m ×Rn = Zm ×Rn
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Figure 2. Obtaining the set J2 when L′2 is a superlattice in the plane.
P2, P′2 are the fundamental parallelepipeds of L2, L′2 with L2 ⊆ L′2 where
[L′2 : L2] = 5. J2 = {0, l1, l2, l3, l4}

.

From (  8 ) we get that |K1| = det(L1) = |K2| and from ( 9 ) we get that |J1| = det(M1) = |J2|.
Take any two bijections ϕ : J1 → J2 and ψ : K1 → K2 and define the set:
(13) F1 = {x + y + ϕ(x) + ψ(y) : x ∈ K1, y ∈ J1} ⊕ E ⊆ Zm ×Rn

which is clearly a bounded measurable set since E is. To complete our proof we need
to show that F1 is packing Zm ×Rn by translations of L and M separately and also
show that all these finitely many copies of E in (  13 ) do not overlap. In other words
the sum in (  13 ) is indeed direct. By proving these two arguments, it is easy to see
that

vol n(F1) = vol n(E) · |K1| · |J1| = vol n(E) det(L1) det(M1) = det(L).

which implies that F1 tiles Zm × Rn by translations of L as we have to show. (Any
measurable set that packs with a lattice and its volume is equal to the volume of
the lattice also tiles with the lattice. This is easy to see by integrating the sum
function of the translated tiles over a large volume. This is also true for any peri-
odic arrangement: if a measurable set packs periodically and its volume times the
density of the translates is 1, then this packing is in fact a tiling.)

We will show the packing condition of the set F1 by translations of the lattice L.
The arguments we will use are based on equations we showed earlier in the proof.
Similar equations hold for M and so the proof for the packing condition of the set
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F1 by translations of the lattice M is similar. We remind to the reader that
J1 ⊆ L1, J2 ⊆ L′2 ⊆ {0}m ×Rn

and
K1 ⊆M1, K2 ⊆M′

2 ⊆ {0}m ×Rn.

Assume that there exist two points of L, l = l1 + l2 and l̃ = l̃1 + l̃2 with l1, l̃1 ∈ L1 and
l2, l̃2 ∈ L2 such that l+F1 and l̃+F2 intersect at a set of positive measure. This means
that there exists x, x̃ ∈ K1, y, ỹ ∈ J1 such that the translations of E by the elements
(14) l1 + l2 + x + y + ϕ(x) + ψ(y)

and
(15) l̃1 + l̃2 + x̃ + ỹ + ϕ(x̃) + ψ(ỹ)

overlap on a set of positive measure. We will show that x = x̃, y = ỹ, l1 = l̃1 and
l2 = l̃2. As a consequence of this, we will get that the sum in ( 13 ) is indeed direct
(i.e., the translated copies of E that form the set F1 are disjoint).

Notice that l1 + y, l̃1 + ỹ ∈ L1, x, x̃ ∈ K1 with the remaining terms in the sums ( 14 )
and ( 15 ) lying on {0}m × Rn. From ( 12 ) we get that the set L1 ⊕ {0}m × Rn forms a
tiling of Zm × Rn by translations of K1 and so x = x̃. Again by ( 12 ) we get that the
set K1 ⊕ {0}m ×Rn forms a tiling of Zm ×Rn by translations of L1 which implies that

(16) l1 + y = l̃1 + ỹ.

From x = x̃ we also get that ϕ(x) = ϕ(x̃) and so, after removing l1 + y and l̃1 + ỹ from
( 14 ) and (  15 ) and also ϕ(x) and ϕ(x̃), the translations l2+ψ(y) and l̃2+ψ(ỹ) of E must
overlap. But l2 +ψ(y), l̃2 +ψ(ỹ) ∈ L′2 and we have showed that L′2 ⊕E is a packing and
so l2 +ψ(y) = l̃2 +ψ(ỹ). Since L′2 = L2 ⊕ J2 and l2, l̃2 ∈ L2, ψ(y), ψ(ỹ) ∈ J2 we obtain that
l2 = l̃2 and ψ(y) = ψ(ỹ) which also implies that y = ỹ. Finally from (  16 ) we have that
l1 = l̃1 as we had to show and this completes our proof that F1 packs with L. The
same proof, with M in place of L, shows that F1 packs with M as well and our proof
is complete.

□
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