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Abstract. Consider the set E(D,N) of all bivariate ex-
ponential polynomials

f (ξ, η) =
n∑

j=1

p j(ξ, η)e2πi(x jξ+y jη),

where the polynomials p j ∈ C[ξ, η] have degree < D,
n ≤ N and where x j, y j ∈ T = R/Z. We find a set
A ⊆ Z2 that depends on N and D only and is of size
O(D2N log N) such that the values of f on A deter-
mine f . Notice that the size of A is only larger by a
logarithmic quantity than the number of parameters
needed to write down f .

We use this in order to prove some uniqueness re-
sults about polygonal regions given a small set of
samples of the Fourier Transform of their indicator
function. If the number of different slopes of the
edges of the polygonal region is ≤ k then the region is
determined from a predetermined set of Fourier sam-
ples that depends only on k and the maximum num-
ber of vertices N and is of size O(k2N log N). In the
particular case where all edges are known to be par-
allel to the axes the polygonal region is determined
from a set of O(N log N) Fourier samples that depends
on N only.

Our methods are non-constructive.
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1. Introduction

We deal with the general problem of identifying an ob-
ject (a region in Eudlidean space, a measure or a function
of a certain type) from samples of its Fourier Trasform or
samples of the function itself. If the object comes from a
parametric family where each object is defined by N real
or complex parameters then it is a reasonable expectation
that the number of samples used to identify the object
should not be much larger than N.

Suppose for instance, to mention an almost obvious but
important case, that our parametric family consists of
all one-variable algebraic polynomials of degree < N and
complex coefficients

f (x) = fn−1xn−1 + · · · + f1x + f0, with f j ∈ C,n ≤ N.

Then, if f is such a polynomial, the set of samples of f
on the set {0, 1, . . . ,N − 1}, which consists of N points, is
enough to determine f : any two such polynomials agree-
ing on that set must be the same polynomial as the dif-
ference of these polynomials can have at most N − 1 roots
unless it is identically 0.

Another famous case is the determination of exponen-
tial sums (trigonometric polynomials) with at most N fre-
quencies

f (ξ) =
n∑

j=1

f je2πiλ jξ, ( f j ∈ C, n ≤ N)

from samples. Let us restrict the frequencies λ j to lie
in the torus R/Z, which we can identify with [0, 1), and
seek to determine f (ξ) from its samples on a set A ⊆
Z. The famous Prony method from the 18th century
[ dP95 ,  DKP23 ,  VMB02 ] says that we can identify f from
its values on the set A = {0, 1, . . . , 2N}. See also Lemma

 2.1 below, with D = 1, for a slightly different viewpoint.
The case of exponential polynomials with n ≤ N terms

and polynomial coefficients of degree deg p j < D is also
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dealt with in [ VMB02 ]:

f (ξ) =
n∑

j=1

p j(ξ)e2πiλ jξ

can be identified from its samples on the set A =
{0, 1, . . . , 2ND} as shown also in our Lemma  2.1 .

0

I1 I2 In

1

...

Figure 1. A set E ⊆ T consisting of n arcs.

An example of a more geometric flavor [  Cou10 ,  DKP23 ]
is the case of a set E ⊆ T which is a union of at most
N arcs (intervals) as shown in Fig.  1 . Such a set can be
identified by sampling its Fourier Transform 1̂E on the set
A = {0, 1, . . . ,N}.

The situation becomes more complicated in higher di-
mension. Multivariate exponential sums

f (t) =
n∑

j=1

f je2πiλ j·t, (n ≤ N, f j ∈ C, λ j ∈ Td, t ∈ Zd)

were shown recently [ DKP23 ] (see also [ Sau18 ]) to be
identifiable by O(N log N) samples, only slightly more
than the number O(N) of degrees of freedom.

In this paper we study the identification of bivariate ex-
ponential polynomials and apply our results to the identi-
fication of certain polygonal regions. Our work is inspired
from the paper [ WP16 ]. Our method assumes, in contrast
to [ WP16 ], that we know the possible slopes of the edges
of the polygons.

Our results are as follows. In § 2 (see Theorem  2.1 )
we show that any bivariate exponential polynomial with
at most N terms and polynomial coefficients of degree
< D can be identified from its samples on a set of size
O(D2N log N). This sampling set depends on N and D
only. In §  3 we use this result in order to show, for in-
stance, that polygonal regions with edges parallel to the
two axes and at most N vertices can be identified by sam-
pling the Fourier Transform of their indicator function at
a predetermined set of size O(N log N), where, again, the
sampling set depends only on N (see Corollary  3.3 ).
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Remark 1.1. Note than in [  WP16 ] it is precisely the poly-
gons whose vertices project non-uniquely onto a line that
create the most problems, which happens a lot with poly-
gons whose edges are parallel to the two axes. This coin-
cidence of projections is reflected in the log N factor in the
size of our sampling set: a small and uniform price to pay
for all polygons.

We emphasize that the sampling problems we are
studying are of the non-adaptive type. In other words,
given the class of functions that we want to identify the
sampling sets are specified a priori and are not allowed to
change depending on what values we have already seen
from f (this would be adaptive sampling, as is the ap-
proach in [ WP16 ]).
Note on algorihmic inversion. We should also clarify
that we do not provide algorithms for recovering the object
(function, polygon) from its samples or Fourier samples.
We only deal with the concept of inversion in principle.
Whenever we claim that a function f from a certain class
C can be identified from its values on a sampling set A all
we mean is that the mapping

f → ( f (a))a∈A

is injective on C (different functions from C give different
data). We do not deal at all with the algorithmic recon-
struction of f .
Notation: We write [n] = {1, 2, . . . , n} and [n]0 =
{0, 1, . . . , n}.

2. Indentifying exponential polynomials

A multivariate polynomial is of degree d if d is the high-
est power that any of its variables is raised to. Thus, a
two-variable polynomial p(ξ, η) is of degree ≤ d if and only
if it can be written in the form

p(ξ, η) =
d∑

k=0

pk(ξ)ηk,

where the univariate polynomials pk(ξ) are of degree ≤ d.
All the polynomials have complex coefficients.
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Remark 2.1 (Determination of an exponential polyno-
mial by its values on the integers). An exponential poly-
nomial

f (ξ, η) =
n∑

j=1

p j(ξ, η)e2πi(x jξ+y jη)

whose values are known for all ξ, η ∈ Z is completely deter-
mined. The reason is that it can be viewed as the Fourier
Transform (defined on Z2) of the distribution (automati-
cally tempered) on T2, the dual group of Z2 [ Rud62 ],

(1) S =
n∑

j=1

p j

( 1
2πi
∂1,

1
2πi
∂2

)
δ(x j,y j).

Here δ(x j,y j) denotes a unit point mass at (x j, y j) ∈ T2 and
∂ j denotes differentiation with respect to the j-th variable,
j = 1, 2. By Fourier inversion (the Fourier Transform is a
linear isomorphism from the space of tempered distribu-
tions onto itself) knowing f on Z2 (the dual group of T2)
we automatically know the tempered distribution S on T2.
And it is easy to see that S determines uniquely both the
points (x j, y j) and the corresponding polynomials p j.

The analogous statement is true for exponential polyno-
mials with any number of variables.

In this section we identify an exponential polynomial,
obeying some assumptions, by its values on a sampling
set in Z or Z2. We shall not always attempt to give the
smallest possible sampling set. For the sake of simplicity
in expressions we may opt to prescribe a slightly larger
sampling set. In the end what matters to us is the size of
the sampling set as N (the maximum number of terms in
the exponential polynomial) tends to infinity.

Let us start with univariate exponential polynomials.

Lemma 2.1. Let f (ξ) =
∑n

j=1 p j(ξ)e2πix jξ be a univariate ex-
ponential polynomial with n ≤ N terms. Assume also that
the degree of each polynomial coefficient p j is < D.

Then the function f is determined by its values on the
set A = [2ND]0.

Proof. It is well known [  EvdPSW15 , Ch. 1, “Generalized
power sums”] that the sequence f (n), n ∈ Z, satisfies a



EXPONENTIAL POLYNOMIALS AND POLYGONAL REGIONS 6

homogeneous linear recurrence relation of order
n∑

j=1

(1 + deg p j) ≤ ND.

This implies that if f = 0 on [ND]0 then f (n) = 0 for all
n ∈ Z.

If two exponential polynomials f1 and f2 have at most
N frequencies each and polynomial coefficients of degree
< D then the exponential polynomial f1 − f2 has at most
2N frequencies and polynomial coefficients of degree < D.
If f1, f2 agree on [2ND]0 it follows from the discussion in
the previous paragraph that f1(n)− f2(n) = 0 for all n ∈ Z,
so that f1, f2 are the same exponential polynomial.

□

Moving to the bivariate case let us first settle the case
of simple algebraic polynomials.
Lemma 2.2. Let p(ξ, η) be a polynomial of degree < D.

Then p is determined by its values on the sampling set
A = [D]0 × [D]0.

Proof. Take two polynomials p1(ξ, η), p2(ξ, η) in R2 of de-
gree < D, that are identical on A. We will show that they
are equal in R2, and are therefore the same polynomial.
Indeed, for every (ξ, η) ∈ A we have :

(p1 − p2)(ξ, η) =
∑

0≤k<D

(p1
k − p2

k)(ξ) ηk = 0,

where we have written p j
k(ξ) for the coefficient of ηk in p j.

Fix ξ ∈ [D − 1]0 and let η vary in [D − 1]0. For every such
ξ, we get a D ×D linear system as below:

1 0 0 · · · 0
1 1 12 · · · 1D−1

· · · · · · · · · · · · · · ·
1 D − 1 (D − 1)2 · · · (D − 1)D−1




(p1
0 − p2

0)(ξ)
(p1

1 − p2
1)(ξ)
· · ·

(p1
D−1 − p2

D−1)(ξ)

 =


0
0
· · ·
0


with the D×D matrix on the left being an invertible Van-
dermonde matrix and so we get that for k ∈ [D − 1]0 and
every ξ ∈ [D − 1]0:

(p1
k − p2

k)(ξ) = 0

Since for each k ∈ [D − 1]0 the polynomial (p1
k − p2

k)(ξ) has
degree < D, we conclude that for every k ∈ [D − 1]0 :

p1
k(ξ) = p2

k(ξ)
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for every ξ ∈ R and hence our two polynomials p1, p2 are
equal on R2. We have shown that the sampling set [D −
1]0 × [D − 1]0 is enough for identification, hence so is its
superset [D]0 × [D]0.

□

Next we introduce frequencies in one variable only.
Lemma 2.3. Let f (ξ, η) =

∑n
j=1 p j(ξ, η)e2πiξx j with the poly-

nomials p j having degree < D and such that n ≤ N.
Then f is determined by its values on the sampling set

A = [2ND]0 × [D]0, a set of size O(D2N).

Proof. Fix η = η0 ∈ [D]0. Then f (ξ, η0) is a univariate
exponential polynomial with coefficients of degree < D,
so, by Lemma  2.1 , sampling on [2ND]0×

{
η0
} determines all

polynomials p j(·, η0) and all x j for which p j(·, η0) is not the
zero polynomial. But it may happen, for a fixed η0, that
some of the x j will not be revealed by invoking Lemma  2.1 

since p j(·, η0) may be identically zero in the first variable
for that particular value η0 of η.

Since each p j(·, ·) is assumed not to be identically 0 as a
bivariate polynomial it follows from Lemma  2.2 that some
of the values of p j(·, ·) on [D]0×[D]0 are non-zero. Hence, by
the process described in the previous paragraph repeated
for all η0 ∈ [D]0 all the x j will be revealed. This implies
that for each j we know all the values of p j(·, ·) on [D]0 ×
[D]0, so, by Lemma  2.2 again, all the p j are determined.

□

The next Lemma is the crucial technical result concern-
ing bivariate exponential polynomials.
Lemma 2.4. Let f (ξ, η) =

∑n
j=1 p j(ξ, η)e−2πi(x j·ξ+y j·η) with the

polynomials p j having degree < D and such that n ≤ N.
We can determine f by the following data (see Fig.  2 ):

(a) Its values at the sampling set

(2) AN =
⋃

1≤r≤N

[
2
⌊N

r

⌋
D
]

0
× [2rD]0

(b) Knowing how many many points of the frequency
set V = {(x j, y j)} j≤n of f , are above ( project to ) each
x ∈ R.

The sampling set in ( 2 ) is of size O(D2N log N).
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x · y = 4D2N

Figure 2. The sampling set for Lemma  2.4 

Proof. Write X = {x j} for the set of distinct x that appear
as first coordinates for the points of V. We partition X
according to how many points of V project to each point
(see Fig.  3 ):

X = X1 ∪ · · · ∪ Xr, (for some r ≤ N)

where
Xt =

{
x ∈ X :

∣∣∣{y : (x, y) ∈ V}
∣∣∣ = t
}
.

In the proof that follows assumption (b) is only used in
order to known to which Xt a given x ∈ X belongs.

A crucial observation (proof by contradiction) here is
that for 1 ≤ t ≤ r we have:

(3) |Xt ∪ Xt+1 ∪ · · · ∪ Xr| ≤
N
t

We write f as :

f (ξ, η) =
∑
x∈X

 ∑
y : (x,y)∈V

p(x,y)(ξ, η)e2πiηy

 e2πiξx.

For any fixed η this is an exponential polynomial in ξwith
|X| ≤ N terms and polynomial coefficients of degree < D,
so, using Lemma  2.1 , sampling at [2|X|D]0×

{
η
} determines

the polynomials of ξ

(4) qx,η(ξ) =
∑

y : (x,y)∈V

p(x,y)(ξ, η)e2πiηy,

for every ξ ∈ R.
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X!

X2

X3

X4

x

y

(x j, y j)

Figure 3. The partition of the set X (projec-
tions of the points to the x-axis), to the sets
X1,X2, · · · .

Write now

ft(ξ, η) =
∑
x∈Xt

∑
y: (x,y)∈V

p(x,y)(ξ, η)e2πi(xξ+yη)

for the part of f extending over x ∈ Xt only, so that f =
f1 + f2 + · · · + fr. We shall first determine f1, then f2, etc.

Notice that for any fixed ξ the quantity qx,η(ξ) is an ex-
ponential polynomial in η. If x ∈ Xt then, from (  3 ), this
exponential polynomial has |Xt| ≤ ⌊N/t⌋ terms and all its
polynomial coefficients have degree < D.

For x ∈ X1, from Lemma  2.3 with the roles of ξ and η re-
versed, qx,η(ξ) is determined by sampling it on [D]0×[2D]0.
By the discussion before ( 4 ) these values of qx,η(ξ) can be
determined from the samples of f at [2ND]0 × [2D]0 ⊆ AN.
Thus sampling f at AN suffices to determine the bivariate
exponential polynomial f1(ξ, η).

To determine f2 we apply roughly the same procedure
to the polynomial f − f1. Since we now know f1 we can
assume that we have sampled f − f1 on AN. But f − f1 now
has |X2 + X3 + · · · + Xr| ≤ ⌊N/2⌋ terms, so to determine the
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polynomials of ξ

qx,η(ξ), (x ∈ X2 ∪ X3 ∪ · · · ∪ Xr)

we only need to sample f at [2⌊N/2⌋D]0 ×
{
η
}. Viewing,

again, qx,η(ξ) as an exponential polynomial in η for every
fixed ξ, Lemma  2.3 tells us that, for x ∈ X2, it is enough
to sample qx,η(ξ) at [D]0 × [4D]0 (since qx,η(ξ) has 2 terms.
By the discussion before ( 4 ) these values of qx,η(ξ) can be
determined from the samples of f at [2⌊N/2⌋D]0 × [4D]0 ⊆
AN.

Thus we have also determined f2. We next work on f −
f1− f2 to determine f3 from the samples of f at [2⌊N/3⌋D]0×
[6D]0 ⊆ AN and so on.

The fact that |AN| = O(D2N log N) is easily seen as all
pairs (m,n) ∈ AN satisfy m · n ≤ 4D2N.

□

In the next Lemma we point out that data (b) from
Lemma  2.4 represent only a finite number of options.

Lemma 2.5. There are at most finitely many exponential
polynomials f of the form

f (ξ, η) =
K∑

j=1

p j(ξ, η)e−2πi(x j·ξ+y j·η),

where K ≤ N, p j polynomials of degree < D, with given
values on the set AN in ( 2 ) and with given the projections
of its frequencies onto the x-axis

X = {x j}1≤ j≤K.

(We do not assume to know how many frequencies project
to each x ∈ X)

Proof. Knowing the values of f at AN is exactly the data
(a) of Lemma  2.4 . What is missing in order to fully know
also data (b) of that Lemma is to know how many frequen-
cies project to each x ∈ X. There are only finitely many
possibilities for this information. For each of them there
is at most one exponential polynomial fitting the data by
Lemma  2.4 , so, in total, we have finitely many exponen-
tial polynomials matching the given values at AN and the
given set of projections X.

□
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But a whole continuum of different exponential polyno-
mials with the same data and the same x-projections of
their frequencies arise from just two different exponential
polynomials with the same data.
Lemma 2.6. Suppose that

f1(ξ, η) =
K1∑
j=1

p1
j (ξ, η)e

−2πi(x1
j ·ξ+y1

j ·η)

and

f2(ξ, η) =
K2∑
j=1

p2
j (ξ, η)e

−2πi(x2
j ·ξ+y2

j ·η)

are two different exponential polynomials with K1,K2 ≤ N,
p1

j , p
2
j polynomials of degree < D, and with the same values

at A2N as in ( 2 ).
Then there are infinitely many different exponential

polynomials of the form

f (ξ, η) =
K∑

j=1

p j(ξ, η)e−2πi(x j·ξ+y j·η)

with K ≤ 2N, deg(p j) < D, with{
x j

}
1≤ j≤K

⊆
{
x1

j

}
1≤ j≤K1

∪
{
x2

j

}
1≤ j≤K2

and having the same values at A2N

Proof. Write for λ ∈ C
fλ = λ f1 + (1 − λ) f2

Then fλ has the same values at A2N (for every λ) and all
these exponential polynomials are different: there is at
least one point (x, y) where f1 and f2 differ. Finally observe
that fλ has at most 2N frequencies all of them at locations
projecting down inside the set {x1

j } ∪ {x2
j }.

□

We arrive to our main result.
Theorem 2.1. Let f (ξ, η) =

∑n
j=1 p j(ξ, η)e−2πi(x j·ξ+y j·η), with

n ≤ N, p j being a polynomial of degree < D.
Then f is determined by knowing its values on the sam-

pling set

(5) A2N =
⋃

1≤r≤2N

[
2
⌊2N

r

⌋
D
]

0
× [2rD]0
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with size O(D2N log N).

Proof. Suppose not, so that we can find two exponential
polynomials

f1(ξ, η) =
K1∑
j=1

p1
j (ξ, η)e

−2πi(x1
j ·ξ+y1

j ·η)

and

f2(ξ, η) =
K2∑
j=1

p2
j (ξ, η)e

−2πi(x2
j ·ξ+y2

j ·η)

with K1,K2 ≤ N, with the same values on A2N. From
Lemma  2.6 then there are infinitely many exponential
polynomials with up to 2N frequencies and polynomial co-
efficients of degree < D that have the same values at A2N.
But this contradicts Lemma  2.5 ( used with 2N in place
of N).

□

3. Application to identification of polygons

A polygonal region in the plane is described by an or-
dered sequence of n vertices v0, v1, . . . , vn−1 ∈ R2. This se-
quence of vertices, connected by line segments, the edges,
which do not intersect except at the vertices, defines a
polygonal curve, whose interior is the polygonal region.
We also assume that successive edges are not parallel to
each other: this forbids redundant vertices in the interior
of an edge.

Define the edges w j = v j+1 − v j, where j ∈ [n − 1]0 and
addition and subtraction of the indices is done mod n (see
Fig.  4 ) and the corresponding unit vectors u j = w j/

∣∣∣w j

∣∣∣.
Write sr, r = 1, 2, . . . , k, for all the different directions
(slopes) of the edges w j, written once each (no two sr are
parallel to each other). The s j are vectors of unit length, so
u j = ϵ jsϕ( j)), where ϵ j = ±1 and ϕ : [n−1]0 → [k] is the func-
tion which tells us which direction vector sr corresponds
to edge w j.

Let P be a polygonal region in the plane and 1P its indi-
cator function. The Brion-Barvinok formula [  Rob24  ] is a
valuable formula for the Fourier Transform of 1P. In our
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v j

w j−1

v0

vn−1

v j+1w j =
∣∣∣w j

∣∣∣u j

v j−1

Figure 4. A polygonal region in the plane.

notation it becomes, for t = (ξ, η) ∈ R2,

(6) 1̂P(t) =
1

4π2

n−1∑
j=0

∣∣∣det(u j−1,u j)
∣∣∣

(u j−1 · t) (u j · t)
e−2πiv j·t.

This formula is valid whenever all the denominators u j · t
are not zero. To cancel all denominators we multiply (  6 )
by the product

(s1 · t) (s2 · t) · · · (sk · t).
Since u j−1 and u j correspond to different direction vectors
we obtain

(s1 · t) (s2 · t) · · · (sk · t) 1̂P(t) =

(7)

=
1

4π2

n−1∑
j=0

∣∣∣det(u j−1,u j)
∣∣∣ϵ j−1ϵ j

∏
r=1,...,k

r,ϕ( j−1),ϕ( j)

(sr · t) e−2πiv j·t.

The expression on the right hand side of (  7 ) is an expo-
nential polynomial, which we denote by fP(t), in t = (ξ, η)
with n terms and polynomial coefficients of degree < k−1.
If we happen to know the direction vectors s1, . . . , sk then
knowing the values of 1̂P on a sampling set A ⊆ Z2 implies
that we know the samples of fP(t) on A.

If the sampling set A is enough to identify fP(t) then we
have determined 1̂P(t) except when t is on the finite set of
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straight lines{
t ∈ R2 : sr · t = 0 for some r ∈ [k]

}
.

By the continuity of 1̂P(t) this function is then determined
everywhere and so is P by Fourier inversion.

Combining this with Theorem  2.1 we obtain the follow-
ing.
Theorem 3.1. Suppose P ⊆ [0, 1)2 is a polygonal region
with n ≤ N vertices and whose edges are of a finite set of
known slopes s1, . . . , sk.

Then P can be determined by sampling its Fourier
Transform 1̂P on the following set of points in Z2

(8) A = A(k,N) =
N⋃

r=1

[
2
⌊2N

r

⌋
(k − 1)

]
0
× [2r(k − 1)]0

which is of size O(k2N log N).

Figure 5. A polygonal region in the plane
with sides parallel to the axes.

Corollary 3.1. Suppose P ⊆ [0, 1)2 is a polygonal region
all of whose edges are parallel to the x or the y axis (see
Fig.  5 ).

Then P can be determined by sampling its Fourier
Transform on the set A in ( 8 ) with k = 2.
Remark 3.1. It is perhaps interesting to see that when
identifying a polygon in the plane all of whose edges are
parallel to the axes it is enough to know the vertices: the in-
terconnections of the vertices via axis-parallel edges (and
when these vertices are guaranteed to be non-degenerate)
arise uniquely.

To see this observe first that any vertical line (parallel to
the y-axis) must always contain an even number of polygon
vertices and they are always connected as follows. Since
every polygon vertex has both a vertical and a horizontal
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edge it follows that all vertical edges of the vertices belong-
ing to a vertical line must connect them among themselves
and the only way for this is if the lowest vertex connects
to the second lowest, the third lowest to the fourth and so
on. This determines all vertical edges of the polygon. Sim-
ilarly all horizontal edges are determined.

This is not strictly used in our (non-constructive) proof
as what we do is to determine the Fourier Transform of
the indicator function of the polygon, which contains all
the information we need.

f = v4

f = v5

f = v3

f = v2

f = v1

Figure 6. The level sets of a function are
polygonal regions with few slopes.

The following Theorem, a generalization of Theorem
 3.1 , has essentially the same proof, which we indicate be-
low.

Theorem 3.2. Suppose f : [0, 1)2 → C takes finitely many
values and each level set of f

L(v) =
{
t ∈ [0, 1)2 : f (t) = v

}
is a polygonal region whose edges are of a finite set of
known slopes s1, . . . , sk (see Fig.  6 ). Suppose also that the
total number of vertices appearing in any L(v) (written
once each) is n ≤ N.

Then f can be determined by the samples of f̂ on the set
A(k,N) in ( 8 ) which is of size O(k2N log N).

Proof. The function f can be written as the finite sum

f (x) =
∑
v∈V

v1L(v)(x),
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where V ⊆ C is the finite set of values taken by f . It
follows that

f̂ (t) =
∑
v∈V

v1̂L(v)(t).

Using again the Brion-Barvinok formula for each 1̂L(v) we
obtain an identity analogous to (  6 ), valid, again, when-
ever all s j · t are non-zero. As in the proof of Theorem  3.1 ,
multiplying by (s1 · t) · · · (sk · t) we obtain an exponential
polynomial analogous to (  7 ) which has at most N vertices
and the polynomial coefficients all have degree < k − 1.
The remaining of the proof is exactly the same.

□

3.1. Unknown slopes. When we try to extend Theo-
rems  3.1 and  3.2 to the case of knowning the maximum
number of different slopes but not knowing the slopes
themselves, we encounter the unpleasant fact that when
one subtracts two functions like those in Theorem  3.2 one
obtains again such a function but with much larger pa-
rameters. If the numbers f1, f2 are as in Theorem  3.2 ,
with at most N vertices total in the polygonal regions in-
volved then it can be that the number of vertices in the
corresponding representation of f1 − f2 is quadratic in N,
as shown in Fig.  7 . If we try to apply Theorem  3.2 to f1− f2
we end up with a superquadratic number of samples.

The solution to this is to change the representation. In-
stead of parametrizing f by the number of values it takes
we parametrize it by the number of building blocks, indi-
cator functions of a polygonal region, that are needed to
construct f .
Theorem 3.3. Suppose f : [0, 1)2 → C is of the form

(9) f (x, y) =
n∑

j=1

f j1P j(x, y),

where f j ∈ C and the P j are polygonal regions, not neces-
sarily disjoint, with a total number of vertices at most N.
Suppose also that the different slopes appearing in some
P j are among the known slopes s1, . . . , sk.

Then f can be determined by the samples of f̂ on the set
A(k,N) in ( 8 ) which is of size O(k2N log N).

Proof. Exactly the same as the proof of Theorem  3.2 .
□
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f1 = v1

f1 = v2

f1 = v3

f2 = w1

f2 = w2

f2 = w3 f2 = wN

f1 − f2 = v3 − w3

f1 = vN

Figure 7. The two functions f1, f2 have N dif-
ferent levels each, with number of vertices
O(N), but f1 − f2 may have N2 different val-
ues with a quadratic total number of ver-
tices.

Corollary 3.2. Suppose f is as in Theorem  3.3 with pa-
rameters k (maximum number of different slopes) and N
(maximum total number of vertices appearing in any of
the polygons P j), but we do not assume that we know the
slopes.

Then f can be determined by the samples of f̂ on the set
A(2k, 2N) in ( 8 ) which is of size O(k2N log N).

Proof. Suppose f1, f2 are both of the form (  9 ) with param-
eters k and N. Then f1 − f2 is also of the same form but
with parameters 2k and 2N, at most. If f1, f2 have the
same Fourier samples on A(2k, 2N) then, by Theorem  3.3 ,
since f1− f2 has Fourier samples identically 0 on A(2k, 2N),
it follows that f1 ≡ f2.

□

Refering to Fig.  7 notice that f1 − f2 has parameters 2k
and 2N if we assume that f1, f2 have parameters k and
N. We do not demand that the P j in (  9 ) are disjoint and
this makes for a more flexible and algebraically pliable
representation.
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Corollary 3.3. Suppose P ⊆ [0, 1)2 is a polygonal region
with n ≤ N vertices and whose edges have at most k differ-
ent (unknown) slopes.

Then P can be determined by sampling its Fourier
Transform 1̂P on A(2k, 2N) which is of size O(k2N log N).

Proof. The function 1P is of the form covered by Corol-
lary  3.2 , so it is determined by its Fourier samples on
A(2k, 2N).

□

Remark 3.2. It is less than satisfying that the maximum
number k of different slopes appears quadratically in the
size of the sample. Of course in the general case of exponen-
tial polynomials with coefficients of degree < k the num-
ber of parameters involved in each polynomial coefficient
is also quadratic so one cannot expect a general improve-
ment. But in the case of polygonal regions the polynomial
coefficients that appear on the right side of ( 7 ) are a prod-
uct of ≤ k linear forms in R2 and that involves only 2k pa-
rameters, so one may hope to find a way to exploit this. As
it stands, using the general recovery of exponential poly-
nomials as a means to recover polygons the general case
with N different slopes gives a sample size larger than N3

which is much larger than the number of parameters.
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