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Abstract. We develop a systematic study about the spectrality of measures sup-
ported on piecewise smooth curves by studying the support of the tempered dis-
tributions arising from the tiling equation of some singular spectral measures. In
doing so, we show that the arc-length measures of all closed polygonal lines are not
spectral. In particular, the boundary of a square is not spectral. We also show that
the “plus space” (two crossing line segments) is not spectral. Furthermore, our the-
ory also shows that the arc length measures on smooth convex curves with finitely
many transverse self-intersections are not spectral. Finally, several natural open
questions about the spectrality of singular measures and piecewise smooth curves
will also be discussed.
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1. Introduction

In this paper, a measure µ is always referring to a compactly supported prob-
ability measure in Rd. We say that µ is a spectral measure if there exists a
countable set Λ Ă Rd such that EpΛq :“ te2πiλ¨x : λ P Λu forms an orthonor-
mal basis for L2pµq. A measurable set Ω with finite positive Lebesgue measure
is a spectral set if the normalized Lebesgue measure on Ω is a spectral mea-
sure. The study of spectral sets of was first initiated by Fuglede in 1974 [ Fug74 ],
who famously proposed the conjecture that spectral sets are equivalent to trans-
lational tiles on Rd. The conjecture was disproved in both directions on Rd with
d ě 3 [ Tao04 ,  KM06b ,  KM06a ,  FMM06 ,  FR06 ], but the research effort to explore the
exact geometric relationships between spectral sets and translational tiling has
not declined. In one recent major result, Lev and Matolcsi [  LM22 ] showed that Fu-
glede’s conjecture holds for convex domains. Readers can refer to the survey [ Kol24 ]
for different aspects about the Fuglede’s conjecture.

The generalized concept of spectral measures gained its popularity when Jor-
gensen and Pedersen discovered that the self-similar Cantor measure generated
by dividing r0, 1s into 4 sub-intervals of equal length and keeps the first and third
one is a spectral measure, while the standard middle-third Cantor measure is not
a spectral measure in 1998 [  JP98 ]. This work was followed up by Strichartz [  Str00 ]
and Łaba and Wang [ ŁW02 ]. There is now a vast literature in this direction. Read-
ers can refer to the survey [  DLW17 ] for more recent advances about fractal spectral
measures. The connection with tiling appears to be weaker, but it exists. Gabardo
and Lai [ GL14 ] showed that if the pair of measures pµ, νq “tiles" r0, 1sd in the sense
that µ ˚ ν “ 1r0,1sd dx, then both µ and ν are spectral measures. In the same paper,
they also proposed a version of the generalized Fuglede’s conjecture for singular
spectral measures. A verification of this conjecture in a special case of Cantor-
Moran measures was recently given in [ ALZ25 ].

The purpose of this paper is to study the spectrality of singular measures sup-
ported on piecewise smooth curves. This first appeared in Lev’s paper [ Lev18 ].
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Iosevich, Lai, Liu and Wyman showed that boundary of the unit disk never admits
a Fourier frame (generalization of the orthonormal basis of exponentials), hence it
is non-spectral [ ILLW22 ]. In the same paper, they also showed that the boundary
of any polygons always admit a Fourier frame. This naturally led to the question to
determine if the boundary of a square, equipped with the 1-dimensional Lebesgue
measure, is a spectral measure. Notice a well-known fact that the square domain is
spectral, thus it becomes an interesting question to determine if the spectrality of
the domain can induce a spectrum on its boundary. We will answer these questions
in this article in the negative.

Lai, Liu and Prince [  LLP21 ] initiated a new study about the spectrality of sym-
metric additive spaces with measure supported on two orthogonal lines defined

(1) µ “
1
2

p1rt,t`1s dx ˆ δ0 ` δ0 ˆ 1rt,t`1s dxq.

They proved that µ is a spectral measure when t “ 0. However, the case where the
two lines overlap, i.e. ´1{2 ď t ă 0, is much more subtle. With a series of works by
Ai-Lu-Zhou [  ALZ23 ], Kolountzakis and Wu [  KW25 ] and recently by Lu [  Lu25 ], it
is now shown that all are not spectral when ´1{2 ď t ă 0. See Fig.  1 .

t

t

t

tt ` 1

t ` 1

t ` 1

t ` 1

Figure 1. The measure that is arc-length on two equal-length line-
segments. Some of the measures on the left are spectral, depending
one where the starting points of the segments are compared to their
length. In the crossing case on the right they are never spectral. The
symmetric crossing case, t “ ´1{2, is called the “plus-space”.

Apart from spectra, our results also deal with tight frames of exponentials, a
slightly more general notion of basis. We say that µ is a tight-frame spectral
measure if there exists a countable set Λ Ă Rd, which we call a tight-frame spec-
trum, such that EpΛq :“ te2πiλ¨x : λ P Λu forms a tight frame for L2pµq in the sense
that there exists a constant A ą 0 such that

(2)
ÿ

λPΛ

ˇ

ˇ

ˇ

ˇ

ż

f pxqe´2πiλ¨x dµpxq

ˇ

ˇ

ˇ

ˇ

2

“ A
ż

| f pxq|2 dµpxq, @ f P L2pµq.
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Clearly an orthonormal basis is a tight frame. But the converse is not true. For ex-
ample, we can take union of two orthonormal basis to form a tight frame of constant
2. For general frame theory, readers can refer to [ Hei11 ]. For tight frame spectral
measures, general theory was established in [ HLL13 ] and [  DL14 ]. In [  DL14 ], it
was shown that if µ is tight-frame spectral and absolutely continuous with respect
to the Lebesgue measure, then µmust be a constant multiple of the Lebesgue mea-
sure on its support. The consideration of tight-frame spectrality allows us to deal
with spectrality of curves by focusing on a subset of the curve (see Corollary  1 be-
low).

We say that a finite union of line segments is (tight-frame) spectral if the natu-
rally induced one-dimensional Lebesgue measure is a (tight frame) spectral mea-
sure. Our main result in this paper is to settle the spectrality questions we men-
tioned. Moreover, we determine non-spectralities for much more general classes of
line segment collections.

Theorem 1. (1) A finite union of line segments that forms a closed curve, self-
intersecting or not, cannot be tight-frame spectral.

(2) A finite union of line segments containing three lines that starts at the same
point and points in distinct directions cannot be tight-frame spectral.

In the second part, we remark that the theorem also includes cases in which two
of the three vectors are in opposite directions to each other. Hence, it shows that
the “plus space” corresponding to t “ ´1{2 (refer to Fig.  1 ) cannot be tight-frame
spectral, providing another independent proof after Lu’s proof [  Lu25 ]. Some more
examples following from our Theorem  1 are shown in Fig.  2 .

Clearly, the first part of the theorem showed that the boundary of a square cannot
admit a tight frame of exponentials. Closed polygonal curves can be generalized to
certain smooth curves of positive curvature.

Figure 2. Some examples of non-spectral collections of line segments.
All but the first one from the left, the “Π-shape”, are covered by The-
orem  1 . The Π-shape is explained in Section  4.4 

Theorem 2. Let γ be a smooth closed planar curve with positive curvature such that
there are only finitely many self-intersections all of which are transverse. Then the
induced arc-length measure on γ is not a tight-frame spectral measure.
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Transverse intersections mean that the tangent vectors from different times vis-
iting the intersection point are not parallel to each others (see Section  5 for the pre-
cise definition). This result is slightly more general than the results in [ ILLW22 ]
in the sense that the curves we deal with can be self-intersecting, such as the one
in Fig.  3 .

Figure 3. A smooth closed curve in the plane with positive curvature
everywhere and a transverse self-intersection.

Finally, we observe a simple property about tight frame spectral measures. Sup-
pose that EpΛq “ te2πiλ¨x : λ P Λu is a tight frame for the measure 1

2pµ`νq and assume
that suppµXsupp ν has zero µ-measure and ν-measure. By restricting only to func-
tions on L2pµq (i.e. extended by 0 off suppµ), we immediately see that EpΛq is also a
tight frame spectrum for L2pµq with another positive constant. Because of this, the
following corollary is immediate:

Corollary 1. Let µ be the arc length measure supported on a finite union of smooth
curves (not necessarily connected). Suppose that the union contains curves described
in Theorem  1 and  2 . Then µ is not tight-frame spectral.

1.1. Idea of the proof and function tilings. The proof of our theorems requires
a generalization of a well-known fact in the tiling theory of integrable functions to
a non-integrable setting. Let us denote rµ the measure rµpEq “ µp´Eq and define the
Fourier transform of the measure µ to be

pµpξq “

ż

e´2πiξ¨xdµpxq.

The convolution between two measures µ and ν is given by

µ ˚ νpEq “

ż

1Epx ` yqdµpxqdνpyq.

Recall that if f P L1pRdq and Λ is a countable discrete set such that

(3) δΛ ˚ f pxq “
ÿ

λPΛ

f px ´ λq “ w a.e.
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for some w, then we can conclude that suppxδΛ with xδΛ regarded as a tempered
distribution, satisfies

suppxδΛ Ă t0u Y tξ P Rd : pf pξq “ 0u.

This can be formally deduced by taking the Fourier transform of both sides of ( 3 )
to obtain xδΛ pf “ wδ0. A rigorous proof of this fact can be found in [ KL16 , Theorem
4.1]. Recall that [  JP98 ] µ is a spectral measure with a spectrum Λ if and only if

(4) δΛ ˚ |pµ|2 “ 1.

If µ admits a tight frame te2πiλ¨x : λ P Λu, by taking f pxq “ e2πiξ¨x into ( 2 ), we obtain
also a tiling equation
(5) δΛ ˚ |pµ|2 “ A.

Notice that the distributional Fourier transform of |pµ|2 is equal to the measure µ˚rµ.
By formally taking Fourier transform to the convolutional equation ( 4 ) and ( 5 ), the
following conjecture may be true:

Conjecture 1. Let Λ be a tight-frame spectrum for a measure µ in Rd. Then

suppxδΛ Ă t0u Y psupp pµ ˚ rµqqC.

Above, the support of a measure µ is the unique closed support of µ, which is
the set of points x such that µpBpx, rqq ą 0 for all r ą 0. When µ is an absolutely
continuous measure with respect to Lebesgue measure, [  DL14 ] showed that the
density must be constant function, so it must be in L2pRdq. It follows that |pµ|2 is
integrable and this conjecture is correct. We are unable to prove this conjecture in
general. Instead, we have the following weaker version of the conjecture:

Theorem 3. Suppose µ is a tight-frame spectral measure on Rd with a tight-frame
spectrum Λ such that µ ˚ rµ is absolutely continuous in the open set U and has a
smooth, strictly positive density therein. Then supp pδΛ X U Ď t0u.

By a spectral gap a ą 0 for a tempered distribution T, we mean that pT vanishes
on a punctured open ball Bp0, aqzt0u. If a spectral gap does not exist, then we say
that T has a zero spectral gap.

Theorem 4. Let Λ be a countably discrete set and Λ be a tight-frame spectrum for
a singular measure µ. Then the spectral gap of δΛ is zero.

Conjecture  1 and Theorem  4 suggest a strategy of showing that a singular mea-
sure is non-spectral or non-tight-frame spectral.

Proposition 1. Let µ be a singular measure. Suppose that Conjecture  1 holds and
the support of µ˚rµ covers a neighborhood of the origin. Then µ cannot be tight-frame
spectral.
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Proof. Suppose that Λ is a tight-frame spectrum for µ. From Conjecture  1 and the
assumption of the support, a spectral gap for δΛ exists. However, this is a contra-
diction to Theorem  4 since µ is a singular measure. □

Despite Conjecture  1 being open, we are able to adopt the same strategy to prove
Theorem  2 via Theorem  3 . We will show that under the assumption of Theorem

 2 , µ ˚ rµ has a smooth density around a punctured neighborhood of the origin (see
Theorem  7 ). To prove Theorem  1 , we will also adopt the same strategy. However,
we will see that the measure µ ˚ rµ contains a singular part supported on some
lines, and we will need a characterization of distributions supported on the lines to
handle this situation (see Subsection  2.3 ).

We organize the paper as follows: In Section  2 , we will lay out our tools and
previous results required for our study. In Section  3 , we will prove Theorem 3 and
Theorem 4. These two sections laid down the foundation to prove Theorem  1 in
Section  4 and Theorem  2 in Section  5 . Finally, we will discuss some open problems
in Section  6 

2. Preliminaries

We will provide all the basic tools required in this paper. In particular, we will
provide the background on tempered distributions required for the study of the
spectral measures, the properties about distributions supported on 1-dimensional
subspaces and finally a change of variable formula.

2.1. Densities of countably discrete sets. For a countably discrete set Λ Ă Rd,
the upper and lower Beurling densities are defined to be

D`pΛq “ lim sup
rÑ8

sup
xPRd

#pΛX Bpx, rqq

rd
,

and
D´pΛq “ lim inf

rÑ8
inf
xPRd

#pΛX Bpx, rqq

rd
.

Λ has a uniformly bounded density if denspΛq “ D`pΛq “ D´pΛq ă 8. Λ is
called translationally-bounded if

sup
xPRd

#pΛX Bpx, 1qq ă 8.

It is known that Λ is translationally-bounded if and only if D`pΛq ă 8. We also
recall that Λ is called separated if there exists δ ą 0 such that |λ ´ λ1| ě δ for all
distinct λ, λ1 P Λ. We begin with a simple lemma.
Lemma 1. Letψ be a Schwartz function and letΛ be translationally bounded. Then

δΛ ˚ ψpxq “
ÿ

λPΛ

ψpx ´ λq
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is a bounded function in Rd.

Proof. Note that D`pΛq ă 8. Then
#pΛX Bpx, 2nqq ≲ 2nd

where the implicit constant is independent of n and x. As ψ has a rapid decay,
|ψpxq| ≲ p1 ` |x|q´p100dq. Hence,

ÿ

λPΛ

|ψpx ´ λq| “
ÿ

λPBpx,1q

|ψpx ´ λq| `

8
ÿ

n“1

ÿ

λPBpx,2nqzBpx,2n´1q

|ψpx ´ λq|

The first term is clearly bounded independent of x since supxPRd #pΛX Bpx, 1qq ă 8.
For the second sum,

8
ÿ

n“1

ÿ

λPBpx,2nqzBpx,2n´1q

|ψpx ´ λq| ≲
8
ÿ

n“1

2nd

p1 ` 2n´1q100d
≲

8
ÿ

n“1

1
299dn

ă 8.

This completes the proof. □

For Λ Ď Rd of bounded density we write
δΛ “

ÿ

λPΛ

δλ.

This is a tempered distribution which is locally a measure and we can therefore
speak of its Fourier Transform, xδΛ, which is also a tempered distribution, but we
notice that it is not necessarily locally a measure. Readers can refer to [ Rud73 ]
for more detailed theory about distributions. We will also use some deeper results
presented in [ Kna05 ].

For the basic terminology, recall that by the support of a tempered distribution
T, denoted by supppTq, we mean the complement of the largest open set U such that
if φ is a Schwartz function supported on U, then Tpφq “ 0. We need the following
result, which can be found in [ Gab09 , Lemma 4.5] and [ Kol00 , Theorem 5] (see
also [  Kol00 , Theorem 7]).
Lemma 2. Let Λ be translationally-bounded.

(1) Suppose that for some τ ą 0,
suppppδΛq X Bp0, τq “ t0u.

Then pδΛ “ aδ0 in Bp0, τq for some a ě 0
(2) Suppose that pδΛ is a measure in a neighborhood of 0. Then pδΛpt0uq “ denspΛq.

Around 2010, Gabardo initiated a series of general study on Beurling densities
with bounds of the convolutional inequality of the form δΛ ˚ f [ Gab12 ,  Gab13 ]. In
particular, among many other results he proved, we need the following:
Theorem 5. [ Gab13 , Proposition 3, Theorem 1 and Corollary 3]
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(1) D`pΛq ă 8 if and only if Λ is translationally-bounded.
(2) Let 0 ď f P L1pRdq. Suppose that there exists C ą 0 such that δΛ ˚ f pxq ď C for

almost all x P Rd. Then

D`pΛq ¨

ˆ
ż

f pxq dx
˙

ď C.

2.2. Density properties of tight-frame spectrum. Suppose µ is a probability
measure on Rd which is spectral with Λ Ď Rd being a spectrum. By a well-known
result in [ JP98 ], this is equivalent to
(6) |pµ|2 ˚ δΛpxq “

ÿ

λPΛ

|pµ|
2
px ´ λq “ 1,

for all x P Rd. Note that a spectrum Λ must be separated by the continuity of pµ,
pµp0q “ 1 and pµpλ ´ λ1q “ 0 for distinct λ, λ1 P Λ. This also implies that Λ must be
translationally bounded.

If |pµ|
2

P L1pR2q, then µ is an absolutely continuous measure with a density in
L2pRdq. On the other hand, if the support of µ has Lebesgue measure 0, then

ş

|pµ|
2

“

`8. The following proposition shows that the density of Λ must be zero.
Proposition 2. Suppose that µ is a singular spectral measure with a tight-frame
spectrum Λ. Then the density of Λ is zero. i.e. D`pΛq “ 0.

Proof. In [ HLL13 ], it was proved that ifΛ is a spectrum of µwe have that D´pΛq “ 0.
However, to show that it has density zero, we need to show a stronger statement
that D`pΛq “ 0. 

1
 

To prove our conclusion. We first notice that |pµ|
2
˚δΛ “ A. Let fn “ |pµ|

2
¨1Bnp0q which

is in L1 since |pµ| ď 1. Since fn ď |pµ|
2 we have fn ˚δΛ ď A. By Theorem  5 , we conclude

that D`pΛq ¨
ş

fn ď A. Since
ş

fn Ñ
ş

|pµ|
2

“ `8, it follows that D`pΛq “ 0. □

Proposition 3. Suppose that µ admits a tight frame of exponentials with tight-
frame spectrum Λ. Then Λ is translationally bounded.

Proof. The previous proposition already showed that D`pΛq “ 0 and hence trans-
lationally bounded by Theorem  5 (1). Suppose that µ is absolutely continuous with
respect to the Lebesgue measure, the fact that µ admits a tight frame of exponen-
tials with tight-frame spectrumΛ implies that we have |pµ|2 ˚δΛpxq “ A. By Theorem

 5 (2), D`pΛq ă 8. □

2.3. Distributions supported on straight lines. Theorem  3 requires µ ˚ rµ to
have a smooth density. This is useful if µ is supported on a smooth curve. How-
ever, this is not the case for measures supported on closed polygonal lines. In this
subsection, we will prove a lemma about distributions supported on a straight line.

1A sketch of this proof was first shown to the second-named author by J.P Gabardo back in 2012.
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Lemma 3. Suppose F P L8pR2q and T “ pF, a tempered distribution, has supp T Ď

Rˆ t0u. Then
(a) there exists a distribution rT on R such that for any h P SpR2q we have

Tphq “ rTphp¨, 0qq, and

(b) F does not depend on x2.

Proof. We can write [  Kna05 , Problem 5.6.10]

(7) Tphq “

J
ÿ

j“0

T jpB0, jh|x2“0q

for any Schwartz function h on R2. Here T j are tempered distributions on R and J
is a finite number. To prove the Lemma it suffices to show that J “ 0.

Let ϕ be a smooth compactly supported function of integral 1 and write

ϕϵpx1, x2q “ ϕpx1, x2{ϵq,

which implies
xϕϵpξ1, ξ2q “ ϵpϕpξ1, ϵξ2q.

We have

(8)
ˇ

ˇTpϕϵq
ˇ

ˇ “

ˇ

ˇ

ˇFpxϕϵq
ˇ

ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ż

R2
Fxϕϵ

ˇ

ˇ

ˇ

ˇ

ă }F}8

ˇ

ˇϕp0q
ˇ

ˇ,

independent of ϵ.
Using ( 7 ) and the fact that

B0, j
`

ϕϵpx1, x2q
˘

“ ϵ´ jpB0, jϕqpx1, x2{ϵq

we get

Tpϕϵq “

J
ÿ

j“0

ϵ´ jT jppB0, jϕqpx1, 0qq.

Assume now that J ą 0 and BJTJ , 0 (otherwise the term does not exist) and choose
a Schwartz function ϕ for which TJppB0, jϕqpx1, 0qq , 0. It follows that as ϵ Ñ 0` the
quantity

ˇ

ˇTpϕϵq
ˇ

ˇ grows as ϵ´J, which contradicts ( 8 ), and concludes the proof of (a).
To prove (b) it is enough to show that τp0,δqF “ F, where the translation operator

τh acts on a distribution S as follows:

pτph1,h2qSqpϕpx1, x2qq “ Spϕpx1 ´ h1, x2 ´ h2q.
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From part (a) we have
{τp0,δqFphq “ pe2πiδξ2

pFqphq (translation becomes modulation)
“ pFpe2πiδξ2hpξ1, ξ2qq

“ rTphpξ1, 0qq

“ pFphq.

By Fourier uniqueness we thus conclude that τp0,δqF “ F. □

2.4. A change of variable formula. Let F : Rd Ñ Rd be a Lipschitz function. The
Jacobian of F is defined almost everywhere as usual and will be denoted by JF. We
need the following change of variable formula in geometric measure theory, which
is known as the area formula (see [ EG92 , §3.3.3]).

Theorem 6. Let F : Rd Ñ Rd be a Lipschitz function. Then for all g P L1pRdq.
ż

gpxq|JFpxq| dx “

ż

¨

˝

ÿ

xPF´1tuu

gpxq

˛

‚ du

In particular, If F is a bijective function, we have the change-of-variable formula
of the following forms:

(9)
ż

gpFpxqq|JFpxq| dx “

ż

gpuq du

and

(10)
ż

gpFpxqq dx “

ż

gpuq|JFpF´1puqq|´1 du.

( 9 ) is our usual change of variable formula, which can be seen from the area for-
mula. (  10 ) follows from (  9 ) by noting that |JF|´1|JF| “ 1.

3. Proofs of Theorems  3 and  4 

We will give the proof for Theorem  3 and  4 in the introduction. Combined with
the preliminary tools, they form the basic framework to the proof of Theorem  1 and

 2 

Proof of Theorem  3 . Let ψ be a smooth function of compact support in U and define
h “ ψ ¨ pµ ˚ rµq, which is smooth everywhere by our assumption. Then qh “ qψ ˚ |pµ|

2 so
qh ˚ δΛ “ qψ ˚ |pµ|

2
˚ δΛ “ qψ ˚ 1 “ ψp0q.

It follows that h ¨ pδΛ “ ψp0qδ0 which implies that

supp pδΛ X th , 0u Ď t0u.
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Since th , 0u “ tψ , 0u and the latter set can be taken to be an open neighborhood
of any point in U the desired inclusion follows. □

Proof of Theorem  4 . . We argue by contradiction. Suppose that Λ is a tight-frame
spectrum for some singular measure µ and δΛ has a spectral gap. Then there exists
an open set U such that

(11) supp pδΛ X U Ď t0u.

Note that a spectrum Λ must be translationally bounded. By Lemma  2 (1) and
equation (  11 ), we have pδΛ “ aδ0 in Bp0, τq. This shows that pδΛ is locally a measure.
Lemma  2 (2) implies that a “ dens pΛq and this is equal to zero by Proposition  2 .
Hence, pδΛ is locally zero around the origin.

pδΛ

0
ϕ

Figure 4. A test function ϕ near the origin with
ş

ϕ ą 0 leads to a
contradiction in the proof of Theorem  4 .

However, this contradicts the fact that δΛ is a nonnegative measure. Indeed take
a smooth function ϕ, with

ş

ϕ ą 0, compactly supported in a sufficiently small neigh-
borhood of the origin (see Fig.  4 ). Then we have pδΛpϕq “ 0. On the other hand,
pδΛpϕq “ δΛppϕq “

ř

λPΛ
pϕpλq ě pϕp0q ą 0, a contradiction. □

We also notice that Theorem  4 can also be deduced from a result in [  LO15 , Propo-
sition 4].

4. Non-spectrality of collections of line segments

4.1. Geometric setup. We need to set up some notation for our discussions. Let
v and w be two linearly independent vectors in R2. The parallelogram generated
by v and w will be denoted by

Qv,w “ ttv ` sw : t, s P r0, 1su.
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For a given x0 P R2, the line segment beginning with x0 in the direction of v is given
by

Lx0,v “ tx0 ` tv : t P r0, 1su.

We will endow Lx0,v with the 1-dimensional Hausdorff measure µ given by

(12)
ż

f pxq dµpxq “

ż 1

0
f px0 ` tvq dt

for all integrable functions f .

Lemma 4. Let µ, ν be the line measure supported respectively on the line x0 ` tv and
y0 ` tw, with t P r0, 1s, given by (  12 ).

(1) Suppose that v and w are not parallel. Then µ ˚ rν is, up to a constant, the
2-dimensional Lebesgue measure supported on x0 ´ y0 ` Qv,´w.

(2) Suppose that v and w are parallel and write w “ av. Then µ ˚ rν is supported
on the line tpx0 ´ y0q ` tv : t P Ru with a continuous density with respect to
the one-dimensional Hausdorff measure on the line.

Proof. (1). By the definition of convolution and (  12 ),
ż

f dpµ ˚ rνq “

"
f px ´ yqdµpxqdνpyq

“

ż 1

0

ż 1

0
f px0 ´ y0 ` tv ´ swq dtds.

Applying the change of variable formula (  10 ) we see that the above is equal to

c´1
ż

f puqdu, where c “ det pv,´wq , 0.

By checking f “ 1E, we see that µ ˚ rνpEq ą 0 if and only if E Ă x0 ´ y0 ` Qv,´w, and
it is equal to c´1 times the Lebesgue measure of E whenever E is a subset of the
parallelogram. This shows (1).
(2). In a similar calculation, if w “ av,

ż

f dpµ ˚ rνq “

"
f px ´ yqdµpxqdνpyq

“

ż 1

0

ż 1

0
f px0 ´ y0 ` pt ´ asqvq dtds.

Checking with characteristic functions, the measure is supported on the line
Lx0´y0´av,p1`aqv. We now compute its density. Letting gpxq “ f px0 ´ y0 ` xvq and ma to
be the Lebesgue measure on r0, as, we see that the above integral can be rewritten
as

ż 1

0

ż 1

0
gpt ´ asq dtds “

ż

g dm1 ˚ ma.

As m1 ˚ ma has a continuous density, the conclusion of (2) follows. □
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In the following, a closed half-plane H in R2 is the set tx P R2 : xu, xy ě 0u for
some vector u , 0.
Lemma 5. Let N ě 3 and let v1, ¨ ¨ ¨ ,vN be non-zero vectors such that there does not
exist a closed half-plane H such that vi P H for all 1 ď i ď N. Then

ď

1ďi, jďN

Qvi,v j

covers an open set containing the origin.

Proof. We will prove it by induction on N. First, we prove the case when N “ 3.
Let v1,v2,v3 be three non-zero vectors. By our assumption, none of the two vectors
can be parallel since otherwise, it will be contained in the same half-plane. Taking
v1,v2. Then they are linearly independent and

v3 P ttv1 ` sv2 : t, s ă 0u.

Otherwise, v1,v2,v3 will lie on the same half-plane. Now, it is a routine check that
the parallelograms these three vectors generated cover a neighborhood of origin.

Suppose that the statement is true for N ´ 1. We now prove it also holds for N.
Indeed, given non-zero vectors v1, ¨ ¨ ¨ ,vN. Suppose that the first N ´ 1 vectors does
not lie on any half plane. Then we can apply induction hypothesis to obtain our
desired conclusion. Thus, we assume that the first N ´ 1 vectors lies in some half-
plane. By a rotation, we can assume that the half-plane is y ě 0 and assume that
the vectors v1, ¨ ¨ ¨ ,vN´1 are arranged in anticlockwise directions from the positive
x-axis.

Case (1). Suppose that the angle between v1 and vN´1 is strictly less than π.
Then all vi, i “ 2, ¨ ¨ ¨ N ´ 2 will lies in the quadrant ttv1 ` sv2 : t, s ě 0u. Hence,

vN P ttv1 ` svN´1 : t, s ă 0u.

Otherwise, all vectors will lie in the same half plane. Then we consider the three
vectors v1,vN´1,vN and apply the case for three vectors, we conclude that Qv1,vN´1 Y

QvN´1,vN Y QvN ,vN covers a neighborhood of the origin.
Case (2). Suppose that the angle between v1 and vN´1 is π. In this case, vN must

belong to y ă 0. We can also find v j for some 1 ă j ă N ´ 1 such that v j lies in
the plane y ą 0. Hence, the parallelograms generated by v1,v j,vN´1,vN provides a
covering of the neighborhood of the origin. This completes the whole proof.

□

Alternatively, we notice that the assumption about the half-plane is equivalent to
0 being in the convex hull of the points. After finishing the proof of three vectors, by
the Caratheodory’s theorem in convex geometry, 0 must belong to the convex hull of
three of the vectors, and since the union in this lemma contains the corresponding
union for the 3 vectors, we conclude the desired result.
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4.2. Closed polygonal lines. Let v1, ¨ ¨ ¨ ,vN be N non-zero vectors in R2 such that
N
ÿ

i“1

vi “ 0.

Since we can combine two adjacent parallel vectors together, we may assume with-
out loss of generality that successive vi are not parallel. Let x0 “ 0, xi “ v1 ` ¨ ¨ ¨ ` vi.
Define the line

Li “ txi´1 ` tvi : t P r0, 1su, i “ 1, ¨ ¨ ¨ ,N.
These line segments form a closed polygonal curve (which may cross itself). Endow
each Li with Lebesgue measure µi so that

ż

f pxqdµipxq “

ż 1

0
f pxi´1 ` tviq dt.

Define the measure on the closed polygonal line

µ “
1
N

N
ÿ

i“1

µi.

Let Li :“ t´vit : t ě 0u be the half-line. Note that the vectors vi and v j may be in
the same parallel vectors. Li “ L j is the same if and only if vi “ av j for some a ą 0.
Let M be the number of all these distinct half-lines. Define also

Wi :“ ttvi : t P Ru.

Lemma 6. Let µ be the measure defined above. Then there exists a bounded open
neighborhood of the origin U such that U is divided into M regions by the half-lines
Li, i “ 1, ¨ ¨ ¨ ,M, and

µ ˚ rµ “ Fpxq ` ν1 ` ¨ ¨ ¨ ` νM

where

(1) νi is a singular measure compactly supported on the subspace Wi with 0 is
in the support; and

(2) F is a piecewise constant function, which is a constant in each of the regions.

Proof. First we know that

µ ˚ rµ “
1

N2

N
ÿ

i“1

µi ˚ rµi `
1

N2

ÿ

1ďi, jďN

µi ˚ rµ j.

By Lemma  4 (2), µi ˚ rµi is a singular measure supported on the subspaceWi with 0
is in the support. This gives the measure νi.

We look at µi ˚ rµ j for i , j. In particular, let us consider j “ i ` 1 in which the
vectors vi,vi`1 are not parallel. By Lemma  4 (1), µi ˚ rµi`1 is a constant function on

xi´1 ´ xi ` Qvi,´vi`1 “ Q´vi,´vi`1 ,
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where the last set equality follows from the definition of xi. We notice that as the
sum of ´vi is a zero vector, t´viu

N
i“1 cannot lie on the same half-plane. By Lemma  5 ,

the union of Q´vi,´v j covers a neighborhood of the origin, denoted by U. As in each
region determined by the lines Li, it is covered by finitely many Q´vi,´v j. It must
therefore be a constant function. □

Proof of Theorem  1 (1). We are now ready to show that µ cannot be a tight-frame
spectral measure. We consider the open neighborhood U in Lemma  6 . Away from
the subspacesWi, µ ˚ rµ is a constant function. By Theorem  3 ,

supp pδΛ X U Ď

N
ď

i“1

Wi.

Claim: pδΛ has no support on allWi except possibly at the origin.

To see this claim, we fix a subspaceWi and by a rotation, we may assume that
Wi is the x-axis. By taking the function f P L2pµq so that f px, 0q “ e2πtx and be equal
to 0 on the other sides, and applying the Parseval’s identity, we obtain that

ÿ

λ“pλ1,λ2qPΛ

ˇ

ˇ

ˇ

z1r0,1s

ˇ

ˇ

ˇ

2
pt ´ λ1q “ N.

This tiling condition implies that Λ1 “ π1Λ (the projection of Λ onto the first axis,
a multiset) has density N.

Let ϵ ą 0 be sufficiently small and take a smooth ϕ supported in an ϵ-disk around
the origin. Define ψpx1, x2q “ ϕppx1, x2q ´ pϵ, 0qq. The claim will follow if we can show
that ψxδΛ is the zero distribution. Suppose it is not, so that its inverse Fourier
transform F “ qψ ˚ δΛ is a non-zero bounded function on R2 since qψ is a Schwartz
function and Λ is translationally bounded (see Lemma  1 ).

Since F is a complex function that we assume not to be identically 0 there is no loss
of generality to assume that Re Fpx1, 0q ě c ą 0 for x1 P E Ď p´M,Mq, some bounded
measurable subset of R of positive measure. By Lemma  3 (b), F is constant in x2.
Then

ş

EˆR Re F “ `8. We have

`8 “

ż

EˆR

Re F “

ż

EˆR

|Re F| ď

ż

EˆR

|F|.

Expanding out the definition of F, this implies that
ż

EˆR

|F| ď

ż ż

p´M,MqˆR

ÿ

pλ1,λ2qPΛ

| qψpx1 ´ λ1, x2 ´ λ2q|dx1dx2.
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Recall that Λ1 “ π1pΛq and we define hpx1q “
ş

R | qψpx1, yq|dy. Then using the trans-
latioal invariance of Lebesgue measure in the x2 coordinates,

ż ż

p´M,MqˆR

ÿ

pλ1,λ2qPΛ

| qψpx1 ´ λ1, x2 ´ λ2q|dx1dx2

“

ż

p´M,Mq

ÿ

λ1PΛ1

|hpx1 ´ λ1q|dx1

Finally, notice that h is a Schwartz function and Λ1 has a translationally bounded,
so

ř

λ1PΛ1
|hpx1 ´ λ1q| is a bounded function with some bound C ă 8 (by Lemma  1 ).

This shows that the above integral is at most 2CM. This is a contradiction and this
justifies the claim.

With the claim justified, we can conclude that supp pδΛX U Ď t0u. Hence, δΛ has a
spectral gap. This contradicts Theorem  4 . Hence, µ cannot be a spectral measure
and this completes the proof. □

4.3. Line segments from the same points. We will prove Theorem  1 (2) in this
subsection. Fix x0 P R2 and let v1, ¨ ¨ ¨ ,vN be non-zero vectors. We consider the line
segments

Li “ tx0 ` tvi : t P r0, 1su

and µi is the Lebesgue measure on Li. Theorem  1 (2) requires us to show that the
measure µ “ 1

N

řN
i“1 µi is not a spectral measure. The proof follows from the same

strategy as in Theorem  1 (1).

Lemma 7. Let v1,v2,v3 be non-zero vectors such that either

(1) v3 “ av1 for some a ă 0 and v1 and v2 are not parallel or
(2) they are not pairwise parallel,

Then
ď

1ďi, jď3

Qvi,´v j

covers an open set containing the origin and the interior of all Qvi,´v j are pairwise
disjoint.

Proof. We use v1 and v2 to span R2. It divides R2 into 4 quadrants. We notice that
Qv1,´v2 and Qv2,´v1 already cover the first and the third quadrant around the origin.
If v3 “ av1 for some a ă 0, then Qv2,´v3 and Qv3,´v2 cover the second and the fourth
quadrants. Hence, their union covers a neighborhood of the origin and they are
pairwise disjoint. This proves the first case.

In the second case, we subdivide into four cases according to v3 lying strictly
inside each quadrant. By a standard check, the conclusion also holds. □
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Proof of Theorem  1 (2). Suppose that the union of lines contains three non-parallel
lines from x0 or two parallel vectors in opposite directions and the last one non-
parallel. Suppose that this measure is a spectral measure with a spectrum Λ Ă R2.
By restricting to the three lines generated by v1,v2,v3, we consider ρ “ 1

3pµ1`µ2`µ3q

where µi is the measure supported on the line segment tx0 ` tvi : t P r0, 1su. As Λ is
a spectrum for µ, considering only functions supported on these three lines,

ÿ

λPΛ

ˇ

ˇ

ˇ

ˇ

ż

f pxqe´2πiλ¨xdρpxq

ˇ

ˇ

ˇ

ˇ

2

“
N2

32 } f }2
L2pρq

.

By taking f “ e2πiξ¨x, we have δΛ ˚ |pρ|2 “ w, where w “ N2{9. We now compute

ρ ˚ rρ “
1
3

N
ÿ

i“1

ρi ˚ rρi `
1
9

ÿ

1ďi, jď3

ρi ˚ rρ j.

By Lemma  4 (2), ρi ˚ rρi is a singular measure supported on the subspaceWi “ ttvi :
t P Ru with 0 in the support. Using Lemma  7 , the support of

ř

1ďi, jď3 ρi ˚ rρ j is exactly
ď

1ďi, jď3

Qvi,´v j ,

and the measure ρi ˚ rρ j is absolutely continuous with a constant density on each
Qvi,´v j. Hence, Using Theorem  3 , we conclude that in an open set U containing 0

suppxδΛ X U Ă t0u YW1 YW2 YW3.

We see that the claim in the proof of Theorem  1 (1) in the previous subsection works
analogously here. We conclude that suppxδΛXU Ă t0u. This leads to a contradiction
to Theorem  4 as we now have a spectral gap for δΛ. □

4.4. Two particular cases of shapes and their µ ˚ rµ measure. It is also in-
structive to exhibit one case where our technique does not apply and the measure
is indeed spectral. It is the “L-shape”, shown in Fig.  5 .

The measure µ ˚ rµ when µ is arc-length on the L-shape, is supported on the
shaded area in Fig.  5 and it also has a singular part supported on the two line
segments from p´1, 0q to p1, 0q and from p0,´1q to p0, 1). Thus µ ˚ rµ does not cover a
neighborhood of the origin and the proof of Theorem  1 does not apply.

Having seen the measure µ ˚ rµ for the L-shape we can easily see from this that
the corresponding convolution measure for the Π-shape of Fig.  2 (the polygonal
line joining p0, 0q to p0, 1q to p1, 1q to p1, 0q) has a smooth part supported on the open
set that we get if we remove the coordinate axes from p´1, 1q2 plus a singular part
supported on the same two line segments as the L-shape, namely the line segments
from p´1, 0q to p1, 0q and from p0,´1q to p0, 1). It follows from the same proof as that
of Theorem  1 (1) that the Π-shape is not spectral.
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Figure 5. The “L-shape”, the union of the two line segments from the
origin to p1, 0q and to p0, 1q, is spectral [  LLP21 ].

5. Non-spectrality of Curves

A smooth closed curve is an infinitely differentiable function γ : ra, bs Ñ R2 such
that all derivatives γpnqpaq “ γpnqpbq for all n ě 0. We can always parametrize γ by arc
length so that γ : r0,Ls Ñ R2 be a smooth curve with the arc length parametrization
(L is the arc length of γ). Let n be the unit normal vector so that n is orthogonal of
γ1 and tγ1,nu is of positive orientation. Note that γ2 is parallel to n. The curvature
of γ is defined to be

κpsq “ ˘}γ2psq}

where the sign is determined by whether γ2psq is in same or opposite direction of
n. We say that a curve has positive curvature if its curvature never vanishes. A
consequence of this is that, as the parameter s increases, the tangent vector γ1psq

is always turning in the same direction, either clockwise or counterclockwise. For
more detailed theory about the geometry of curves, readers are invited to consult
[ dC76 ].

In our study of curves, we do not assume the curve is simple (i.e. not self-
intersecting). Suppose that x0 is an intersection point of the curve with itself. We
say that the intersection point x0 is transverse if there exists only finitely many
preimages of x0 under γ and γ1psq , γ1ptq for all distinct s, t such that γpsq “ γptq “ x0.

The arc-length measure of γ is the measure such that
ż

f pxq dµpxq “

ż L

0
f pγptqq dt
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for all continuous functions f in R2. Without loss of generality, by rescaling the
curve, we may assume that L “ 1, so that µ is a probability measure.

(13)
ż

f pxqdpµ ˚ rµqpxq “

ż 1

0

ż 1

0
f pγptq ´ γpsqq dtds

Let the function Γ : r0, 1s2 Ñ R2 be defined by
(14) Γps, tq “ γpsq ´ γptq.

Suppose that γpsq “ pxpsq, ypsqq. Then the Jacobian of Γ can be computed easily as

(15) JΓps, tq “ det
ˆ

x1psq ´x1ptq
y1psq ´y1ptq

˙

“ x1ptqy1psq ´ x1psqy1ptq.

The determinant is non-zero if and only if γ1psq is not parallel to γ1ptq.
Lemma 8. Let γ be a curve with positive curvature. There exists δ0 ą 0 such that
for all intervals I of length less than δ0, Γ is injective on pI ˆ Iqztps, sq : s P Iu.

Proof. Let us partition r0, 1s into intervals of length N´1 for some large N so that
the angle formed by γ1psq and γ1ps1q is less than π

8 for all s, s1 inside an interval of
length N´1. Then for all intervals I “ pa, bq of length δ0 less than p2Nq´1, θpsq is
strictly increasing over I with an angle at most π{4, where θpsq denotes the angle
formed by γ1psq with γ1paq.

By the generalized mean value theorem and the fact that θpsq strictly increasing
over I, for all ps, tq P I ˆ I and s , t, there exists a unique ξ P I, such that γpsq ´ γptq
is in the same direction as γ1pξq. This shows that Γ must be injective. □

Lemma 9. Let γ be a smooth closed curve with positive curvature and let x0 “

γps0q “ γpt0q be a transverse intersection point. Then there exist intervals Is0,t0 “

ps0 ´ δs0,t0 , s0 ` δs0,t0q Q s0 and Js0,t0 “ pt0 ´ δs0,t0 , t0 ` δs0,t0q Q t0 such that Γ is injective on
I ˆ J and the image ΓpIs0,t0 ˆ Js0,t0q covers Bp0, εs0,t0q for some εs0,t0 ą 0.

Proof. As the intersection is transverse, det JΓps0, t0q , 0. It follows that Γ is locally
bijective around ps0, t0q, which is exactly the lemma required. □

Lemma 10. Let γ be a smooth closed curve with positive curvature. Then there
exists ε1 ą 0 such that Γ maps onto Bp0, ε1q.

Proof. Assume the curve γ : r0, 1s Ñ R2 parametrized by arc-length. Because of
the non-zero curvature assumption the unit tangent vector γ1ptq of γ is turning
strictly monotonically counterclockwise when we traverse the curve in one of its two
orientations, say when t goes from 0 to 1. Thus γ1ptq takes all possible orientations
at least once. We also remark that the curvature is bounded by compactness.

Fix a point p “ γpt0q with tangent line T. We may assume that p “ p0, 0q and that
the line T is the x-axis. Let t´1 ă t0 ă t1 be the first points to the left and right of
t0 where the tangent has slope ˘1. Between t´1 and t1 the curve γ is the graph of a
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x´1 x1

y´1

y1

y “ f pxq

Figure 6. A chord of the right length parallel to a given tangent.

function f : rx´1, x1s Ñ R`, where ppt´1q “ px´1, y´1q and ppt1q “ px1, y1q. The upper
and lower bounds on the curvature of γ, given by

κpxq “
| f 2pxq|

´

1 ` | f 1pxq|
2
¯3{2

,

translate to positive upper and lower bounds on f 2, independent of t0 (since | f 1| ď 1).
By the upper bound on f 2 we obtain a lower bound ℓ for |x´1|, x1 independent of t0.
By the lower bound on f 2 we obtain a lower bound of the form | f 1pxq| ě c|x|, with
c independent of t0 and this in turn gives positive lower bound h on y´1 and y1
independent of t0. By looking at the chord of the curve defined by the horizontal
line at height y we obtain that all horizontal chords of length from 0 to 2ℓ (which
is bounded below independent of t0) are realized. This implies that chords of every
orientation and length up to ϵ1 are achievable on the curve γ. □

Theorem 7. Let γ : r0, 1s Ñ R2 be a closed smooth curve of positive curvature and
assume that γ has finitely many self-intersections, all of them transverse. Let µ be
the arc-length measure on γ. Then µ ˚ rµ is absolutely continuous with a smooth
density in a punctured neighborhood of 0 in R2.

Proof. We first note that since the curve is closed and all derivatives agree on the
end-points, we may assume that the domain of the interval is the circle T where 0
and 1 are identified as the same point, so that it is a compact set.

Let δ be the minimum of δ0 in Lemma  8 and all δs0,t0 in Lemma  9 so that the
conclusion for Lemma  8 and  9 holds. Since there are only finitely many transverse
intersection points we have δ ą 0. The union over all t P T of It “ pt ´ δ{4, t ` δ{4q

covers T. By compactness, we can find finitely many points t1, ¨ ¨ ¨ tN so that T is
covered by the union of I j “ pt j ´ δ{4, t j ` δ{4q, for j “ 1, ¨ ¨ ¨ ,N.
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We introduce a partition of unity subordinate to this covering. Namely, we can
find smooth functions φ jě 0, for j “ 1, ¨ ¨ ¨ ,N, such that φ j is supported on I j and

N
ÿ

j“1

φ jptq “ 1, @t P T.

Using (  13 ) and (  14 ) and the partition of unity we obtain

(16)
ż

f pxqdpµ ˚ rµqpxq “

N
ÿ

j“1

N
ÿ

k“1

ż

I j

ż

Ik

f pΓps, tqq φ jpsqφkptq dtds.

Let ε1 ą 0 be such that if γpI jq X γpIkq “ ∅, then the distance between the compact
sets γpI jq, γpIkq satisfies

distpγpI jq, γpIkqq ą ε1 ą 0.

This ε1 ą 0 guarantess that if u P ΓpI j ˆ Ikq and }u} ă ε2, then γpI jq X γpIkq , ∅.
We now define ε be the minimum of all εs0,t0 in Lemma  9 , ε1 defined in Lemma  10 

and ε1 just defined.
Let u P Bp0, εqzt0u. Lemma  10 shows that it is possible to find s, t such that
Γps, tq “ u. We now claim that µ ˚ rµ has a smooth density function at u. This
requires us to show that there exists a smooth function g supported in an open
neighborhood of u such that

ż

f pxqdpµ ˚ rµqpxq “

ż

f pxqgpxqdx

for all continuous functions f supported in that neighborhood. From ( 16 ) and our
definition of ε,

(17)
ż

f pxqdpµ ˚ rµqpxq “
ÿ

tp j,kq:uPΓpI jˆIkqu

ż

I j

ż

Ik

f pΓps, tqq φ jpsqφkptq dtds.

It suffices to show that each of the integrals above can be written as
ş

f puqg j,kpuqdu
for some smooth functions g j,k. There will be three cases:

Case 1: Same interval. I j “ Ik.
Case 2: Adjacent interval. I j X Ik , ∅.
Case 3: Far away interval. I j X Ik “ ∅.

Case 1: Consider the function F : I j ˆ I j ˆ Bp0, εq Ñ R2, defined by
(18) Fps, t, xq “ Γps, tq ´ x.

By Lemma  8 , Γ is injective on I j ˆ I j removing the diagonal for any x. Let ps0, t0q be
such that Γps0, t0q “ u. Then Fps0, t0,uq “ 0. Note that the Jacobian of F with respect
to ps, tq is equal to JΓ, which is not zero at ps0, t0q. By the implicit function theorem,
there exists a smooth function g “ pg1, g2q from a neigborhood of u, denoted by
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U, to a neighborhood of ps0, t0q such that s “ g1pxq, t “ g2pxq, ps0, t0q “ gpuq and
Fpgpxq, xq “ 0. By the change of variable formula,

ż

I j

ż

I j

f pΓps, tqq φ jpsqφ jptq dtds(19)

“

ż

f pxq ¨
`

φ jpg1pxqqφ jpg2pxqq|JΓpg1pxq, g2pxqq|´1
˘

dx

whenever f is supported on U. The function in the bracket provides the smooth
density in a neighborhood of u.
Case 2: Suppose that u P ΓpI j ˆ Ikq and I j X Ik , ∅. Then the length of of the
interval I “ I j Y Ik is at most δ ă δ1. Lemma  8 shows that Γ is injective on I j ˆ Ik
removing the diagonal points. We can apply the same argument as in Case 1 on
F : I j ˆ Ik ˆ Bp0, εqzt0u Ñ R2 with the same F in ( 18 ) to obtain a smooth function.
Case 3: Suppose that u P ΓpI j ˆ Ikq and I j X Ik “ ∅. Let us write u “ Γps1, t1q. By our
choice of ε ă ε2, there must be some s0 P I j and t0 P Ik such that γps0q “ γpt0q. By our
choice of δ ă δs0,t0 I j Ă Is0,t0 and Ik Ă Js0,t0, where Is0,t0 and Js0,t0 are defined in Lemma

 9 . Hence, JΓps1, t1q , 0. By the implicit function theorem, there exists g “ pg1, g2q

from a neighborhood of u, denoted by U, to a neighborhood of ps1, t1q such that
Γpgpxqq “ x.

Hence, we have a formula as in ( 19 ), which provides us a smooth density.
Combining three cases and (  17 ), we obtain a smooth density at u P Bp0, εqzt0u.

Since u is arbitrary, we establish a smooth density function for all u P Bp0, εqzt0u. □

The proof of Theorem  7 uses a partition of unity to produce a local density for-
mula. We can also use Area formula (Theorem  6 ) to obtain a global density function.
However, this function has multiple preimages and it is unclear how to show that
the density function is smooth. With Theorem  7 , we are now ready to complete the
proof for Theorem  2 using the same strategy we mentioned in the introduction.

Proof of Theorem  2 . Theorem  7 showed that µ ˚ rµ has a smooth density in a punc-
tured neighborhood of 0. Suppose that the arc length measure µ is tight-frame
spectral. Then Theorem  3 implies that δΛ has a positive spectral gap. However,
µ is a singular measure in R2, so any spectra must have a zero spectral gap by
Theorem  4 . This is a contradiction. Hence, the proof is complete. □

6. Discussions and Open questions.

6.1. Closed smooth curves. This paper answered several natural questions
about the spectrality of boundary of polygons and some other more general cases,
but we did not completely classify all piecewise smooth curves that are spectral.
Concerning closed curves, it is natural to conjecture that
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Conjecture 2. The arc length measure of any piecewise smooth closed curve is not
spectral.

Intuitively, closed curves would not be able to “tile” the space, so it should not be
spectral (if one believes that Fuglede’s conjecture is a guiding principle for deter-
mining the spectrality). In a simlar spirit, A domain with a “hole" inside is known
to be non-spectral [ LM22 , Theorem 3.5]. We can attempt to prove this conjecture
via a similar strategy in this paper. It is not hard to see that the support of µ ˚ rµ
covers a neighborhood of the origin. However, the existence of points with zero cur-
vature or tangential self-intersections will destroy the smoothness of the density
µ ˚ rµ, while a flat line segment will create a singular part for the measure µ ˚ rµ.
Theorem  1 and  2 deal with two extreme cases for Conjecture  2 . We anticipate that
proving the conjecture will require a delicate study to interpolate the two scenar-
ios. On the other hand, if Conjecture  1 is correct, Conjecture  2 is also automatically
true.

6.2. Line spectra only?. There are spectral measures supported on other non-
closed curves. As mentioned in the introduction, the measure µ in (  1 ) with t “ 0,
called the “L-space" in [  LLP21 ], is spectral. Indeed, when projecting to the sub-
space y “ ´x, the measure projects to a Lebesgue measure of a interval of length
2. From there, we obtain a spectrum tpn{2,´n{2q : n P Zu. This observation was
generalized in [  KW25 , Theorem 1.2]. In the same paper, it was also observed that
all spectral measures supported on curves, to the best of our knowledge, are arising
from a line spectrum in the same fashion as the L-space. This leads us naturally
to the following question:
Question 1. Is there a spectral curve in the plane (or collection of curves), under
the arc length measure, that does not have a line spectrum?

Since an absolutely continuous spectral measure must have a constant den-
sity [  DL14 ], the question also asked for a spectral measure such that none of its
projections are a constant multiple of Lebesgue measure on a set that tiles the
line.

We further illustrate this question with two examples.
Example 1. First, consider the arc-length measure on the two line segments
connecting p0, 0q to p1, 0q and p0, 1q to p1, 1q. This measure can be expressed as
1r0,1sdx ˆ δt0,1u. Hence, it has a spectrum Λ “ Zˆ

␣

0, 1
2

(

. See Fig.  7 .
It is however also true that µ has many line spectra. These are necessarily ob-

tained by appropriate lines onto which µ projects to a spectral measure. There are
many such lines (see Fig.  8 ).

For instance, we can project onto the line perpendicular to the line joining points
p0, 1q and p1, 0q, in which case the projected measure is a constant on an interval.
This is of course spectral and one spectrum of this interval (and, therefore of µ as
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1

1

0 1 2

1
2
0

Figure 7. The arc-length measure µ on the two line segments shown
left has the set Zˆ

␣

0, 1
2

(

show on the right as a spectrum

well) is an arithmetic progression on the line of projection of spacing the reciprocal
of the projected interval’s length.

There are more spectra, which are line spectra that can be arbitrarily sparse in
all directions (arbitrary sparseness of spectra is well-known for self-affine fractal
measures [  AL23 ]). Tilting the line of projection we can achieve that the projected
measure will be a constant on the union of two intervals of the same length δ (this
is always the case) and their gap is an integral multiple of δ. Such a set of two in-
tervals tiles the line and is therefore [  Łab01 ] also spectral in the line. Its spectrum,
contained again in the line of projection, will again also be a spectrum of µ. Notice
though that the density of the spectrum is equal to 2δ (the same as the projected
set’s measure) which can be arbitrarily small as δ can take arbitrarily small values.

project

δ

kδ

δ

Figure 8. The arc-length measure µ on the two line segments is pro-
jected, on the left, onto a single line segment, which gives a spectrum
along the direction onto which we project. On the right, the same two
line segments project to another spectral measure, as long as the gap
of the projection is an integer multiple of the projected intervals.
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Example 2. Let us now consider the semi-circle of radius 1. There is a spectral
measure supported on the semi-circle. Namely, the push-forward of the Lebesgue
measure of r´1, 1s:

ż

f dν “
1
2

ż 1

´1
f px,

a

1 ´ x2q dx

It is easy to see that 1
2Zˆ t0u is a spectrum for ν, which is a spectrum inside a line.

However, the natural arc length measure µ is defined as follows:
ż

f dµ “
1
π

ż π

0
f pcos x, sin xq dx.

Note that since the projection of µ onto any subspaces are no longer Lebesgue mea-
sure with constant densities, there is no line spectrum. However, there may still
be a chance for other spectra. Therefore, we ask:

Question 2. Is the arc length measure on the semi-circle a spectral measure?

We remark that the support of µ˚ rµ does not cover the origin in this case (see Fig.
 9 ), so our method in this paper is not directly applicable.

0´1 1
0 1´1

Figure 9. The arc-length measure µ on a semicircle gives rise to a
measure µ ˚ rµ which is supported on the shaded region on the right.
Thus it does not cover a neighborhood of the origin and our method is
not applicable.

6.3. Riesz bases of exponentials. In [  ILLW22 ], we know that all boundary of
polygons (more generally polytopes in Rd) admits a frame of exponentials. In this
paper, we show however that boundaries of polygons are all non-spectral. Frames
are overcomplete in general, an exact frame/ Riesz basis is the frame that cease to
be complete when one element is removed. The natural question is this regard is
now

Question 3. Does the boundary of a polygon admit a Riesz bases of exponentials?

A partial result was obtained in [  LS23 ], in which the boundary of square does
not admit a type of structured exponentials as Riesz bases.
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6.4. Fractal spectral measures. Finally, our paper sheds some light into fractal
spectral measures. Conjecture  1 in the introduction can provide some far reaching
consequence in fractal spectral measures. As a simple example, we can prove the
following.
Proposition 4. Suppose that Conjecture  1 holds. Let µ be a singular measure whose
support has a positive Lebesgue measure. Then µ cannot be a spectral measure.

Proof. Suppose that µ is spectral with a spectrum Λ. Let K be the support of µ,
which has positive Lebesgue measure. Notice that the support µ ˚ rµ is K ´ K, which
contains an open set around the origin by the well-known Steinhaus theorem. If
Conjecture  1 holds, it means that δΛ has a positive spectral gap. However, this is a
contradiction to Theorem  4 . □

A typical example of singular measures without atoms whose support is r0, 1s

is the Bernoulli convolution associated with the golden ratio. It was not an easy
proof in classifying the contraction ratios for which the Bernoulli convolution is a
spectral measure [  HL08 ,  Dai12 ]. Conjecture  1 leads to a much more natural and
general approach to these problems.
Acknowledgments. Chun-Kit Lai is partially supported by the AMS-Simons Re-
search Enhancement Grants for Primarily Undergraduate Institution (PUI) Fac-
ulty.
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