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EXAM

The Fall 2008 exam comprises the material in Chapters 1–10 and 14 that is not
marked by asterisks *. The material in Chapter 14 is background material for the
main text, important only when quoted, EXCEPT the sections on Variance de-
compositions, the EM-algorithm, and Hidden Markov models, which are important
parts of the course. Do know what a score test, likelihood ratio test, chisquare test
etc. are, and how they are carried out.
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1
Segregation

This chapter first introduces a (minimal) amount of information on genetic biology,
and next discusses stochastic models for the process of meiosis.

The biological background discussed in this chapter applies to “most” living or-
ganisms, including plants. However, we are particularly interested in human genetics
and it will be understood that the discussion refers to humans, or other organisms
with the same type of sexual reproduction.

1.1 Biology

The genetic code of an organism is called its genome and can be envisioned as a
long string of “letters”. Physically this string corresponds to a set of DNA-molecules,
which are present (and identical) in every cell of the body. The genome of an in-
dividual is formed at conception and remains the same throughout life, apart from
possible mutations and other aberrations during cell division.

The genome of a human is divided over 46 DNA-molecules, called chromosomes.
These form 23 pairs, 22 of which are called autosomes, the remaining pair being the
sex chromosomes. (See Figure 1.1.) The two chromosomes within a pair are called
homologous. The sex chromosomes of males are coded XY and are very different;
those of females are coded Y Y . One chromosome of each pair originates from the
father, and the other one from the mother. We shall usually assume that the paternal
and maternal origins of the chromosomes are not important for their function.

Chromosomes received their names at the end of the 19th century from the fact
that during cell division they can be observed under the microscope as elongated
molecules that show coloured bands after staining. (See Figure 1.2.) Also visible in
every chromosome is a special location somewhere in the middle, called centromere,
which plays a role in the cell division process. The two pieces of chromosome ex-
tending on either side of the centromere are known as the p-arm and q-arm, and
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Figure 1.1. The 23 pairs of human chromosomes (of a male) neatly coloured and arranged.

loci on chromosomes are still referred to by codes such as “9q8” (meaning band 8
on the q-arm of chromosome 9). The endpoints are called telomeres.

The chemical structure of DNA was discovered in 1959 by Watson and Crick.
DNA consists of two chains of nucleotides arranged in a double-helix structure.
There are four of such nucleotides: Adenine, Citosine, Guanine and Thymine, and
it is the first letters A, C, G, T of their names that are used to describe the genetic
code. The two chains of nucleotides in DNA carry “complementary letters”, always
pairing Adenine to Thymine and Citosine to Guanine, thus forming base pairs. Thus
a chromosome can be represented by a single string of letters A, C, T, G. The human
genome has about 3 × 109 base pairs.

Figure 1.3 gives five views of chromosomes, zooming out from left to right.
The left panel gives a schematic view of the spatial chemical structure of the DNA-
molecule. The spiralling bands are formed by the nucleotides and are connected by
“hydrogen bonds”. The fourth panel shows a pair of chromosomes attached to each
other at a centromere. Chromosomes are very long molecules, and within a cell they
are normally coiled up in tight bundles. Their spatial structure is influenced by their
environment (e.g. surrounding molecules, temperature), and is very important to
their chemical behaviour.

The genome can be viewed as a code that is read off by other molecules, which
next start the chain of biological processes that is the living organism. Actually only
a small part of the DNA code appears to have biological relevance, most of it being
junk-DNA. The most relevant part are relatively short sequences of letters, called
genes, that are spread across the genome. By definition a gene is a subsequence of
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Figure 1.2. One representative of the 23 pairs of human chromosomes aligned on their centromere,
showing their relative sizes and the bands that give them their names.

the genome that is translated into a protein. A protein is a molecule that consists
of a concatenation of amino-acids. According to the central dogma of cell biology to
become active a part of DNA is first transcribed into RNA and next translated into a
protein. RNA is essentially a complementary copy (C becomes G, A becomes T, and
vice versa) of a part of DNA that contains a gene, where important or coding parts,
called exons, are transcribed, and noncoding parts, called introns, are left out. In
turn RNA is translated into a protein, in a mechanistic way, where each triplet of
letters (codon) codes for a particular amino-acid. Because there are 43 = 64 possible
strings of three nucleotides and only 20?? amino-acids, multiple triplets code for the
same protein.

Thus a subsequence of the genome is a gene if it codes for some protein. A
gene may consist of as many as millions of base pairs, but a typical gene has a
length in the order of (tens of) thousands of base pairs. The gene is said to express
its function through the proteins that it codes for. The processes of transcription
and translation are complicated and are influenced by many environmental and
genetic factors (promoter, terminator, transcription factors, regulatory elements,
methylation, splicing, etc.). The relationship between biological function and the
letters coding the gene is therefore far from being one-to-one. However, in (elemen-
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tary) statistical genetics it is customary to use the genetic code as the explanatory
variable, lumping all variations into environmental or “noise” factors.

Because much about the working of a cell is still to be discovered, not all
genes are known. However, based on current knowledge and structural analogies it
is estimated that the human genome has about 25 000 genes.

The genomes of two individuals are the same to a large extent, and it is even
true that the structure of the genomes of different species agrees to a large extent,
as the result of a common evolution. It is the small differences that count.

A different variety of a gene is called an allele. Here the gene is identified by its
location on the genome, its biological function, and its general structure, and the
various alleles differ by single or multiple base pairs. In this course we also use the
word allele for a segment of a single chromosome that represents a gene, and even
for segments that do not correspond to genes.

An individual is called homozygous at a locus if the two alleles (the segments
of the two chromosomes at that locus) are identical, and heterozygous otherwise.

A locus refers to a specific part of the genome, which could be a single letter,
but is more often a segment of a certain type. A causal locus is a locus, typically of a
gene, that plays a role in creating or facilitating a disease or another characteristic.

A marker is a segment of the genome that is not the same for all individu-
als, and of which the location is (typically) known. If some observable characteristic
(phenotype) is linked to a single genetic locus, then this locus may serve as a marker.
Nowadays, markers are typically particular patterns of DNA-letters (RFLPs, VN-
TRs, Microsatellite polymorphisms, SNPs).

A haplotype is a combination of several loci on a single chromosome, often
marker loci or genes, not necessarily adjacent.

The genotype of an individual can refer to the complete genetic make-up (the
set of all pairs of chromosomes), or to a set of specific loci (a pair of alleles or a
pair of haplotypes). It is usually opposed to a phenotype, which is some observable
characteristic of the individual (“blue eyes”, “affection by a disease”, “weight”, etc.).
This difference blurs if the genotype itself is observed.

A single nucleotide polymorphism (SNP, pronounced as “snip”) is a letter on the
genome that is not the same for all individuals. “Not the same for all” is interpreted
in the sense that at least 1 % of the individuals should have a different letter than
the majority. Of the 3 × 109 letters in the human genome only to the order 107

letters are SNPs, meaning that more than 99 % of the human genetic code is the
same across all humans. The remaining 1 % (the SNPs) occur both in the coding
regions (genes) and noncoding regions (junk DNA) of the genome. Two out of three
SNPs involve the replacement of Cytosine by Thymine.

1.1.1 Note on Terminology

In the literature the words “gene”, “allele” and “haplotype” are used in different and
confusing ways. A gene is often viewed as a functional unit sitting somewhere in the
genome. In most organisms the autosomal chromosomes occur in pairs and hence
these functional units are represented by two physical entities, DNA sequences of a
given type. There is no agreement whether to use “gene” for the pair of functionally
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similar DNA sequences or for each of the two copies. In the latter use each cell
contains two genes of each given type. Part of the interest in this course stems from
the fact that the DNA sequence for a given gene, even though largely determined,
varies across the population and among the two copies of a person in a number of
positions. The word allele is used for the possible varieties of the DNA sequence,
but often also for the physical entity itself, when it becomes equivalent to one of
the two uses of the word “gene”. In the latter meaning it is also equivalent to a
“single-locus haplotype”, even though the word haplotype is typically reserved for a
piece of chromosome containing multiple loci of interest. When contemplating this,
keep in mind that the exact meaning of the word “locus” can be context-dependent
as well. A locus is a place on the DNA string. When discussing the action of several
genes, each gene is considered to occupy a locus, but when considering a single gene
a “locus” may well refer to a single nucleotide. A marker is typically a locus at a
known position of which the variety in a given individual can be established (easily)
using current technology.

That DNA is a double-stranded molecule invites to further confusion, but this
fact is actually irrelevant in most of this course.

Figure 1.3. Five views of a chromosome. Pictures (4) and (5) show a chromosome together with a
copy attached at a “centromere”.

1.2 Mendel’s First Law

An individual receives the two chromosomes in each pair from his parents, one
chromosome from the father and one from the mother. The parents themselves have
pairs of chromosomes, of course, but form special cells, called gametes (sperm for
males and ovum for females), which contain only a single copy of each chromosome.
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At conception a sperm cell and ovum unite into a zygote, and thus form a cell with
two copies of each chromosome. This single cell next goes through many stages of
cell division (mitosis) and specialization to form eventually a complete organism.

Thus a parent passes on (or segregates) half of his/her genetic material to a
child. The single chromosome in a gamete is not simply a copy of one of the two
chromosomes of the parent, but consists of segments of both. The biological process
by which a parent forms gametes is called meiosis, and we defer a discussion to
Section 1.3.

Mendel (1822–1884) first studied the segregation of genes systematically, and
formulated two laws.

Mendel’s first law is the Law of Segregation: parents choose the allele they pass
on to their offspring at random from their pair of alleles.

Mendel’s second law is the Law of Assortment: segregation is independent for
different genes.

Our formulation using the word “choose” in the first law is of course biologically
nonsensical.

Mendel induced his laws from studying the phenotypes resulting from exper-
iments with different varieties of peas, and did not have much insight in the un-
derlying biological processes. The law of segregation is still standing up, but the
law of assortment is known to be wrong. Genes that are close together on a single
chromosome are not passed on independently, as pieces of chromosome rather than
single genes are passed on. On the other hand, genes on different chromosomes are
still assumed to segregate independently and hence satisfy also Mendel’s second
law. In this section we consider only single genes, and hence only Mendel’s first law
is relevant. In Section 1.3 we consider the segregation of multiple genes.

We shall always assume that the two parents “act” independently. Under
Mendel’s first law we can then make a segregation table, showing the proportion
of offspring given the genotypes of the parents. These segregation ratios are shown
in the first two columns of Table 1.1 for a single biallelic gene with alleles A and
a. There are 3 possible individuals (AA, Aa and aa) and hence 3 × 3 = 9 possible
ordered pairs of parents (“mating pairs”). As long as we do not consider the sex
chromosomes, we could consider the parents as interchangeable. This is the reason
that the first column of the table shows only the 6 different unordered pairs of
parents. Columns 2–4 show the probabilities of a child having genotype AA, Aa or
aa given the parent pair, computed according to Mendel’s first law.

The remaining columns of the table show the probabilities of phenotypes corre-
sponding to the genotypes under three possible assumptions: dominance, codomi-
nance or recession of the allele A. The underlying assumption is that the gene under
consideration (with possible genotypesAA, Aa and aa) is the sole determinant of the
observable characteristic. The allele A is called dominant if the genotypes AA and
Aa give rise to the same phenotype, marked “A” (of “affected”) in the table, versus
a different phenotype, marked “U” (of “unaffected”) in the table, corresponding to
the genotype aa. The allele A is called recessive if the genotypes Aa and aa give
rise to the same phenotype, marked “U” in the table, versus a different phenotype
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corresponding to genotype AA. The probabilities of the phenotypes in these cases
are given in the columns marked “dom” and “rec”, and can simply be obtained by
adding the appropriate columns of genotypic probabilities together. The remaining
case is that of codominance, in which the three different genotypes give rise to three
different phenotypes, marked “1, 2, 3” in the table. The corresponding columns of
the table are exact copies of the genotypic columns.

mating pair offspring dom codom rec
AA Aa aa A U 1 2 3 A U

AA × AA 1 − − 1 − 1 − − 1 −
AA × Aa 1

2
1
2 − 1 − 1

2
1
2 − 1

2
1
2

AA × aa − 1 − 1 − − 1 − − 1
Aa × Aa 1

4
1
2

1
4

3
4 − 1

4
1
2

1
4

1
4

3
4

Aa × aa − 1
2

1
2

1
2

1
2 − 1

2
1
2 − 1

aa × aa − − 1 − 1 − − 1 − 1

Table 1.1. Six possible genotypes of unordered pairs of parents, the conditional distribution of the
genotypes of their offspring (columns 2–4), and their phenotypes under full penetrance with dominance
(columns 5–6), codominance (columns 7–9) and recession (columns 10–11).

For many genotypes the categories of dominance, recession and codominance
are too simplistic. If A is a disease gene, then some carriers of the genotype AA may
not be affected (incomplete penetrance), whereas some carriers of genotype aa may
be affected (phenocopies). It is then necessary to express the relationship between
genotype and phenotype in probabilities, called penetrances. The simple situations
considered in Table 1.1 correspond to “full penetrance without phenocopies”.

Besides, many diseases are dependent on multiple genes, which may have many
alleles, and there may be environmental influences next to genetic determinants.

1.1 Example (Blood types). The definitions of dominant and recessive alleles
extend to the situation of more than two possible alleles. For example the ABO
locus (on chromosome 9q34) is responsible for the 4 different blood phenotypes.
The locus has 3 possible alleles: A, B, O, yielding 6 unordered genotypes. Allele O
is recessive relative to both A and B, whereas A and B are codominant, as shown
in Table 1.2.

genotype phenotype
OO O
AA,AO A
BB,BO B
AB AB

Table 1.2. Genotypes at the ABO locus and corresponding phenotypes.
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* 1.2.1 Testing Segregation Propertions

We can test the validity of the Table 1.1 (and hence the recessive, dominant or
codominant nature of a single locus model) by several procedures. The general idea
is to sample a certain type of individual (mating pair and/or offspring) based on
their phenotype and next see if their relatives occur in the proportions as predicted
by the table under the various sets of hypotheses.

As an example we shall assume that the allele A is rare, so that the frequency
of the genotype AA can be assumed negligible relative to the (unordered) genotype
Aa.
(i) Suppose that A is dominant, and we take a sample of n couples consisting of an

affected and a healthy parent. BecauseA is rare, almost all of these couples must
be Aa × aa, and hence their offspring should be affected or normal each with
probability 1

2 . The total numberN of affected offspring is binomially distributed
with parameters n and p. We can verify the validity of our assumptions by
testing the null hypothesis H0: p = 1

2 .
(ii) If A is codominant, then we can identify individuals with Aa genotypes from

their observed phenotypes, and can take a random sample of Aa×Aa-couples.
The total number of offspring (N1, N2, N3) of the three possible types in the
sample is multinomially distributed. We test the null hypothesis that the suc-
cess probabilities are (1

4 ,
1
2 ,

1
4 ).

(iii) Suppose that A is recessive, and we take a random sample of unaffected parents
who have at least one affected child. The parents are certain to have genotypes
Aa×Aa. Under our sampling scheme the number N i of affected children in the
ith family is distributed as a binomial variable with parameters si (the family
size) and p conditioned to be positive, i.e.

P (N i = n) =

(
si

n

)
pn(1 − p)s

i−n

1 − (1 − p)si , n = 1, . . . , si.

We test the null hypothesisH0: p = 1
4 . Computation of the maximum likelihood

estimate can be carried out by the EM-algorithm or Fisher scoring.
(iv) Suppose again that A is recessive, and we take a random sample of affected

children. Because A is rare, we may assume that the parents of these children
are all Aa×Aa. We collect the children into families (groups of childeren with
the same parents), and determine for each family the number B of sampled
(and hence affected) children and the total number N of affected children in
the family. We model N as a binomial variable with parameters the family size
s and p, and model B given N as binomial with parameters N and π, where π
is the “ascertainment” probability. We observe N and B only if B > 0. Under
these assumptions

P (N = n,B = b|B > 0) =
P (B = b|N = n)P (N = n)

Pr(B > 0)

=

(
n
b

)
πb(1 − π)n−b

(
s
n

)
pn(1 − p)s−n

1 − (1 − πp)s
.
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We can estimate the pair (p, π) by maximum likelihood. We test the null hy-
pothesis H0: p = 1

4 .

1.3 Genetic Map Distance

Mendel’s second law is the Law of Assortment: segregation is independent for differ-
ent loci. This law is false: genes that are on the same chromosome (called syntenic
versus nonsyntenic) are not passed on independently. To see how they are passed
on we need to study the process of the formation of gametes (sperm and egg cells).
This biological process is called meiosis, involves several steps, and is not the same
for every living organism. The following very schematic description of the process
of meiosis in humans is sufficient for our purpose.

The end-product of meiosis is a gamete (egg or sperm cell) that contains a
single copy (haplotype) of each chromosome. Offspring is then formed by uniting
egg and sperm cells of two parents, thus forming cells with pairs of chromosomes.

Gametes, cells with a single chromosome, are formed from germ cells with two
chromosomes. The first step of meiosis actually goes in the “wrong” direction: each
of the two chromosomes within a cell is duplicated, giving four chromosomes, called
chromatids. The chromatids are two pairs of identical chromosomes, called “sister
pairs”. These four strands of DNA next become attached to each other at certain loci
(the same locus on each chromosome), forming socalled chiasmata. Subsequently the
four strands break apart again, where at each chiasma different strands of the four
original strands may remain bound together, creating crossovers. Thus the resulting
four new strands are reconstituted of pieces of the original four chromatids.

If the two sister pairs are denoted S, S and S′, S′, only chiasmata between an
S and an S′ are counted as true chiasmata in the following, and also only those
that after breaking apart involve an S and an S′ on each side of the chiasma. See
Figures 1.4 and 1.5 for illustration.

Figure 1.5. Schematic view of meiosis, showing the pair of chromosomes of a single parent on the left,
which duplicates and combine into four chromatids on the right. The parent segregates a randomly chosen
chromatid. The second panel shows the two pairs of sister chromatids: red and black are identical and
so are green and blue. Crossovers within these pairs (e.g. black to red) do not count as true crossovers.
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Figure 1.4. Realistic view of meiosis.

If we fix two loci and a single chromosome resulting from a meiosis, then we
say that there is a recombination between the loci if the chromosome at the loci
results from different sister pairs S and S′. This is equivalent to there being an
odd number of crossovers between the two loci, i.e. the chromosome having been
involved in an odd number of chiasmata between the two loci. There may have been
other chiasmata between the two loci in which the chosen chromosome has not been
involved, as the chiasmata refer to the set of four chromatids. A given chromosome
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resulting from a meiosis is typically on average involved in half the chiasma. The
probability of there being a recombination between two loci of the chromosome of
a randomly chosen gamete is known as the recombination fraction.

Warning. The word “between” in “recombination between two loci” may lead
to misunderstanding. There being recombination between two loci or not depends
only on the chromosome (or chromatid) at the two loci, not on what happens at
intermediate loci. In particular, if there is no recombination between two given loci,
then there may well be recombination between two loci that are in the interval
between these given loci.

A stochastic model for the process of meiosis may consist of two parts:
(i) A stochastic process determining the locations of the chiasmata in the four

chromatids.
(ii) A stochastic process indicating for each chiasma which two of the four chro-

matids take part in the chiasma.
The model in (i) is a point process. The model in (ii) needs to pick for each chiasma
one chomatid from each of the two sister pairs (S, S) and (S′, S′).

An almost universally accepted model for (ii) is the model of no chromatid
interference (NCI), which says that the sisters S and S′ are chosen at random and
independently from the pairs of sister, for each chiasma, independently across the
chiasmata and independently from their placements (i).

The most popular model for the placements of the chiasmata (i) is the Poisson
process. Because this tends to give a relatively crude fit to reality, several other
models have been suggested. We shall always adopt NCI for (ii), but discuss some
alternatives to the Poisson model below. All models for the placement of the chias-
mata view the chromatids as lines without structure; in particular they do not refer
to the DNA-sequence.

The assumption of NCI readily leads to Mather’s formula. Fix two loci and
consider the experiment of picking at random one of the four strands resulting from
a meiosis. Mather’s formula concerns the probability of recombination between the
two loci.

1.2 Theorem (Mather’s formula). Under the assumption of no chromatid inter-
ference, the recombination fraction θ between two given loci satisfies θ = 1

2 (1 − p0)
for p0 the probability that there are no chiasmata between the two loci.

Proof. Let N denote the number of chiasmata between the loci. Under NCI the two
chromatids involved in a given chiasma can be considered to be formed by choosing
at random a sister chromatid from each of the pairs S, S and S′, S′. This includes
the chromosome we choose at random from the four strands formed after meiosis
(see the description preceding the lemma) with probability 1

2 . Under NCI the chro-
matids involved in different chiasmata are chosen independently across chiasma. It
follows that given N = n the number K of chiasma in which the chosen chromo-
some is involved is binomially distributed with parameters n and 1

2 . Recombination
between the two loci takes place if and only if K is odd. If n = 0, then K = 0 and
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recombination is impossible. If n > 0, then

P
(
K ∈ {1, 3, 5, . . .}|N = n

)
=

∑

k∈{1,3,5,...}

(
n

k

)

(1
2 )n = 1

2 .

The last equality follows easily by recursion, by conditioning the probability that
in n fair trials we have an odd number of successes on the event that the first n− 1
trials produced an odd or even number of successes.

The unconditional probability that K is odd is obtained by multiplying the
preceding display by P (N = n) and summing over n ≥ 1. This is equal to 1

2P (N ≥
1) = 1

2 (1 − p0).

A consequence of Mather’s formula is that the recombination fraction is con-
tained in the interval [0, 1

2 ]. If the loci are very close together, then the probability
of no chiasmata between them is close to 1 and the recombination fraction is close
to 1

2 (1 − 1) = 0. For distant loci the probability of no chiasmata is close to 0 and
the recombination fraction is close to 1

2 (1 − 0) = 1
2 . Loci at recombination fraction

1/2 are called unlinked.
Mather’s formula can be generalized to the the occurrence of recombination in a

collection of intervals. The joint distribution of recombinations can be characterized
in terms of the “avoidance probabilities” of the chiasmata process. Fix k + 1 loci
ordered along a chromosome, forming k intervals, and let R1, . . . , Rk indicate the
occurrence of crossovers between the endpoints of these intervals in a randomly
chosen chromatid: Rj = 1 if there is a crossover between the endpoints of the jth
interval and Rj = 0 otherwise. Let N1, . . . , Nk denote the numbers of chiasmata in
the k intervals in the set of four chromatids.

1.3 Theorem. Under the assumption of no chromatid interference, for any vector
(r1, . . . , rk) ∈ {0, 1}k,

P (R1 = r1, . . . , Rk = rk) = (1
2 )k

(

1 +
∑

S:S⊂{1,...,k}
S 6=∅

(−1)

∑

j∈S
rjP (Nj = 0 ∀j ∈ S)

)

.

Proof. Let K1, . . . ,Kk be the numbers of chiasmata in the consecutive intervals
in which the chromatid is involved. Under NCI given N1, . . . , Nk these variables
are independent and Kj has a binomial distribution with parameters Nj and 1

2 . A
crossover occurs (Rj = 1) if and only if Kj is odd. As in the proof of Mather’s
formula it follows that P (Kj is odd|Nj) is 1

2 if Nj > 0; it is clearly 0 if Nj = 0. In
other words P (Rj = 1|Nj) = 1

2 (1 − 1Nj=0), which implies that P (Rj = 0|Nj) =
1
2 (1 + 1Nj=0). In view of the conditional independence of the Rj , this implies that

P (R1 = r1, . . . , Rk = rk) = EP (R1 = r1, . . . , Rk = rk|N1, . . . , Nk)

= E
∏

j:rj=1

1
2 (1 − 1Nj=0)

∏

j:rj=0

1
2 (1 + 1Nj=0).

The right side can be rewritten as the right side of the theorem.
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For k = 1 the assertion of the theorem reduces to Mather’s formula. For k = 2
it gives the identities

4P (R1 = 1, R2 = 1) = 1 + P (N1 = 0, N2 = 0) − P (N1 = 0) − P (N2 = 0),

4P (R1 = 1, R2 = 0) = 1 − P (N1 = 0, N2 = 0) − P (N1 = 0) + P (N2 = 0),

4P (R1 = 0, R2 = 1) = 1 − P (N1 = 0, N2 = 0) + P (N1 = 0) − P (N2 = 0),

4P (R1 = 0, R2 = 0) = 1 + P (N1 = 0, N2 = 0) + P (N1 = 0) + P (N2 = 0).

For general k the formula shows how the process of recombinations can be expressed
in the avoidance probabilities of the chiasmata process. A general point process on
(0,∞) can be described both as an ordered sequence of positive random variables
S1 < S2 < · · ·, giving the points or “events” of the process, and as a set of random
variables

(
N(B):B ∈ B

)
giving the numbers of points N(B) = #(i:Si ∈ B) falling

in a (Borel) set B. The avoidance probabilities are by definition the probabilities
P

(
N(B) = 0

)
that a set set B receives no points. Because it can be shown that the

avoidance probabilities determine the complete point process†, it is not surprising
that the recombination probabilities can be expressed in some way in the avoidance
probabilities of the chiasmata process. The theorem makes this concrete.

The genetic map distance between two loci is defined as the expected number
of crossovers between the loci, on a single, randomly chosen chromatid. The unit
of genetic map distance is the Morgan, with the interpretation that a distance of
1 Morgan means an expected number of 1 crossover in a single, randomly chosen
chromatid. The genetic map length of the human male autosomal genome is about
28.5 Morgan and of the human female genome about 43 Morgan. Thus there are
somewhat more crossovers in females than in males, and on the average there are
are about 1-2 crossovers per chromosome.

Because expectations are additive, genetic map distance is a linear distance,
like the distance on the real line: the distance between loci A and C for loci A,B,C
that are physically placed in that order is the sum of the distance between A and B
and the distance between B and C. For a formal proof define KAB, KBC and KAC

to be the number of crossovers on the segments A–B, B–C and A–C. By definition
the genetic map lengths of the three segments are mAB = EKAB, mBC = EKBC

and mAC = EKAC . Additivity: mAC = mAB +mBC follows immediately from the
identity KAC = KAB +KBC .

The chemical structure of DNA causes that genetic map distance is not linearly
related to physical distance, measured in base pairs. For instance, recombination
hotspots are physical areas of the genome where crossovers are more likely to occur.
Correspondingly, there exists a linkage map and a physical map of the genome,
which do no agree. See Figure 1.6. From a modern perspective physical distance is
the more natural scale. The main purpose of genetic map distance appears to be to
translate recombination probabilities into a linear distance.

A definition as an “expected number” of course requires a stochastic model (as
in (i)–(ii)). (An alternative would be to interpret this “expectation” as “empirical

† E.g. Van Lieshout, Markov Point Processes and Their Applications, 2000, Theorem 1.2
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Figure 1.6. Ideogram of chromosome 1 (left), a physical map (middle), and a genetic map (right)
with connections between the physical and genetic map shown by lines crossing the displays. (Source

NCBI map viewer, Homo Sapiens, Build 36, http://www.ncbi.nlm.nih.gov/mapview). The
ideogram shows on the left the classical method of addressing genomic positions in terms of the p- and
q-arms and numbered coloured bands. The STS- and Généthon-maps are given together with rulers
showing position in terms of base pairs (0–240 000 000 bp) and centi-Morgan (0–290 cM), respectively.
Corresponding positions on the rulers are connected by a line.

average”.) The most common model for the locations of the chiasmata is the Poisson
process. We may think of this as started at one end of the chromatids; or we may
think of this as generated in two steps: first determine a total number of chiasmata
for the chromatids according to the Poisson distribution and next distribute this
number of chiasmata randomly uniformly on the chromatids. The Poisson process
must have intensity 2 per Morgan, meaning that the expected number of chiasmata
per Morgan is 2. Since each chromatid is involved on the average in 1

2 the chias-
mata, this gives the desired expected number of 1 crossover per Morgan in a single
chromatid.

Under the Poisson model the probability of no chiasmata between two loci that
are m Morgans apart is equal to e−2m. By Mather’s formula (valid under NCI) this
gives a recombination fraction of

θ = 1
2 (1 − e−2m).

The map m 7→ θ(m) = 1
2 (1 − e−2m) is called the Haldane map function.
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Because an independent binomial thinning of a Poisson process is again a Pois-
son process, under NCI and Haldane’s model the process of crossovers on a single
chromatid (i.e. in a segregated chromosome) is a Poisson process with intensity 1 per
Morgan. The intensity 2 per Morgan is halved, because each chromatid is involved
in a given chiasma with probability half.

Because statistical inference is often phrased in terms of recombination frac-
tions, it is useful to connect recombination fractions and map distance in a simple
way. In general a map function maps the genetic distance into the recombination
fraction between loci. The Haldane map function is the most commonly used map
function, but several other map functions have been suggested. For instance,

θ(m) =

{
1
2 tanh(2m), Kosambi,
1
2

(

1 −
(

1 − m
L

)

e−m(2L−1)/L
)

, Sturt.

The Sturt function tries to correct the fact that in the Haldane model there is a
positive probability of no chiasmata in a chromosome. In the Sturt model L is the
length of the chomosome in Morgans and the process of chiasmata consists of adding
to a Poisson process of intensity (2L − 1)/L a single chiasma placed at a random
location on the chromosome independently of the Poisson model.

1.4 EXERCISE. Give a formal derivation of the Sturt map function, using the
preceding description.

For the Poisson process model the occurrence of crossovers in disjoint inter-
vals is independent, which is not entirely realistic. Other map functions may be
motivated by relaxing this assumption. Given ordered loci A,B,C recombination
takes place in the interval A–C if and only if recombination takes place in exactly
one of the two subintervals A–B and B–C. Therefore, independence of crossovers
occurring in the intervals A–B and B–C implies that the recombination fractions
θAC , θAB, θBC of the three intervals A–C, A–B and B–C satisfy the relationship

θAC = θAB(1 − θBC) + (1 − θAB)θBC = θAB + θBC − 2θABθBC .

Other map functions may be motivated by replacing the 2 in the equation on the
right side by a smaller number 2c for 0 ≤ c ≤ 1. The extreme case c = 0 is known
as interference and corresponds to mutual exclusion of crossovers in the intervals
A–B and B–C. The cases 0 < c < 1 are known as coincidence. If we denote the
genetic lengths of the intervals A–B and B–C by m and d and the map function
by θ, then we obtain

θ(m+ d) = θ(m) + θ(d) − 2c θ(m)θ(d).

A map function must satisfy θ(0) = 0. Recombination fraction and map distance
are comparable at small distances if θ′(0) = 1. Assuming that θ is differentiable
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with θ(0) = 0 and θ′(0) = 1, we readily obtain from the preceding display that
θ′(m) = 1 − 2cθ(m) and hence

θ(m) =
1

2c

(
1 − e−2cm

)
.

The case c = 1 is the Haldane model. Several other map functions can be motivated
by using this formula with c a function that depends on m. For instance, the Carter-
Falconer and Felsenstein models correspond to c = 8θ(m)3 and c = K−2θ(m)(K−
1), respectively.

Such ad-hoc definitions have the difficulty that they may not correspond to
any probability model for the chiasmata process. A more satisfying approach is to
construct a realistic point process model for the chiasmata process and to derive a
map function from this. First we need to give a formal definition of a map function,
given a chiasmata process

(
N(B), B ∈ B

)
. According to Mather’s formula, for any

interval B, the quantity 1
2P

(
N(B) > 0

)
is the recombination fraction over the

interval B. The idea of a map function is to write this as a function of the genetic
length (in Morgan) of the interval B, which is by definition 1

2EN(B). Therefore
we define θ: [0,∞) → [0, 1

2 ] to be the map function corresponding to the chiasmata
process N if, for all (half-open) intervals B,

(1.5) θ
(

1
2EN(B)

)
= 1

2P
(
N(B) > 0

)
.

The existence of such a map function requires that the relationship between the
expected values EN(B) and probabilities P

(
N(B) = 0

)
be one-to-one, if B ranges

over the collection of intervals. This is not true for every chiasmata process N??,
but is true for the examples considered below.

If we would strengthen the requirement, and demand that (1.5) be valid for ev-
ery finite union of disjoint (half-open) intervals, then a map function θ exists only for
the case of count-location processes, described in Example 1.8.‡ This is unfortunate,
because according to Theorem 1.3 the joint distribution of recombinations in a set
of intervals B1, . . . , Bk can be expressed in the probabilities of having no chiasmata
in the unions ∪j∈SBj of subsets of these intervals; equivalently in the probabilities
P

(
N(∪j∈SBj) > 0

)
. It follows that for general chiasmata processes these proba-

bilities cannot be expressed in the map function, but other characteristics of the
chiasmata process are involved.

1.6 EXERCISE. Show that the probability of recombination in both of two adjacent
intervals can be expressed in the map function as 1

2

(
θ(m1) + θ(m2)− θ(m1 +m2)

)
,

where m1 and m2 are the genetic lengths of the intervals. [hint: Write 2P (R1 =
1, R2 = 1) = θ(1

2EN1) + θ(1
2EN2) − 1

2θ
(

1
2 (EN1 + EN2)

)
.]

1.7 Example (Poisson process). The Poisson process N with intensity 2 satisfies
1
2EN(B) = λ(B) and P

(
N(B) > 0

)
= 1−e−2λ(B). Hence the Haldane map function

is indeed the map function of this process according to the preceding definition.

‡ See Evans et al. (1993).
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1.8 Example (Count-location process). Given a probability distributution (pn)
on Z+ and a probability distribution F on an interval I, let a point process N
be defined structurally by first deciding on the total number of points N(I) by a
draw from (pn) and next distributing these N(I) points as the order statistics of a
random sample of size N(I) from F .

Given N(I) = n the number of points N(B) in a set B is distributed as the
random variable

∑n
i=11Xi∈B, for X1, . . . , Xn a random sample from F . It follows

that E
(
N(B)|N(I) = n

)
= nF (B) and hence EN(B) = µF (B), for µ = EN(I).

Given N(I) = n no point falls in B if and only if all n generated points end
up outside B, which happens with probability

(
1−F (B)

)n
. Therefore, by a similar

conditioning argument we find that

P
(
N(B) = 0

)
=

∑

n

pn
(
1 − F (B)

)n
= M

(
1 − F (B)

)
,

for M(s) = EsN(I) the moment generating function of the variable N(I). It follows
that (1.5) holds with map function θ(m) = 1

2M(1 − 2m/µ). Equation (1.5) is true
even for every Borel set B.

The Poisson process is the special case that the total number of points N(I)
possesses a Poisson distribution and F is the uniform distribution on I.

In this model, given the number of points that fall inside in a setB, the locations
of these points are as the order statistics of a random sample from the restriction of
F to B and they are stochastically independent from the number and locations of
the points outside B. This is not considered realistic as a way of modelling possible
interference of the locations of the chiasmata, because one would expect that the
occurrence of chiasmata near the boundary of B would have more influence on
chiasmata inside B than more distant chiasmata.

1.9 EXERCISE. Prove the assertion in the preceding paragraph.

1.10 Example (Renewal processes). A stationary renewal process on [0,∞) is
defined by points at the locations E1, E1+E2, E1+E2+E3, . . ., where E1, E2, E3, . . .
are independent positive random variables, E2, E3, . . . having a distribution F with
finite expectation µ =

∫ ∞
0 xdF (x) and E1 having the distribution F1 with density

(1 − F )/µ. The exceptional distribution of E1 makes the point process stationary
in the sense that the shifted process of counts

(
N(B + h):B ∈ B

)
has the same

distribution as
(
N(B):B ∈ B

)
, for any h > 0. (Because a renewal process is normally

understood to have E1, E2, . . . i.i.d., the present process is actually a delayed renewal
process, which has been made stationary by a special choice of the distribution of
the first event.)

The fact that the distribution of N(B+h) is independent of the shift h, implies
that the mean measure µ(B) = EN(B) is shift-invariant, which implies in turn that
it must be proportional to the Lebesgue measure. The proportionality constant can
be shown to be the inverse µ−1 of the expected time between two events. Thus,
for an interval (a, b] we have EN

(
(a, b]

)
= (b − a)/µ. Because the unit of genetic
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distance is the Morgan, we must have on the average 2 chiasmata per unit, implying
that µ must be 1

2 , whence EN
(
(a, b]

)
= 2(b− a).

There is at least one event in the interval (0, b− a] if and only if the first event
E1 occurs before b−a. Together with the stationarity, this shows that P

(
N

(
(a, b]

)
>

0
)

= P (E1 ≤ b − a) = F1(b − a). Together, these observations show that a map
function exists and is given by θ(m) = 1

2F1(m).

It can be shown[ that any function θ on a finite interval (0, L] with θ(0) = 0,
θ′(0) = 1, θ′ ≥ 0, θ′′ ≤ 0, θ(L) < 1/2 and θ′(L) > 0 arises in this form from some
renewal process. From the relation θ = 1

2F1 and the definition of F1, it is clear that
F can then be recovered from θ through its density f = θ′′.

The Poisson process is the special case that all Ej possess an exponential
distribution with mean 2. A simple extension of the Poisson model that fits the
available data reasonably well is to replace the exponential distribution of E2, E3, . . .
by a (scaled) chisquare distribution, the exponential distribution being the special
case of a chisquare distribution with 2 degrees of freedom. This is known as the
Poisson skip model.

* 1.11 EXERCISE. Find P
(
N(B) = 0

)
for B the union of two disjoint intervals and

N a stationary renewal process.

1.12 EXERCISE. Show that any stationary point process permits a map function.

1.3.1 Simplified View of Meiosis

For most of our purposes it is not necessary to consider the true biological mech-
anism of meiosis and the following simplistic (but biologically unrealistic) view
suffices. We describe it in silly language that we shall employ often in the following.
A parent lines up the two members of a pair of homologous chromosomes, cuts
these chromosomes at a number of places, and recombines the pieces into two new
chromosomes by gluing the pieces together, alternating the pieces from the two
chromosomes (taking one part from the first chromosome, a second part from the
other chromosome, a third part from the first chromosome, etc.). The cut points are
called crossovers. Finally, the parent chooses at random one of the two reconstituted
chromosomes and passes this on to the offspring.

If we thus eliminate the duplication of the chromatids, the expected number
of chiasmata (which are now identical to crossovers) should be reduced to 1 per
Morgan.

With this simplified view we loose the relationship between the chiasmata and
crossover processes, which is a random thinning under NCI. Because a random
thinning of a Poisson process is a Poisson process, nothing is lost under Haldane’s
model. A randomly thinned renewal process is also a renewal process, but with

[ Zhao and Speed (1996), Genetics 142, 1369–1377.
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Figure 1.7. Simplified (unrealistic) view of meiosis. The two chromosomes of a single parent on the
left cross to produce two mixed chromosomes on the right. The parent segregates a randomly chosen
chromosome from the pair on the right.

a renewal distribution of a different shape, making the relationship a bit more
complicated.

1.4 Inheritance Indicators

The formation of a child (or zygote) involves two meioses, one paternal and one
maternal. In this section we define two processes of inheritance indicators, which
provide useful notation to describe the crossover processes of the two meioses. First
for a given locus u we define two indicators Pu and Mu by

Pu =

{
0, if the child’s paternal allele is grandpaternal,
1, if the child’s paternal allele is grandmaternal.

Mu =

{
0, if the child’s maternal allele is grandpaternal,
1, if the child’s maternal allele is grandmaternal.

These definitions are visualized in Figure 1.8, which shows a pedigree of two parents
and a child. The father is represented by the square and has genotype (1, 2) at the
given locus; the mother is the circle with genotype (3, 4); and the child has genotype
(1, 3). The genotypes are understood to be ordered by parental origin, with the the
paternal allele (the one that is received from the father) written on the left and
the maternal allele on the right. In the situation of Figure 1.8 both inheritance
indicators Pu and Mu are 0, because the child received the grandpaternal allele (the
left one) from both parents.

The inheritance indicators at multiple loci u1, . . . , uk, ordered by position on
the genome, can be collected together into stochastic processes Pu1 , Pu2 , . . . , Puk

and Mu1 ,Mu2 , . . . ,Muk
. As the two meioses are assumed independent, these pro-

cesses are independent. On the other hand, the variables within the two processes
are in general dependent. In fact, two given indicators Pui and Puj are either equal,
Pui = Puj , or satisfy Pui = 1 − Puj , where the two possibilities correspond to
the nonoccurrence or occurrence of a recombination between loci ui and uj in the
paternal meiosis. If the loci are very far apart or on different chromosomes, then
recombination occurs with probability 1

2 and the two variables Pui and Puj are
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1|2 3|4

1|3
P=0|M=0

1

Figure 1.8. Inheritance indicators for a single locus. The two parents have ordered genotypes (1, 2)
and (3, 4), and the child received allele 1 from its father and allele 3 from its mother. Both inheritance
indicators are 0.

independent, but if the two loci are linked the two indicators are dependent. The
dependence can be expressed in the void probabilities of the chiasmata process,
in view of Theorem 1.3. In this section we limit ourselves to the case of the Hal-
dane/Poisson model.

Under the Haldane/Poisson model crossovers occur according to a Poisson pro-
cess with intensity 1 per unit Morgan. Because the occurrence and locations of
events of the Poisson process in disjoint intervals are independent, recombinations
across disjoint adjacent intervals are independent and hence the joint distribution of
P = (Pu1 , Pu2 , . . . , Puk

) can be expressed in the recombination fractions θ1, . . . , θk
between the loci, by multiplying the probabilities of recombination or not. This
yields the formula

P (P = p) = 1
2

k∏

j=2

θ
pj

j (1 − θj)
1−pj , p ∈ {0, 1}k.

For instance, Table 1.3 gives the joint distribution of P = (Pu1 , . . . , Puk
) for k = 3.

For simplicity one often takes the distributions of P and M to be the same, although
the available evidence suggests to use different values for the recombination fractions
for male and female meioses.

In fact, this formula shows that the sequence of variables Pu1 , Pu2 , . . . , Puk

is a discrete time Markov chain (on the state space {0, 1}). A direct way to see
this is to note that given Pu1 , . . . , Puj the next indicator Puj+1 is equal to Puj or
1 − Puj if there is an even or odd number of crossovers in the interval between loci
uj and uj+1, respectively. The latter event is independent of Pu1 , . . . , Puj−1 , as the
latter indicators are completely determined by crossovers to the left of locus uj. The
Markov chain Pu1 , Pu2 , . . . , Puk

is not time-homogeneous. The transition matrix (on
the state space {0, 1}) at locus uj is equal to

(1.13)

(
1 − θj θj
θj 1 − θj

)

,
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p P (P = p)
0, 0, 0 1

2 (1 − θ1)(1 − θ2)
0, 0, 1 1

2 (1 − θ1)θ2
0, 1, 0 1

2θ1(1 − θ2)
0, 1, 1 1

2θ1θ2
1, 0, 0 1

2θ1(1 − θ2)
1, 0, 1 1

2θ1θ2
1, 1, 0 1

2 (1 − θ1)θ2
1, 1, 1 1

2 (1 − θ1)(1 − θ2)

Table 1.3. Joint distribution of the inheritance vector P = (Pu1 , Pu2 , Pu3 ) for three ordered loci
u1–u2–u3 under the Haldane model for the chiasmata process. The parameters θ1 and θ2 are the recom-
bination fractions between the loci u1–u2 and u2–u3, respectively.

where θj is the recombination fraction for the interval between loci j and j + 1.
The initial distribution, and every other marginal distribution, is binomial with
parameters 1 and 1

2 .
The description as a Markov process becomes even more attractive if we think

of the inheritance indicators as processes indexed by a locus u ranging over an
(idealized) continuous genome. Let U ⊂ R be an interval in the real line that
models a chromosome, with the ordinary distance |u1 − u2| understood as genetic
distance in Morgan. The inheritance processes (Pu:u ∈ U) and (Mu:u ∈ U), then
become continuous time Markov processes on the state space {0, 1}. In fact, as a
function of the locus u the process u 7→ Pu switches between its two possible states
0 and 1 at the locations of crossovers in the meiosis. Under the Haldane/Poisson
model these crossovers occur at the events of a Poisson process of intensity 1 (per
Morgan, on a single chromatid). If N is this Poisson process, started at one end of
the chromosome, then Pu takes the values 0 and 1 either if Nu is even and odd,
respectively, or if Nu is odd and even. In the first case I = M mod2 and in the
second it is P = N mod 2 + 1. The distribution of the process u 7→ Pu follows from
the following lemma.

1.14 Lemma. If N is a Poisson process with intensity λ, then the process [N ] =
N mod 2 is a continuous time Markov process with transition function

P
(
[N ]t = 1| [N ]s = 0

)
= P

(
[N ]t = 0| [N ]s = 1

)
= 1

2 (1 − e−2λ|s−t|).

Proof. For s < t the process [N ] changes value across the interval (s, t] if and only
if the process N has an odd number of events in this interval. This happens with
probability

∑

k odd

e−λ(t−s)
(
λ(t− s)

)k

k!
.

This sum can be evaluated as claimed using the equality ex−e−x = 2
∑

k odd x
k/k!,

which is clear from expanding the exponential functions in their power series’.
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The Markov property of [N ] is a consequence of the fact that the Poisson
process has no memory, and that a transition of [N ] in the interval (s, t] depends
only on the events of N in (s, t].

To obtain the distribution of the inheritance processes we choose λ = 1 in the
lemma. The transition probability over an interval of length m in the lemma then
becomes 1

2 (1 − e−2m), in which we recognize the Haldane map function.
Markov processes in continuous time are often specified by their generator

matrix (see Section 14.13). For the inheritance processes this takes the form

(1.15)

(
−1 1

1 −1

)

.

A corresponding schematic view of the process u 7→ Pu is given in Figure 4.3. The
two circles represent the states 0 and 1 and the numbers on the arrows the intensities
of transition between the two states.

1.16 Corollary. Under the Haldane/Poisson model for crossovers the inheritance
processes u 7→ Pu and u 7→Mu are independent stationary continuous time Markov
processes on the state space {0, 1} with transition function as given in Lemma 1.14
with λ = 1 and generator matrix (1.15).

0 1

1

1

Figure 1.9. The two states and transition intensities of the Markov processes u 7→ Pu and u 7→ Mu,
under the Haldane/Poisson model for crossovers.
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Dynamics of Infinite Populations

In this chapter we consider the evolution of populations in a discrete-time frame-
work, where an existing population (of parents) is successively replaced by a new
population (of children). The populations are identified with a set of possible geno-
types and their relative frequencies, and are considered to have infinite size. A
children’s population can then be described by the probability that an arbitrary
child has a certain genotype, a probability that is determined by the likelihoods of
the various parent pairs and the laws of meiosis. The laws of meiosis were described
in Chapter 1, but may be augmented by allowing mutation.

The simplest model for the formation of parent pairs is the union of indepen-
dently and randomly chosen parents. This leads to populations that are in Hardy-
Weinberg and linkage equilibrium, an assumption that underlies many methods of
statistical analysis. We describe this equilibrium in Sections 2.1 to 2.4, which are
sufficient background for most of the remaining chapters of the book. In the other
sections we consider various types of deviations of random mating, such as selection
and assortative mating.

Consideration of infinite rather than finite populations ignores random drift.
This term is used in genetics to indicate that the relative frequency of a genotype in
a finite population of children may deviate from the probability that a random child
is of the particular type. A simple model for random drift is to let the frequencies
of the genotypes in the next population follow a multinomial vector with N trials
and probability vector (pg: g ∈ G), where pg is the probability that a child carries
genotype g. Under this model the expected values of the relative frequencies in the
children’s population are equal to (pg: g ∈ G), but the realized relative frequencies
typically will not. Any realized relative frequencies are possible, although in a big
population with high probability the realized values will be close to (pg: g ∈ G).

Models for the randomness of the dynamics of finite populations are discussed
in Chapter 12. There also the somewhat artificial structure of separated, nonover-
lapping generations is dropped, and evolution is described in continuous time.
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2.1 Mating

Consider a sequence of populations of individuals, the (n+1)th population consisting
of the offspring of the nth population. Identify each individual with a genotype, so
that each population is fully described by the vector of relative frequencies of the
various genotypes. A prime interest is in the evolution of this vector as a function
of generation n.

Assume that the populations are of infinite size and that the (n+1)th popula-
tion arises from the nth by infinitely often and independently creating a single child
according to a fixed chance mechanism. The relative frequencies of the genotypes
in the (n + 1)th population are then the probabilities that a single child possesses
the various genotypes.

The mechanism to create a child consists of choosing a pair of parents, followed
by two meioses, a paternal and a maternal one, which produce two gametes that
unite to a zygote. The meioses are assumed to follow the probability models de-
scribed in Chapter 1, apart from the possible addition of mutation. In most of the
chapter we do not consider mutation, and therefore agree to assume its absence,
unless stated otherwise. Then the dynamics of the sequence of populations are fixed
once it is determined which pairs of parents and with what probabilities produce
offspring.

The simplest assumption is random mating without selection. This entails that
the two parents are independently chosen at random from the population. Here one
could imagine separated populations of mothers and fathers, but for simplicity we
make this distinction only when considering loci on the sex-chromosomes.

Even though random mating underlies most studies in quantitative genetics,
it may fail for many reasons. Under assortative mating individuals choose their
mates based on certain phenotypes. Given population structure individuals may
mate within subpopulations, with possible migrations between the subpopulations.
By selection certain potential parent pairs may have less chance of being formed or
of producing offspring. We consider these deviations after describing the basics of
plain random mating.

2.2 Hardy-Weinberg Equilibrium

A population is said to be in Hardy-Weinberg equilibrium (HW) at a given locus
if the two alleles at this locus of a randomly chosen person from the population
are stochastically independent and identically distributed. More precisely, if there
are k possible alleles A1, . . . , Ak at the locus, which occur with relative frequencies
p1, . . . , pk in the population, then the ordered pair of alleles at the given locus of a
randomly chosen person is (Ai, Aj) with probability pipj .

Instead of ordered genotypes (Ai, Aj), we can also consider unordered geno-
types, which are sets {Ai, Aj} of two alleles. This would introduce factors 2
in the Hardy-Weinberg frequencies. If Ai 6= Aj , then the unordered genotype
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{Ai, Aj} results from both AiAj and AjAi and hence has Hardy-Weinberg fre-
quency pipj + pjpi = 2pipj . On the other hand, the unordered genotype {Ai, Ai}
corresponds uniquely to the ordered genotype AiAi and has Hardy-Weinberg fre-
quency pipi = p2

i . Generally speaking, ordered genotypes are conceptually simpler,
but unordered genotypes are sometimes attractive, because there are fewer of them.
Moreover, even though we can always conceptually order the genotypes, for instance
by parental origin (with Ai segregated from the father and Aj by the mother), typ-
ically only unordered genotypes are observable.

It is a common assumption in statistical inference that a population is in Hardy-
Weinberg equilibrium. This assumption can be defended by the fact that a popula-
tion that is possibly in disequilibrium reaches Hardy-Weinberg equilibrium in one
round of random mating. We assume that there is no mutation.

2.1 Lemma. A population of children formed by random mating from an arbi-
trary population of parents is in Hardy-Weinberg equilibrium at every autosomal
locus, with allele relative frequencies equal to the allele relative frequencies in the
population of the alleles of all parents.

Proof. Let pi,j be the relative frequency of the ordered genotype (Ai, Aj) in the
parents’ population. Under random mating we choose a random father and inde-
pendently a random mother, and each parent segregates a random allele to the child
either his/her paternal or his/her maternal one. Given that the father segregates
his paternal allele, he segregates Ai if and only if the father has genotype (Ai, Aj)
for some j, which has probability pi. =

∑

j pi,j . Given that the father segregates
his maternal allele, he segregates Ai with probability p·i =

∑

j pj,i. Therefore, the
paternal allele of the child is Ai with probability

p′i: =
1
2pi. +

1
2p·i.

The mother acts in the same way and independently from the father. It follows that
the child possesses ordered genotype (Ai, Aj) with probability p′ip

′
j .

Hence the children’s population is in Hardy-Weinberg equilibrium. The proba-
bility p′i is indeed the allele relative frequency of the allele Ai in the population of
all parents.

Hardy-Weinberg equilibrium is truly an equilibrium, in the sense that it is
retained by further rounds of random mating. This follows from the lemma, because
random mating produces Hardy-Weinberg equilibrium (so keeps it if it already
present) and keeps the allele relative frequencies the same.

If the assumption of random mating is not satisfied, then Hardy-Weinberg equi-
librium can easily fail. Population structure can lead to stable populations that are
not in equilibrium, while selection may lead to fluctuations in allele frequencies.
Random drift is another possible reason for deviations of Hardy-Weinberg equilib-
rium. In a particularly bad case of random drift an allele may even disappear from
one generation to another, because it is not segregated by any parent, and of course
can never come back.
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2.2.1 Testing Hardy-Weinberg Equilibrium

To test Hardy-Weinberg equilibrium at a marker location, with alleles A1, . . . , Ak,
we might take a random sample of n individuals and determine for each genotype
AiAj the number Nij of individuals in the sample with this genotype. We wish to
test the null hypothesis that the probabilities of these genotypes factorize in the
marginal frequencies of the alleles.

If parental and maternal origins of the alleles can be ascertained, then we can
understand these numbers as referring to ordered genotypes (Ai, Aj). The frequen-
cies Nij then form a (k × k)-table, and the null hypothesis asserts independence in
this table, exactly as discussed for a standard test of independence in Section 14.1.5.
A difference is that the marginal probabilities for the two margins (the allele fre-
quencies) are a-priori known to be equal and hence the table probabilities pij are
symmetric under the null hypothesis.

In a more realistic scenario the counts Nij are the numbers of unordered geno-
types {Ai, Aj}, which we can restrict to i ≤ j and provide half of a (k × k)-table.
Hardy-Weinberg equilibrium is that this half-table N = (Nij) is multinomially dis-
tributed with parameters n and pij satisfying the relations pii = α2

i and pij = 2αiαj
for i < j and a probability vector (αi). Thus the full parameter space is the unit
simplex in the 1

2k(k + 1)-dimensional space, and the null hypothesis is a k − 1-
dimensional surface in this space. The null hypothesis can be tested by the chisquare
or likelihood ratio test on 1

2k(k+1)−1− (k−1) degrees of freedom. The maximum
likelihood estimator under the null hypothesis is the vector (α̂1, . . . , α̂k) of relative
frequencies of the alleles A1, . . . , Ak among the 2n measured alleles.

* 2.2.2 Estimating Allele Frequencies

Consider estimating the allele frequencies in a population, for a causal gene that
is assumed to be the sole determinant of some phenotype. The data are a random
sample from the population, and we assume Hardy-Weinberg equilibrium.

For codominant alleles this is easy. By the definition of codominance the two
alleles of each individual can be determined from their (observed) phenotype and
hence we observe the total numbers N1, . . . , Nk of alleles A1, . . . , Ak. Under random
sampling (with replacement) the distribution of the vector (N1, . . . , Nk) is multino-
mial with parameters 2n and p = (p1, . . . , pk) and hence the maximum likelihood
estimator of pi is Ni/(2n). In particular, the situation of codominance pertains for
marker alleles, which are themselves observed.

On the other hand, if some alleles are recessive, then the numbers of alleles of
the various types cannot be unambigously determined from the phenotypes, and
hence the empirical estimators Ni/(2n) are unavailable. Instead we observe for each
possible phenotype the total number Xs of individuals with this phenotype; we
assume that there are finitely many phenotypes, say s = 1, . . . , l. Each phenotype
is caused by a set of ordered genotypes (Ai, Aj) and hence the observational vector
(X1, . . . , Xl) is multinomially distributed with parameters n and q = (q1, . . . , ql),
where qs is the sum of the probabilities of the ordered genotypes that lead to
phenotype s. Under Hardy-Weinberg equilibrium the probability of (Ai, Aj) is pipj
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and hence qs =
∑

(i,j)∈s pipj , where “(i, j) ∈ s” means that the ordered genotype

(Ai, Aj) causes phenotype s. The likelihood for the observed data is therefore

(p1, . . . , pk) 7→
(

n

X1, . . . , Xl

) l∏

s=1

( ∑

(i,j)∈s
pipj

)Xs

.

We may maximize this over p = (p1, . . . , pk) to find the maximum likelihood esti-
mators of the allele frequencies. If the grouping of the genotypes is not known, we
may also maximize over the various groupings.

The maximization may be performed by the EM-algorithm, where we can
choose the “full data” equal to the numbers Y = (Yi,j) of individuals with ordered
genotype (Ai, Aj). (Dropping the ordering is possible too, but do not forget to put
factors 2 (only) in the appropriate places.) The full likelihood is, with Y = (Yi,j),

(p1, . . . , pk) 7→
(
n

Y

)
∏

(i,j)

(pipj)
Yi,j .

The observed data is obtained from the full data through the relationship Xs =
∑

(i,j)∈s Yi,j . The EM-algorithm recursively computes

p(r+1) = argmax
p

Ep(r)

(∑

(i,j)

Yi,j log(pipj)|X1, . . . , Xl

)

= argmax
p

∑

(i,j)

Xs(i,j)

p
(r)
i p

(r)
j

∑

(i′,j′)∈s(i,j) p
(r)
i′ p

(r)
j′

log(pipj).

Here s(i, j) is the group s to which (i, j) belongs. The second equality follows because
the conditional distribution of a multinomial vector Y given a set of totals

∑

h∈s Yh
of subgroups is equal to the distribution of a set of independent multinomial vectors,
one for each subgroup s, with parameters the total number of individuals in the sub-
group and probability vector proportional to the original probabilities, renormalized
to a probability vector for each subgroup. See the lemma below.

The target function in the final argmax is a linear combination of the values
log pi + log pj , and is easier to maximize than the original likelihood in which the
pipj enter through sums. Indeed, the argmax can be determined analytically. Un-
der the assumption that the ordered genotypes AiAj and AjAi produce the same
phenotype, i.e. s(i, j) = s(j, i), we find, for m = 1, . . . , k,

p(r+1)
m ∝

∑

j

Xs(m,j)

p
(r)
m p

(r)
j

∑

(i′,j′)∈s(m,j) p
(r)
i′ p

(r)
j′

.

The EM-algorithm iterates the corresponding equations to convergence.
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2.2 Lemma. Let N = (N1, . . . , Nk) be multinomially distributed with parameter
(n, p1, . . . , pk). Let {1, . . . , k} = ∪lj=1Ij be an arbitrary partition in l sets and let
Mj =

∑

i∈Ij
Ni for j = 1, . . . , l. Then the conditional distribution of N given M is

equal to the distribution of N ′ = (N ′
1, . . . , N

′
k) for

(i) (N ′
i : i ∈ I1), . . . , (N

′
i : i ∈ Il) are independent.

(ii) (N ′
i : i ∈ Ij) is multinomially distributed with parameters (Mj , p

′
j) for (p′j)i =

pi/
∑

i∈Ij
pi.

2.3 EXERCISE. Verify the claims in the preceding example and work out an ex-
plicit formula for the recursions.

* 2.2.3 Sex-linked Loci

The evolution of genotype frequencies for loci on the sex-chromosomes differs from
that on the autosomes. Under random mating Hardy-Weinberg equilibrium is ap-
proached rapidly, but is not necessarily reached in finitely many matings. Of course,
we need to make a difference between a male and a female population.

Consider a locus on the X-chromosome with possible alleles A1, . . . , Ak, and let
pi be the relative frequency of the allele Ai on the X-chromosome of the population
of males, and let Qi,j be the relative frequency of the genotype (Ai, Aj), ordered
by paternal origin (father, mother), on the two X-chromosomes in the population
of females. Then qi = 1

2 (
∑

j Qi,j +
∑

j Qj,i) is the relative frequency of allele Ai in
the population of females.

2.4 Lemma. The relative frequencies in the population of children formed by ran-
dom mating satisfy

p′i = qi, Q′
i,j = piqj , q′i = 1

2 (pi + qi).

Proof. A male descendant receive his X-chromosome from his mother, who seg-
regates a random choice of her pair of alleles. If the mother is chosen at random
from the population, then the allele is a random choice from the female alleles.
This gives the first equation. For a female descendant to have genotype (Ai, Aj)
her father must segregate Ai and her mother Aj . Under random mating this gives
a choice of a random allele from the males and an independent choice of a random
allele from the females. This proves the second assertion. The third assertion proved
by computing q′i from Q′

i,j.

Under the random mating assumption the alleles of a randomly chosen female
are independent, but the relative frequencies Q′

i,j are not symmetric in (i, j) as long
as the male and female allele frequencies are different. This deviates from Hardy-
Weinberg equilibrium. The formulas show that

p′i − q′i = − 1
2 (pi − qi).
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Thus if the male and female allele frequencies in the initial population are different,
then they are different in all successive populations, and the difference alternates
in sign. The difference converges exponentially fast to zero, and hence the female
population rapidly approaches Hardy-Weinberg equilibrium.

For practical purposes under random mating the female population can be as-
sumed to be in Hardy-Weinberg equilibrium. One consequence is that the prevalence
of diseases that are caused by a single recessive gene on the X-chromosome is much
higher in males than in females (under the assumption that the disease will appear
as soon as a male has the causal variant on his X-chromosome).

2.3 Linkage Equilibrium

Whereas Hardy-Weinberg equilibrium refers to the two alleles at a single locus,
linkage equilibrium refers to the combination of multiple loci in a single haplotype.
A population is said to be in linkage equilibrium (LE) if the k alleles on a k-loci
haplotype that is chosen at random from the population are independent.

For a more precise description in the case of two-loci haplotypes, suppose that
the two loci have k and l possible alleles, A1, . . . , Ak and B1, . . . , Bl, respectively.
Then there are kl possible haplotypes for the two loci: every combination AiBj for
i = 1, . . . , k and j = 1, . . . , l. A population is said to be in linkage equilibrium at the
two loci if a randomly chosen haplotype from the population is AiBj with probabil-
ity piqj , where pi and qj are the probabilities that a randomly chosen allele at the
first or second locus is Ai or Bj , respectively. Here the “population of haplotypes”
should be understood as the set of all haplotypes of individuals, each individual
contributing two haplotypes and the haplotypes being stripped from information
on their origin.

Unlike Hardy-Weinberg equilibrium, linkage equilibrium does not necessarily
arise after a single round of (random) mating. The reason is that in the segregation
process whole pieces of chromosome are passed on, rather than individual loci.
Because crossovers, which delimit the pieces of chromosome that are passed on
intact, occur on the average only 1–2 times per chromosome and at more or less
random loci, it is clear that between loci that are close together linkage equilibrium
can at best be reached after many generations. This can be made precise in terms
of the recombination fraction between the loci.

Consider the following schematic model for the formation of two-locus gametes.
We draw two haplotypes at random from an existing population of haplotypes and
next form an offspring of one haplotype out of these in two steps:

(i)-1 passing the original pair of haplotypes on unchanged with probability 1 − θ,
(i)-2 cutting and recombining the haplotypes with probability θ.
(ii) picking one of the two resulting haplotypes at random.
To form a new population of two-locus haplotypes, we repeat this experiment in-
finitely often, independently.
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Let hij be the relative frequency of haplotype AiBj in the initial population,
and let pi =

∑

j hij and qj =
∑

i hij the corresponding relative frequencies of the
alleles Ai and Bj , respectively.

2.5 Lemma. The relative frequency h′ij of haplotype AiBj in the new population
produced by scheme (i)-(ii) satisfies

h′ij − piqj = (1 − θ)(hij − piqj).

The corresponding marginal relative frequencies of the alleles Ai and Bj are p′i = pi
and q′j = qj .

Proof. Consider a haplotype formed by the chance mechanism as described in (i)-
(ii). If R is the event that recombination occurs, as in (i)-2, then the probability
that the haplotype is AiBj is

h′ij = P (AiBj |Rc)P (Rc) + P (AiBj |R)P (R) = hij(1 − θ) + piqjθ.

Here the second equality follows, because in the absence of recombination, as in (i)-1,
the haplotypes that are passed on are identical to the originally chosen haplotypes,
while given recombination the haplotype AiBj is passed on if it is reconstituted
from a pair of original haplotypes of the forms AiBs and AtBj for some s and t,
which have frequencies pi and qj , respectively.

By summing the preceding display over i or j, we find that marginal relative
frequencies of the alleles in the new population are equal to the marginal relative fre-
quencies pi and qj in the initial population. Next the lemma follows by rearranging
the preceding display.

By repeated application of the lemma we see that the haplotype relative fre-

quencies h
(n)
ij after n rounds of mating satisfy

h
(n)
ij − piqj = (1 − θ)n(hij − piqj).

This implies that h
(n)
ij → piqj as n → ∞ provided that θ > 0, meaning that the

population approaches linkage equilibrium. The speed of convergence is exponential
for any θ > 0. However, if the two loci are tightly linked, then 1 − θ ≈ 1 and
the convergence is slow. If the two loci are unlinked, then 1 − θ = 1

2 and the
population approaches equilibrium quickly. The convergence also depends on the
linkage disequilibrium parameter Dij = hij − piqj in the initial population. The
lemma says precisely that the disequilibrium in the new population satisfies D′

ij =
(1 − θ)Dij .

The preceding scheme (i)-(ii) produces only one haplotype, while individuals
consists of two haplotypes. We may view of (i)-(ii) as the model for choosing one
parent from the population and the single gamete (s)he produces by a meiosis.
Under random mating the parents are chosen independently from the population
and, as usual, we assume all meioses independent. Therefore, under random mating
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the scheme can be lifted to the level of diploid individuals by creating the new
population as pairs of independent haplotypes, both produced according to (i)-
(ii). Actually, the start of scheme (i)-(ii) by choosing two independent haplotypes
already reflects the implicit assumption that the haplotypes of the individuals in
the parents’ population are independent. This is not an important loss of generality,
because independence will arise after one round of random mating.

The lemma extends without surprises to multi-loci haplotypes. This is discussed
in the more general set-up that includes selection in Section 2.6.

2.4 Full Equilibrium

Linkage equilibrium as defined in Section 2.3 refers to haplotypes, and does not
prescribe the distribution of genotypes, which are pairs of haplotypes. We define a
population to be in combined Hardy-Weinberg and linkage equilibrium, or simply
in equilibrium, if the population is in both Hardy-Weinberg and linkage equilibrium
and the two haplotypes within the genotype of a randomly chosen individual are
independent. Thus the combination of HW and LE is more than the union of its
constituents (except in the case of a single locus, where LE is empty).

We shall also refer to independence of the two haplotypes of an arbitrary indi-
vidual as Hardy-Weinberg at the haplotype level. This is ensured by random mating:
knowing one haplotype of a person gives information about one parent, but under
random mating is not informative about the other parent, and hence the other hap-
lotype. This is perhaps too obvious to say, and that is why the assumption is often
not explicitly stated. Hardy-Weinberg at the haplotype level is in general not an
equilibrium.

Note the two very different causes of randomness and (in)dependence involved
in Hardy-Weinberg equilibrium and linkage equilibrium: Hardy-Weinberg equilib-
rium results from mating, which is at the population level, whereas linkage equi-
librium results from meiosis, which is at the cell level. Furthermore, even if under
random mating a child can be viewed as the combination of two independent hap-
lotypes, these haplotypes are formed possibly by recombination, and under just
random mating cannot be viewed as physically drawn at random from some popu-
lation of haplotypes.

A concrete description of combined Hardy-Weinberg and linkage equilibrium
for two-loci haplotypes is as follows. Let p1, . . . , pk and q1, . . . , ql be the population
fractions of the alleles A1, . . . , Ak at the first locus and the alleles B1, . . . , Bl at the
second locus, respectively. If the population is in combined Hardy-Weinberg and
linkage equilibrium, then an ordered genotype of an arbitrary person consists of
haplotypes AiBj and Ai′Bj′ with probability pipi′qjqj′ . Thus a genotype is formed
by independently constructing two haplotypes by glueing together alleles that are
chosen independently according to their population frequencies.

Here we considered ordered genotypes (AiBj , Ai′Bj′ ). Stripping the order
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would introduce factors 2.

* 2.5 Population Structure

Population structure is a frequent cause for deviations from equilibrium. Consider
for instance a population consisting of several subpopulations, each of which satis-
fies the random mating assumption within itself, but where there are no interactions
between the subpopulations. After one round of random mating each subpopulation
will be in Hardy-Weinberg equilibrium. However, unless the allele frequencies for
the subpopulations are the same, the population as a whole will not be in Hardy-
Weinberg equilibrium. Similarly each of the subpopulations, but not the whole pop-
ulation, may be in equilibrium.

This is shown in the following lemma, which applies both to single loci and
haplotypes. It is assumed that there are k different haplotypes A1, . . . , Ak, and
within each subpopulation the individuals consist of random combinations of two
haplotypes. The lemma shows that individuals in the full population are typically
not random combinations of haplotypes.

The lemma is a special case of the phenomenon that two variables can be con-
ditionally uncorrelated (or independent) given a third variable, but unconditionally
correlated (or dependent). The proof of the lemma is based on the general rule,
valid for any three random variables X,Y,N defined on a single probability space,

(2.6) cov(X,Y ) = E cov(X,Y |N) + cov
(
E(X |N),E(Y |N)

)
.

2.7 Lemma. Consider a population consisting of N subpopulations, of fractions
λ1, . . . , λN of the full population, each of which is in Hardy-Weinberg at the hap-
lotype level, the nth subpopulation being characterized by the relative frequencies
pn1 , . . . , p

n
k of the haplotypes A1, . . . , Ak. Then the relative frequency pi,j of the or-

dered genotype (Ai, Aj) in the full population satisfies
∑

j pi,j =
∑

j pj,i =: pi.,
and

pi,j − pi·pj· =

N∑

n=1

λn(pni − pi·)(p
n
j − pj·).

Proof. We apply (2.6) with the variable X equal to 1 or 0 if the paternal haplotype
of a randomly chosen individual from the full population is Ai or not, with the
variable Y defined similarly relative to the maternal haplotype and j instead of i,
and with N the index of the subpopulation that the individual belongs to. Then
EX = pi· is the relative frequency of haplotype Ai in the full population, E(X |N =
n) = pni , the variable Y satisfies the same equalities, but with j instead of i, and
P (N = n) = λn for every n. The mean EX = EE(X |N) =

∑

n λnp
n
i is equal

to the relative frequency of the paternal allele Ai in the population, and similarly
EY =

∑

n λnp
n
j is the relative frequency of a maternal allele Aj in the population.
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These relative frequencies can also be written
∑

k pk,i and
∑

k pk,j , respectively.
Choosing i = j, we have EX = EY and hence the paternal and maternal allele
relative frequencies coincide, showing that

∑

k pk,i =
∑

k pk,j . To prove the validity
of the display the second we note that cov(X,Y ) is the left side of the lemma and
apply (2.6). The assumption of independence of haplotypes in each subpopulation
shows that cov(X,Y |N) = 0, so that the first term on the right side of the preceding
display vanishes. The second term is the right side of the lemma.

Taking i = j in the lemma, we obtain that the relative frequency pi,i of the
homozygous individuals (Ai, Ai) satisfies

pi,i − p2
i· =

N∑

n=1

λn(pni − pi·)
2 ≥ 0.

The expression is strictly positive unless the relative frequency of Ai is the same
in every subpopulation. The inequality shows that the proportion of homozygous
individuals is larger than it would be under Hardy-Weinberg equilibrium in the full
population: the heterozygosity 1 −∑

i pi,i is smaller than its value 1−∑

i p
2
i· under

Hardy-Weinberg.

* 2.6 Viability Selection

A population is under selection if not every individual or every mating pair has the
same chance to produce offspring. Selection changes the composition of future gen-
erations. The genotypes in successive generations may still tend to an equilibrium,
but they may also fluctuate forever.

The simplest form of selection is viability selection. This takes place at the level
of individuals and can be thought of as changing an individual’s chances to “survive”
until mating time and produce offspring. Viability selection is modelled by attaching
to each genotype (Ai, Aj) a measure wi,j of fitness. Rather than choosing a parent
at random from the population (according to the population relative frequency pi,j
for genotype (Ai, Aj)), we choose the parent (Ai, Aj) with probability proportional
to pi,jwi,j . For simplicity we assume that wi,j is symmetric in (i, j), nonnegative
and not identically zero.

We retain a random mating assumption in that we independently choose two
parents according to this mechanism. Each of the parents segregates one gamete
by a meiosis, and these combine into a zygote. We assume that there are no mu-
tations. The children’s population will consist of pairs of independently produced
haplotypes, and hence be in “Hardy-Weinberg equilibrium at the haplotype level”.
In this situation it suffices to study the haplotype frequencies of the gametes pro-
duced in a single meisosis. It is also not a serious loss of generality to assume that
the relative frequency of genotype (Ai, Aj) in the initial parents’ population fac-
torizes as pipj , for pi the marginal relative frequency of haplotype pi. The relative
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frequency of a child-bearing parent (Ai, Aj) is then proportional to pipjwi,j . The
proportionality factor is the inverse of the sum over all these numbers

F (p) =
∑

i

∑

j

wi,jpipj.

The value F (p) is the average fitness of a population characterized by the allele
relative frequencies p. For a given haplotype i we also define the marginal fitness of
allele Ai by

Fi(p) =
∑

j

pjwi,j .

This can also be viewed as the expected fitness of an individual who is known to
possess at least one allele Ai.

For single-locus genotypes and a fitness measure that remains the same over
time, the evolution of the population under viability selection can be easily summa-
rized: the fitness of the populations increases and the relative frequencies typically
tend to an equilibrium. On the other hand, for multiple loci haplotypes, or fit-
ness that depends on the composition of the population, the situation is already
complicated and many types of behaviour are possible, including cyclic behaviour.

2.6.1 Single Locus

For a single locus genotype meiosis just consists of the segregating parent choosing
one allele from his pair of alleles at random. We assume that the parents’ population
is in Hardy-Weinberg equilibrium and write p1, . . . , pk for the marginal relative
frequencies of the possible alleles A1, . . . , Ak. A segregating father has genotype
(Ai, Aj) with probability proportional to pipjwi,j , and hence the paternal allele of
a child is Ai with probability p′i satisfying

(2.8) p′i ∝ 1
2

∑

j

pipjwi,j + 1
2

∑

j

pjpiwj,i = piFi(p).

The proportionality factor is the fitness F (p) of the population. Equations (2.8)
show immediately that a frequency vector p = (p1, . . . pk)

T is a fixed point of the
iterations (p′ = p) if and only if the marginal fitnesses of all alleles with pi > 0 are
the same. The equation also shows that once an allele has disappeared, then it will
never come back (p′i = 0 whenever pi = 0, for any i).

By straightforward algebra (see the proof below) it can be derived that

(2.9) p′ − p =
1

2F (p)

(
diag (p) − ppT

)
∇F (p).

Because the gradient ∇F (p) is the direction of maximal increase of the fitness
function F , this equation suggests that the iterations (2.8) “attempt to increase the
fitness”. In the next theorem it is shown that, indeed, successive populations become
ever fitter; as geneticists phrase it: “the populations climb the fitness surface”.
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The presence of the matrix diag (p)−ppT makes the preceding display somewhat
difficult to interpret. If all coordinates of p are positive, then the null space of the
matrix is the linear span of the constant vector 1. Hence fixed points of the iteration
(p′ − p = 0) in the interior of the unit simplex are characterized by ∇F (p) ∝ 1,
which is precisely the Lagrange equation for an extremum of the function F under
the side condition pT 1 = 1 that p is a probability vector. However, minima and
saddlepoints of the Lagrangian will also set the right side of (2.9) to zero, so that
the equation suggests maximization of fitness, but does not prove it.

We show in the next theorem that the sequence of iterates p, p′, p′′, . . . (2.8)
converges from any starting vector p to a limit. The limit is necessarily a fixed
point, which may have some coordinates equal to 0. In the following theorem we
concentrate on the most interesting case that the limit is an interior point of the
unit simplex, so that all alleles are present.

2.10 Theorem. The iterations (2.8) can be written in the form (2.9) and satisfy
F (p′) ≥ F (p), for any p, with equality only if p′ = p. Any sequence of iterates
p, p′, p′′, . . . converges. If the limit is in the interior of the unit simplex, then the
convergence is exponentially fast.

2.11 Theorem. The interior S̊ of the unit simplex is attracted by a single vector
in the S̊ if and only if F assumes its global maximum uniquely at a point in S̊,
where the point of maximum is the attractor. A necessary and sufficient condition
for this to happen is that the matrix (wi,j) has one strictly positive and k−1 strictly

negative eigenvalues and that there exists a fixed point in S̊.

Proofs. For W the matrix (wi,j), the fitness function is the quadratic form F (p) =
pTWp. The recursion (2.8) for the allele relative frequencies can be written in the
matrix form p′ = diag (p)Wp/F (p), and hence

p′ − p =
diag (p)Wp− pF (p)

F (p)
=

diag (p)Wp− ppTWp

F (p)
.

As ∇F (p) = 2Wp, the right side is the same as in (2.9).
Inserting the recursion (2.8) into F (p′) =

∑

i

∑

j p
′
ip

′
jwi,j , we see that

F (p)2 F (p′) =
∑

i

∑

j

pipjFi(p)Fj(p)wi,j =
∑

i

∑

j

∑

k

pipjpkFi(p)wi,jwj,k.

Because the product pipjpkwi,jwj,k is symmetric in (i, k), we can replace Fi(p) in

the right side by
(
Fi(p) +Fk(p)

)
/2, which is bigger than

√

Fi(p)
√

Fk(p). Thus the
preceding display is bigger than

∑

i

∑

j

∑

k

pipjpk
√

Fi(p)
√

Fk(p)wi,jwj,k =
∑

j

pj

(∑

i

pi
√

Fi(p)wi,j

)2

≥
(∑

j

∑

i

pjpi
√

Fi(p)wi,j

)2

=
(∑

i

piFi(p)
3/2

)2

.
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By Jensen’s inequality applied to the convex function x 7→ x3/2, this is bigger than
(∑

i piFi(p)
)3

= F (p)3. We divide by F (p)2 to conclude the proof that the fitness
is nondecreasing.

By application of Jensen’s inequality with a second order term, the last step
of the preceding derivation can be refined to yield the inequality

∑

i piFi(p)
3/2 ≥

F (p)3/2 + Cσ2(p), for σ2(p) =
∑

i pi
(
Fi(p) − F (p)

)
2 the variance of the marginal

fitness, and C the minimum of the second derivative of x 7→ x3/2 on the convex
hull of the marginal fitnesses (C = (3/8)(maxi,j wi.j)

−1/2 will do). Insertion of this
improved bound, we see that, for any p ∈ S,

(2.12) F (p′) − F (p) & σ2(p),

In particular, F (p′) > F (p) unless all marginal frequencies are equal, in which case
p′ = p by (2.8).

By the compactness of the unit simplex, any sequence of iterates pn of (2.8)
possesses limit points. Because the sequence F (pn) is increasing, the fitness F (p∗)
of all limit points is the same. If pnj → p∗, then pnj+1 → (p∗)′, and hence (p∗)′ is
a limit point as well. Therefore, F (p∗) = F (p∗)′), whence p∗ = (p∗)′, showing that
any limit point is necessarily a fixed point of the iteration.

To prove that each sequence actually has only a single limit point, we derive
below that, for any fixed point p∗ of the iterations and any p sufficiently close to p∗,

(2.13) F (p∗) − F (p) . σ4/3(p).

By (2.8) and the Cauchy-Schwarz inequality,

‖pn+1 − pn‖1 =
1

F (pn)

∑

i

pi
∣
∣Fi(p

n) − F (pn)
∣
∣ . σ(pn).

We rewrite the right side as σ2(pn)/σ(pn) and (2.12) and (2.13) to see that the right
side is bounded above by, if pn is sufficiently close to a fixed point p∗,

F (pn+1) − F (pn)
(
F (p∗) − F (pn)

)3/4
.

(
F (p∗) − F (pn)

)1/4 −
(
F (p∗) − F (pn+1)

)1/4
.

If pn+1, pn+2, . . . are again in the neighbourhood of p∗ where (2.13) is valid, then
we can repeat the argument and find that

(2.14) ‖pn+k − pn‖1 ≤
k∑

i=1

‖pn+i − pn+i−1‖1 .
(
F (p∗) − F (pn)

)1/4
,

by telescoping of the sum of upper bounds. Now if (2.13) is valid for ‖p− p∗‖ < ε
and we start with pn such that both ‖pn− p∗‖1 and the right side of the preceding
display are smaller than δ ≤ ε/2, then the sequence pn+1, pn+2, . . . will remain
within distance ε of p∗ and hence will satisfy the preceding display, which then
shows that ‖pn+k − pn‖1 < δ for all k. Because δ is arbitrary this shows that the
sequence is Cauchy and hence has a single limit point.
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A point p∗ ∈ S̊ is a fixed point if and only if Fi(p
∗) = F (p∗) for every i,

or equivalently ∇F (p∗) ∝ 1. This implies that F (p) − F (p∗) = F (p − p∗) and
σ2(p) =

∑

i piF
2
i (p − p∗) − F 2(p − p∗), for every p. Also, for p sufficiently close to

p∗ the coordinates of p are bounded away from zero, and hence

σ2(p) &
∑

i

F 2
i (p− p∗) − F 2(p− p∗) & F (p− p∗) − F 2(p− p∗),

because ‖Wv‖2 ≥ CvTWv for any symmetric matrix W and v, and C the smallest
strictly positive eigenvalue of W . This proves that F (p∗) − F (p) . σ2(p), for p
sufficiently close to p∗. We combine this with (2.12) to see that if pn tends to
p∗ ∈ S̊, then

F (p∗) − F (pn) . σ2(pn) . F (pn+1) − F (pn).

This inequality can be rearranged to see that F (p∗)−F (pn+1) ≤ C
(
F (p∗)−F (pn)

)
,

for some C < 1. Consequently, the sequence F (p∗) − F (pn) tends to zero exponen-
tially fast, and hence so does the sequence ‖p∗ − pn‖, by (2.14).

The proof of (2.13) is based on a similar argument applied to the projection p̄
of a given p on the set SI : = {p ∈ S: pi = 0∀i /∈ I}, where I = {i:Fi(p∗) = F (p∗)}.
Because p∗ ∈ SI we now have F (p̄) − F (p∗) = F (p̄− p∗) and σ2(p̄) =

∑

i p̄iF
2
i (p̄−

p∗) − F 2(p̄− p∗), and, for p close to p∗,

σ2(p̄) &
∑

i∈I
|p̄i − p∗i |F 2

i (p̄− p∗) − F 2(p̄− p∗) & |F (p̄− p∗)|3/2 − F 2(p̄− p∗),

because
∑

i |vi|(Wv)2i & |vTWv|3/2 for any symmetric matrix W .] We also have
that,

σ2(p) − σ2(p̄) = ∇σ2(p̃)(p− p̄) ≥ c
∑

i∈I
pi − C

∑

i/∈I
|pi − p̄i|,

for c and C the minimum and maximal value of ∂σ2/∂pi over the convex segment
between p̄ and p∗ and i /∈ I and i ∈ I, respectively. Because ∂σ2/∂pi(p

∗) =
(
Fi(p

∗)−
F (p∗)

)
2, for p sufficiently close to p∗ we can choose c bounded away from 0 and C

arbitrarily close to 0. It follows that

σ2(p) − σ2(p̄) &
∑

i/∈I
pi − ε

∑

i∈I
|pi − p̄i| & ‖p− p̄‖1 &

∣
∣F (p) − F (p̄)

∣
∣.

For the last inequality we use that p̄i = pi + |I|−1
∑

i/∈I pi for i ∈ I, and ‖p− p̄‖1 =
2

∑

i/∈I pi. The last display shows that σ2(p̄) ≤ σ2(p). Finally

F (p∗) − F (p) = F (p∗ − p̄) + F (p̄) − F (p) . σ4/3(p) + σ2(p).

This concludes the proof of (2.13), and hence of the first theorem.
A point P of global maximum of F is necessarily a fixed point, as otherwise

F (P ′) > F (P ). A fixed point P in S̊ satisfies WP ∝ 1 and then every vector v with

] Lyubich,?? This more involved inequality is used, because not necessarily p∗i > 0 for i ∈ I.



38 2: Dynamics of Infinite Populations

Wv = 0 satisfies vT 1 ∝ vTWP = 0, by the symmetry of W . Thus the vector P +εv
is contained in S̊ for sufficiently small ε > 0 and satisfies W (P +εv) = WP ∝ 1 and
(P + εv)TW (P + εv) = PTWP . It follows P is a fixed point or is a unique point of
maximum only if the kernel of W is trivial. We assume this in the following.

If p∗ is a fixed point that is the limit of a sequence iterates pn that starts in
the interior, then Fi(p

∗) ≤ F (p∗) for every i. Indeed F (p∗) ≥ F (p1) > 0 and hence
pn+1
i /pni = Fi(p

n)/F (pn) → Fi(p
∗)/F (p∗). If the right side is bigger than 1, then

eventually pn+1
i > cpni for some c > 1, which is possible only if pni = 0 eventually.

This is impossible, as pn ∈ S̊ for all n, as follows from the fact that Wp > 0 if p > 0
under the assumption that no row of W vanishes.

If P ∈ S̊ is a point of global maximum and p∗ is the limit of a sequence of
iterates starting in S̊, then WP = F (P )1 and hence

F (P ) =
∑

i

p∗iF (P ) =
∑

i

p∗i
∑

j

wi,jPj =
∑

j

Pj
∑

i

wj,ip
∗
i =

∑

j

PjFj(p
∗) ≤ F (p∗).

Hence p∗ is also a point of global maximum. Therefore, if F has a unique point of
global maximum, then every sequence of iterates that starts in the interior tends to
P . Conversely, if every sequence of iterates tends to a point P in the interior, then
P must be a unique point of global maximum as the iterations increase the value
of F from any starting point.

Because W is symmetric, it is diagonalizable by an orthogonal transformation,
with its eigenvalues as the diagonal elements. These eigenvalues are real and nonzero
and hence can be written λ1 ≥ · · · ≥ λl > 0 > λl+1 ≥ · · · ≥ λk, for some 0 ≤ l ≤
k. In fact l ≥ 1, because otherwise W is negative-definite, contradicting that W
has nonnegative elements and is nonzero. The function F has a unique point of
maximum at a point P in S̊ if and only if F (P + u) < F (P ) for every u such
that P + u ≥ 0 and uT 1 = 0. Because necessarily WP ∝ 1, we have F (P + u) =
F (P )+uTWu for such u, and hence this is equivalent to uTWu < 0 for every u 6= 0
such that P +u ≥ 0 and uTWP = 0. If the diagonalizing transformation maps P to
Q, u to v, and {u:P +u ≥ 0} to V , then this statement is equivalent to

∑

i λiv
2
i < 0

for nonzero v ∈ V such that
∑

i λiviQi = 0.

Because P ∈ S̊, the set V contains an open neighbourhood of 0. If l ≥ 2, then
there exist solutions v ∈ V of the equation

∑

i λiviQi = 0 with vl+1 = · · · = vk = 0
and (v1, . . . , vl) 6= 0, which is incompatible with the inequality

∑

i λiv
2
i < 0. We

conclude that l < 2 if F has a unique point of maximum in S̊.
Conversely, suppose that l = 1 and the iterations have a fixed point P ∈ S̊.

The latter implies that WP ∝ 1. If v solves the equation
∑

i λiviQi = 0, then by
the Cauchy-Schwarz inequality,

|λ1v1Q1|2 =
∣
∣
∣

∑

i≥2

λiviQi

∣
∣
∣

2

≤
∑

i≥2

|λi|v2
i

∑

i≥2

|λi|Q2
i .

Consequently, for any such v,

∑

i

λiv
2
i ≤

(
∑

i≥2 |λi|Q2
i

λ1Q2
1

− 1
)∑

i≥2

|λi|v2
i .
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In terms of the old coordinates the left side is uTWu. The first term on the right
side is negative if

∑

i λiQ
2
i > 0, which is true because this expression is equal to

PTWP . It follows that a fixed point P ∈ S̊ is automatically a unique point of global
maximum of F .

2.15 Example (Two alleles). In the situation of two alleles (k = 2), the recursions
can be expressed in the single probability p1 = 1 − p2. We have F (p) = p1F1(p) +
p2F2(p), for Fi(p) =

∑

j wi,jpj the marginal fitness of allele Ai, and

p′1 − p1 = p1p2
F1(p) − F2(p)

F (p)
.

Not surprisingly, the frequency of allele A1 increases if the marginal fitness of A1 in
the current population exceeds the marginal fitness of A2. The “fitness surface” F
can be written as a quadratic function of p1. The maximum fitness is in the interior
of the interval [0, 1] if the fitness parabola has its apex at a point in (0, 1). In that
case the population will tend to an equilibrium in which both alleles are present.
The fitness parabola may also have one or two local maxima at the boundary points
0 and 1. In the latter case one of the two alleles will disappear, where it may depend
on the starting point which one.

2.16 EXERCISE. Consider a population of individuals (Ai, Aj) in Hardy-Weinberg
with vector of allele relative frequencies p = (p1, . . . , pk)

T . Define Ni to be the num-
ber of alleles Ai in a random person from this population, and letW be the fitness of
this individual, so that 2(diag (p)−ppT ) is the covariance matrix of the (multinomial)
vector (N1, . . . , Nk), and F (p) = EpW . Show that p′ − p = (1/2EpW ) covp(W,N).

2.6.2 Multiple Loci

If the fitness depends on the genotype at multiple loci, then the recursions for the
gamete frequencies incorporate recombination probabilities. Consider individuals
(Ai, Aj) consisting of ordered pairs of two k-loci haplotypes Ai and Aj . We identify
the haplotypes with sequences i = i1i2 · · · ik and j = j1j2 · · · jk, where each is and
js refers to a particular allele at locus s, and write wi,j for the fitness of individual
(Ai, Aj), as before. For simplicity we assume that the fitness wi,j is the same for
every pair (i, j) that gives the same unordered genotypes {i1, j1}, . . . , {ik, jk} at the
k loci; in particular wi,j = wj,i. Thus the haplotype structure (i, j) is unimportant
for the value of fitness, an assumption known as absence of cis action.

As before, we assume that the two haplotypes of a randomly chosen parent
from the population are independent, and write pi for the relative frequency of
haplotype Ai. Thus a father of type (Ai, Aj) enters a mating pair and has offspring
with probability proportional to pipjwi,j , where the proportionality constant is
the fitness F (p) =

∑

i

∑

j pipjwi,j of the parents’ population. We also retain the
notation Fi(p) =

∑

j pjwi,j for the marginal fitness of haplotype i. We add the lazy
notation pis for the marginal relative frequency of allele is at locus s and, more
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generally, piS for the relative frequency of the sub-haplotype defined by the alleles
iS = (is: s ∈ S) inside i = i1 · · · ik at the loci s ∈ S, for S ⊂ {1, . . . , k}. Thus, for
i = i1i2 · · · ik,

piS =
∑

j:jS=iS

pj.

Thus the form of the subscript reveals the type of relative frequency involved.
A gamete produced by a parent of type (Ai, Aj) is of type Ah for h = h1 · · ·hk

a combination of indices chosen from i = i1i2 · · · ik and j = j1j2 · · · jk, each hs
being equal to either is or js. With further abuse of notation we shall refer to this
gamete by iSjSc if S ⊂ {1, 2 . . . , k} is the set of indices in h taken from i, and we
write the corresponding haplotype frequency as piSjSc . The set S in reality cuts
the loci 1, . . . , k into a number of groups of adjacent loci separated by elements of
Sc, a fact that is poorly expressed in the notation iSjSc . The probability cS that a
father of type (Ai, Aj) segregates a gamete of type AiSjSc is equal to 1/2 times the
probability of occurrence of recombination between every endpoint of a segment in
S and starting point of a segment in Sc and vice versa. This probability can be
derived from the model for the chiasmata process (see Theorem 1.3), but in this
section we shall be content with the notation cS .

A gamete produced by a given meiosis is of type i = i1i2 · · · ik if for some S
the parent possesses and segregates paternal alleles iS at loci S and maternal alleles
iSc at loci Sc, or the other way around. To be able to do this the parent must be
of type (AiSjSc , AjSiSc ) for some j, or of type (AjS iSc , AiSjSc ), respectively. This
shows that the frequency p′i of haplotype i in the children’s population satisfies

p′i ∝
∑

S

cS

(
1
2

∑

j

piSjSc pjSiScwiSjSc ,jSiSc + 1
2

∑

j

pjSiSc piSjScwjS iSc ,iSjSc

)

.

By the symmetry assumptions on the fitness matrix (wi,j), the two sums within
the brackets are equal (the fitness is w,j in the terms of both sums). Let Fi(p) =
∑

j pjwi,j be the marginal fitness of haplotype Ai, and

DS
i,j(p) = pipj − piSjScpjS iSc .

We can then rewrite the recursion in the form

(2.17) p′i = pi
Fi(p)

F (p)
− 1

F (p)

∑

S

cS
∑

j

DS
i,j(p)wi,j .

The sum is over all subsets S ⊂ {1, . . . , k}, although it can be restricted to nontrivial
subsets, as DS

i,j = 0 for S the empty or the full set.

The numbers DS
i,j(p) are measures of “linkage disequilibrium” between the sets

of loci S and loci Sc. They all vanish if and only if the population is in linkage
equilibrium.
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2.18 Lemma. We have DS
i,j(p) = 0 for every S ⊂ {1, 2, . . . , k} if and only if

pi1i2...ik = pi1pi2 · · · pik for every i1i2 · · · ik.

Proof. If the probabilities factorize, then it is immediate that pipj and piSjSc pjSiSc

are the same products of marginal probabilities, and hence DS
i,j(p) = 0, for every S.

Conversely, we have
∑

j D
S
i,j(p) = pi − piSpiSc , and hence pi = piSpiSc for every S

if all DS
i,j(p) vanish. By summing this over the coordinates not in S ∪T we see that

piSiT = piSpiT for any disjoint subsets S and T of {1, . . . , k}. This readily implies
the factorization of pi.

It follows that the recursion (2.17) simplifies to the recursion (2.8) of the one-
locus situation if the initial population is in linkage equilibrium. However, the set of
all vectors p in linkage equilibrium is not necessarily invariant under the iteration
(2.17), and in general the iterations may move the population away from linkage
equilibrium. Depending on the fitness matrices many types of behaviour are possible.
Even with as few as two loci the relative frequencies may show cyclic behaviour
rather than stabilize to a limit. Also the fitness of the population may not increase,
not even if the relative frequencies do converge and are close to their equilibrium
point. We illustrate this below by a number of special cases. The failure of the
increase in fitness is due to recombination, which creates new haplotypes without
regard to fitness. It arises only if there is interaction (epistasis) between the loci.

That the population may not tend to or remain in “linkage equilibrium” is
painful for the latter terminology. It should be remembered that “linkage equilib-
rium” received its name from consideration of dynamics without selection, where it
is a true equilibrium. Some authors have suggested different names, such as “lack
of association”. Interestingly, the commonly used negation “linkage disequilibrium”
has also been criticized for being misleading, for a different reason (see Section 9.1).

Marginal Frequencies. The marginal relative frequencies in the children’s
population can be obtained by summing over equation (2.17). Alternatively, for a
subset S ⊂ K = {1, . . . , k} we can first obtain the relative frequency of a parent
(AiS , AjS ) as (with more lazy notation),

piS ,jS =
∑

gK−S

∑

hK−S

piSgK−SpjShK−SwiSgK−S ,jShK−S .

Next, by the same argument as before we obtain that for, T ⊂ K,

p′iT =
∑

S⊂T

∑

jT−S

∑

jS

cTSpiSjT−S ,jSiT−S

=
∑

S⊂T
cTS

∑

jK−S

∑

hS∪(K−T )

piSjK−SpiT−ShS∪(K−T )
wiSjK−S ,iT−ShS∪(K−T )

.

Here cTS is the probability that there is a recombination between every endpoint of
a segment created by S or Sc within the set of loci T .
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In particular, the allele relative frequencies are obtained by choosing T a single
locus T = {t}. Then there are two terms in the outer sum, corresponding to S = ∅
and S = {t}, with coefficients cTS both equal to 1

2 . The resulting formula can be
written as

(2.19) p′is =
∑

i:is=is

∑

j

pipjwi,j = pis
∑

js

pjs w̄is,js(p),

for w̄is,js(p) given by

w̄is,js(p) =
∑

i:is=is

∑

j:js=js

pi
pis

pj
pjs

wi,j .

This puts the recursion in the form (2.8), with the single-locus fitness taken to be
w̄is,js(p). The latter can be interpreted as the average fitness of allele pair (Ais , Ajs)
in the population, the product (pi/pis)(pj/pjs) being the conditional probability of a
random individual being (Ai, Aj), and having fitness wi,j , given that the individual’s
alleles at locus s are (Ais , Ajs). However, an important difference with the one-locus
situation is that the average fitness w̄is,js(p) is dependent on p, and changes from
generation to generation. Thus the marginal frequencies do not form an autonomous
system, and their evolution does depend on the positions of the loci on the genetic
map.

The recursions for higher order marginals T can similarly be interpreted as
having the form (2.17) applied to T , with an average fitness.

Two Loci. In the case of two loci (k = 2) there are four different subsets S
in the sum in (2.17). The trivial subsets S = ∅ and S = {1, 2} contribute nothing,
and the nontrivial subsets S = {1} and S = {2} are each other’s complement and
therefore have the same DS

i,j(p)-value, equal to

Di1i2,j1j2(p) = pi1i2pj1j2 − pi1j2pj1i2 .

The sum θ: = c{1} + c{2} is equal to the recombination fraction between the two
loci. Formula (2.17) therefore simplifies to

(2.20) p′i = pi
Fi(p)

F (p)
− 1

F (p)
θ
∑

j

Di,j(p)wi,j .

Here we have assumed that the fitness wi1i2,j1j2 depends on the two unordered sets
{i1, j1} and {i2, j2} only.

The formula simplifies further in the case of two bi-allelic loci. Most of the
coefficients Di,j are then automatically zero, and the four nonzero ones are plus or
minus D(p): = p11 − p1p2 each other, as shown in Table 2.1. Moreover, under the
assumed symmetries the fitness values corresponding to the four combinations (i, j)
of haplotypes with nonzero Di,j are identical. With the common value w11,22 =
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w12,21 = w21,12 = w22,11 denoted by w, the iterations become, for 11, 12, 21, 22 the
four haplotypes,

(2.21)

p′11 ∝ p11F11(p) − θD(p)w,

p′12 ∝ p12F12(p) + θD(p)w,

p′21 ∝ p21F21(p) + θD(p)w,

p′22 ∝ p22F22(p) − θD(p)w.

The proportionality constant is the fitness F (p).
Because an internal point p = (p11, p21, p12, p22)

T of (local) maximum fitness is
necessarily a stationary point of the Lagrangian of F under the side condition pT 1 =
1, it must satisfy Fij(p) ∝ 1 and hence Fij(p) = F (p), for every ij = 11, 12, 21, 22.
The recursion formulas (2.21) show that such a vector p is also a fixed point of the
iterations if and only if D(p) = 0. However, the four equations Fij(p) = 1 form a
system of linear equations determined by the fitness matrix (wi,j) and there is no
reason that a solution would satisfy D(p) = 0. Therefore, in general the extrema of
the fitness function F do not coincide with the fixed points of (2.21). This suggests
that the iterations may not necessarily increase the fitness, and this can indeed be
seen to be the case in examples.

i/j 11 12 21 22

11 0 0 0 D
12 0 0 −D 0
21 0 −D 0 0
22 D 0 0 0

Table 2.1. Values of Di,j for two biallelic loci. The four possible haplotypes are labelled 11, 12, 21, 22
and D = p11 − p1p2.

2.22 EXERCISE. Prove the validity of Table 2.1. [Hint: for the anti-diagonal reduce
D and a value such as p11p22−p12p21 both to a function of three of the four haplotype
probabilities.]

No Selection. Choosing wi,j = 1 for every (i, j), we regain the dynamics
without selection considered in Sections 2.2 and 2.3. Then F (p) = Fi(p) = 1 for
every i, and the sum on j in (2.17) can be performed to give

(2.23) p′i = pi −
∑

S

cS(pi − piSpiSc ).

In the case that there are only two loci, the sum over S can be reduced to a
single term, with leading coefficient θ, and we can regain the iteration expressed in
Lemma 2.5. The next lemma generalizes the conclusion of this lemma to multiple
loci. The condition that cS > 0 for every S expresses that no subset of loci should
be completely linked.
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2.24 Lemma. If cS > 0 for every S and wi,j = 1 for every (i, j), then the haplotype

relative frequencies p
(n)
i after n generations satisfy p

(n)
i −pi1pi2 · · · pik → 0 as n→ ∞,

for pi1 , pi2 , . . . , pik the marginal relative frequencies in the initial population.

Proof. The recursion (2.23) implies that, for every i and every subset T ⊂
{1, . . . , k}.

p′i − piT piT c = (1 − cT − cT c)(pi − piT piT c ) −
∑

S 6=T,T c

cS(pi − piSpiSc ).

Let T be a collection of subsets of {1, . . . , k} that contains for every nontrivial (i.e.
not empty or the whole set) subset T ⊂ {1, . . . , k} either T or its complement T c.
Define P as the (#T × #T )-matrix whose rows and columns correspond to the
elements of T , in arbitrary order, and whose T th column has the number 2cT in
each row. Form vectors pi1 and (piT piT c ) with coordinates indexed by T with as
T th elements pi and piT piT c , respectively. The preceding display, for every T ∈ T ,
can then be written

p′i1 − (piT piT c ) = (I − P)
(
pi1 − (piT piT c )

)
.

Therefore, using similar notation for the relative frequencies in the consecutive
generations, we infer that

p
(n+1)
i 1 −

∏

s

pis1 = (I − P)
(

p
(n+1)
i 1 −

∏

s

pis1
)

+ (p
(n)
iT
p
(n)
iT c

) −
∏

s

pis1

= (I − P)n+1
(

p
(0)
i 1 −

∏

s

pis1
)

+

n∑

k=0

(I − P)k
(

(p
(n−k)
iT

p
(n−k)
iT c

−
∏

s

pis1
)

.

The matrix P is a strictly positive stochastic matrix, and hence by the Perron-
Frobenius theorem its eigenvalues have modulus smaller than 1. It follows that
the spectral radius of the matrix I − P is strictly smaller than one, and hence
‖(I − P)n‖ → 0 as n → ∞. Therefore the first term on the right side tends to
zero. We also have that ‖(I − P )n‖ ≤ Ccn for some c < 1 and C > 0. (In fact
‖(I − P )n‖1/n tends to the spectral radius and hence there exists d < 1 such that
‖(I−P )k‖ < dk for sufficiently large k. Then ‖(I−P )n‖ ≤ C‖(I−P )k‖n/k ≤ Cdn/k.)
It follows that the terms of the sum are dominated by a constant times ck. We can
now proceed by induction on the number of loci. The terms in the sum refer to
haplotype frequencies of haplotypes at the loci in T , which are smaller than k.
Under the induction hypothesis the terms of the sum tend to zero as n → ∞, for
every fixed k. By the dominated convergence theorem the sum then also tends to
zero.

Additive Fitness. The fitness is said to be additive in the loci if, for marginal
fitness measures ws|is,js ,

(2.25) wi1···ik,j1···jk = w1|i1,j1 + · · · + wk|ik,jk .
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In this situation the dynamics are much as in the case of a single locus: the popu-
lation fitness never decreases and the iterations converge. Moreover, as in the case
of no selection the population converges to linkage equilibrium.

The reason is that the fitness of the population depends only on the marginal
allele frequencies, whose single-step iterations in turn do not dependent on the
recombination probabilities cS .

2.26 Theorem. If wi,j satisfies (2.25) for functions ws|is,js that are symmetric in
is, jS , then the iterations (2.17) satisfy F (p′) ≥ F (p) with equality only if p = p′.
Furthermore, every sequence of iterates p, p′, p′′, . . . converges to a limit, where the
only possible limit points are vectors p = (pi) of the form pi = pi1 · · · pik that are
also fixed points of (2.17) in the situation that the loci are completely linked.

Proof. The fitness takes the form

F (p) =

k∑

s=1

∑

is

∑

js

pispjsws|is,js ,

This expression depends on p only through the marginal relative frequencies pis .
By (2.19) the latter satisfy a one-generation evolution that depends on the current
joint relative frequency p, but not on the probabilities cS . It follows that starting
from p, the fitness in the next generation is the same no matter the map position of
the loci. If the take the loci completely linked, then we can think of the haplotypes
as single-locus alleles, where the number of possible alleles is equal to the set of
possible vectors i = i1 · · · ik, having “allele” relative frequencies pi. Theorem 2.10
shows that the fitness increases unless p = p′.

For the proof of the last assertion see Lyubich, 9.6.13 and 9.6.11.

Multiplicative Fitness.

Cyclic Behaviour. Even in the two-locus, biallelic system (2.21) complex
behaviour is possible. Lyubich (1992, 9.6.16-5) gives a theoretical example of a mul-
tiplicative fitness matrix, where the sequences of odd and even numbered iterations
converge to different limits. (The recombination fraction in this example is bigger
than 3/4, so the example devoid of genetical significance.) In Figure 2.1 we pro-
duce a more dramatic numerical example of the two-locus system, showing cyclic
behaviour. The fitness matrix (with the haplotypes ordered as 11, 12, 21, 22) in this
example is






0.8336687 0.6606954 0.5092045 1.00000
0.6606954 1.3306800 1.0000000 0.22458
0.5092045 1.0000000 0.8072400 0.46357
1.0000000 0.2245800 0.4635700 1.41881




 .

The ouput of the system is sensitive to the starting point, which in the numerical
simulation was chosen close to an (unstable) fixed point of the dynamical system.
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Figure 2.1. Example of cyclic behaviour in the two-locus, biallelic system (2.21). The top two
panels give the allele relative frequencies at the two lcoi, and the bottom panel the linkage disequi-
librium, each of 5000 generations. The fitness matrix is given in the text, and the starting vector is
p = (0.78460397, 0.10108603, 0.04013603, 0.07417397), corresponding to allele frequencies 0.88569 and
0.82474, and linkage disequilibrium D = 0.05414. [Source: Alan Hastings (1981), Stable cycling in
discrete-time genetic models, Proc. Natl. Acad. Sci.78(11), 7224–7225.]

2.6.3 Fisher’s Fundamental Theorem

Fisher’s fundamental equation of natural selection relates the change in fitness of a
population to the (additive) variance of fitness. We start with a simple lemma for
the evolution at a single locus. Let F (p) be the fitness of a population, Fi(p) the
marginal fitness of allele Ai, and σ2

A(p) = 2
∑

i pi
(
Fi(p)−F (p)

)
2 twice the variance

of the marginal fitness.

2.27 Lemma (Fisher’s fundamental theorem). Under the single-locus recursion
(2.8),

F (p′) − F (p) =
σ2
A(p)

F (p)
+ F (p′ − p).

Proof. ForW the matrix (wi,j) we can write F (p′)−F (p) = 2(p′−p)TWp+F (p′−p).
Here we replace the first occurrence of p′−p by the right side of equation (2.9), and
note that

2
(
diag (p)Wp− pF (p)

)T
Wp = 2

∑

i

(
Fi(p) − F (p)

)
piFi(p).
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The right side is the variance σ2
A(p) of the marginal fitnesses, the fitness F (p) being

their mean.

The term F (p′ − p) is negligible in the limit if maxi,j |wi,j − 1| → 0, a situa-
tion known as weak selection. (See Problem 2.28.) Fisher’s fundamental theorem is
therefore often quoted as an approximation in the (somewhat cryptic) form

∆w̄ ≈ σ2
A

w̄
.

Apparently Fisher considered this formula as fundamental to understanding evolu-
tion. He summarized it in the form of a law as: the rate of increase in fitness of any
organism at any time is equal to its genetic variance in fitness at that time.†

2.28 EXERCISE. Suppose that ‖w − 1‖: = maxi,j |wi,j − 1| tends to zero. Show
that σ2

A(p) = O
(
‖w − 1‖2

)
and F (p′ − p) = O

(
‖w − 1‖3

)
. [Hint: if wi,j = 1 for

every (i, j), then Fi(p) = F (p) = 1 for every p and F (p′ − p) = 0. Deduce that
p′ − p = O

(
‖w − 1‖

)
.]

Because Fisher played such an important role in the development of statisti-
cal genetics, there has been speculation about the exact meaning and formulation
of his fundamental theorem. First it must be noted that Fisher interpreted the
quantity σ2

A(p) not as twice the variance of marginal fitness, but as the additive
variance of fitness viewed as a trait in the population. Consider a population of
individuals (Ai, Aj) in Hardy-Weinberg equilibrium characterized by the allele rel-
ative frequency vector p. If (GP , GM ) is the genotype of an individual chosen at
random from the population and W is his fitness, then the best approximation to
W by a random variable of the form g(GP )+g(GM ) (for an arbitrary function g, in
the mean square sense) is the random variable Ep(W |GP )+Ep(W |GM )−EpW (cf.
Section 6.1.1). From the explicit formula Ep(W |GP = Ai) =

∑

j pjwi,j = Fi(p), it

follows that σ2
A(p) is the variance of this approximation.

The fundamental theorem itself can also be formulated in terms of “additive
fitness”, and some authors claim that Fisher meant it this way. The additive ap-
proximation Ep(W |GP ) + Ep(W |GM ) − EpW to the fitness W could be taken as
defining a new “additive fitness” measure of individual (Ai, Aj) as

w̃i,j(p) = Ep(W |GP = Ai) + Ep(W |GM = Aj) − EpW.

This approximation depends on the relative frequencies p, because these determine
the joint distribution of (GP , GM ,W ). We fix this at the current value p, but replace
the relative frequencies p of the individuals in the population by p′. The change in
“additive fitness” is then

(2.29)
∑

i

∑

j

p′ip
′
jw̃i,j(p) −

∑

i

∑

j

pipjw̃i,j(p) =
σ2
A(p)

F (p)
.

† R.A. Fisher (1958), The genetical theory of natural selection, p 37.
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The last equality follows by simple algebra (or see below). The point of the calcu-
lation is that this formula is exact, although one may question the significance of
the expression on the left, which is a “partial change of partial fitness”.

Another point is that in this form the fundamental theorem extends to selection
in multi-locus systems. If (GP , GM ) is the pair of k-locus haplotypes of an individual,
then we can in the same spirit as before define a best additive approximation of the
fitness W as the projection of W , relative to mean square error computed under
the population relative frequencies p, onto the space of all random variables of
the form EpW +

∑

s

(
gs(GP,s) + gs(GM,s)

)
, for GP = (GP,1, . . . , GP,k) and GM =

(GM,1, . . . , GM,k) and gs arbitrary functions. If this projection is given by functions
fs,p, then the additive fitness of an individual with haplotype pair (Ai, Aj) is defined
as

(2.30) w̃i,j(p) = EpW +

k∑

s=1

(
fs,p(Ais) + fs,p(Ajs)

)
.

This fitness is additive also in the sense of (2.25), but in addition the marginal
fitnesses fs,p(Ais ) + fs,p(Ajs) are special. They depend on the current relative fre-
quency vector p, but are fixed in evaluating the change in fitness to the next itera-
tion.

2.31 Theorem (Fisher’s fundamental theorem). Under the multi-locus recursion
(2.17), equation (2.29) is valid for the additive fitness defined in (2.30), with σ2

A(p)
taken equal to the variance of the orthogonal projection in L2(p) of W onto the set
of random variables of the form EpW +

∑

s

(
gs(GP,s) + gs(GM,s)

)
.

Proof. If ΠP,pW and ΠM,pW are the L2(p)-projections ofW−EpW onto the spaces
of mean zero random variables of the forms

∑

s gs(GP,s) and
∑

s gs(GM,s), respec-
tively, then the left side of (2.29) is equal to the difference Ep′(ΠP,pW + ΠM,pW )−
Ep(ΠP,pW + ΠM,pW ). By symmetry this is twice the paternal contribution.

Because the variable ΠP,pW is a sum over the k loci, the expectations Ep′ΠP,pW
and EpΠP,pW depend on p′ = (p′i) and p = (pi) through the marginal frequencies
p′is =

∑

j:js=is
p′j and pis =

∑

j:js=is
pj for the loci s = 1, . . . , k only. In fact,

Ep′ΠP,pW−EpΠP,pW =
∑

s

Ep′fs,p(GP,s)−Epfs,p(GP,s) =
∑

s

∑

is

fs,p(Ais)
(p′is
pis

−1
)

pis .

By (2.19) the recursions for the marginal frequencies can be written as p′is =
pisEp(W |GP,is = Ais). It follows that the preceding display can be rewritten as

∑

s

Epfs,p(GP,s)
(
Ep(W |GP,s) − 1

)
=

∑

s

Epfs,p(GP,s)W = Ep(ΠP,pW )W.

Because ΠP,pW is an orthogonal projection of W , the right side is equal to
Ep(ΠP,pW )2.
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The preceding theorem does not assume linkage equilibrium, but is valid for
general multi-locus allele frequency vectors p. Inspection of the proof shows that
dependence across loci is irrelevant, because of the assumed additivity of the fitness.
As in all of this section, we have implicitly assumed independence of the paternal
and maternal haplotypes (i.e. random mating). That assumption too is unnecessary,
as the “additive fitness” is by definition also additive across the parental haplotypes.
Thus Fisher’s fundamental theorem becomes a very general result, in this form also
known as an instance of Price’s theorem, but perhaps by its generality suffers a bit
in content.

Weak selection and epistasis??

* 2.7 Fertility Selection

Certain mating pairs may have more offspring than others. To model this, fertility
selection attaches fitness weights to mating pairs, rather than to individuals. We still
assume that mating pairs are formed at random, possibly after viability selection
of the individuals, but a given mating pair (Ai, Aj) × (Ak, Al) produces offspring
proportional to fertility weights fi,j×k,l.

Viability and fertility selection can be combined by first selecting the indi-
viduals that enter mating pairs by viability weights wi,j , and next applying fertil-
ity selection. This leads to the overall weight wi,jwk,lfi,j×k,l for the mating pair
(Ai, Aj) × (Ak, Al). To simplify notation we can incorporate the viability weights
into the fertility weights, and denote the overall weight by wi,j×k,l. On the other
hand, if the fertility is multiplicative (fi,j×k,l = g̃i,j g̃k,l), then it is easier to incorpo-
rate the fertility weights in the viability weights, and fertility selection works exactly
as viability selection. In the general case, fertility selection is more complicated to
analyse.

Under fertility selection the two parents in a mating pair are not indepen-
dent and hence zygotes are not composed of independent haplotypes. This makes
it necessary to follow the successive populations (Ai, Aj) through their genotypic
relative frequencies pi,j . The mating pair (Ai, Aj)× (Ak, Al) has relative frequency
pi,jpk,lwi,j×k,l in the population of all mating pairs and produces a child by inde-
pendently recombining haplotypes Ai and Aj , and Ak and Al.

2.7.1 Single Locus

For a child of type (Ai, Aj) the allele Ai is the father’s paternal or maternal allele,
and the allele Aj is the mother’s paternal or maternal allele. The probability that
in both cases it is the paternal allele is 1/4, and the parent pair is then (Ai, Ar) ×
(Aj , As) for some r and s, which has relative frequency pi,rpj,swi,r×j,s. This and
the same observation for the other three cases shows that the relative frequency of
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a child of type (Ai, Aj) is

(2.32)

p′i,j ∝ 1
4

∑

r

∑

s

pi,rpj,swi,r×j,s + 1
4

∑

r

∑

s

pi,rps,jwi,r×s,j

+ 1
4

∑

r

∑

s

pr,ipj,swr,i×j,s + 1
4

∑

r

∑

s

pr,ips,jwr,i×s,j .

If the fertility weights are symmetric in the two parents (wi,r×j,s = wj,s×i,r for
every i, r, j, s), then the right side is symmetric in i and j. The relative frequencies
of genotypes (Ai, Aj) and (Aj , Ai) are then equal after one round of offspring, and
it is not much loss of generality to assume symmetry in the first generation. If
pi,j = pj,i for every i, j and moreover the fertilities are symmetric in the parents
and depend on the unordered genotypes of the parents only (wi,r×j,s = wr,i×j,s for
every i, r, j, s), then the preceding display reduces to

p′i,j ∝
∑

r

∑

s

pi,rpj,swi,r×j,s.

The proportionality factor is the average fertility
∑

i

∑

j

∑

k

∑

l pi,jpk,lwi,j×k,l of a
mating pair.

In general, the population will not be in Hardy-Weinberg equilibrium.

* 2.8 Assortative Mating

The assumption that individuals choose their mates purely by chance seems not very
realistic. The situation that they are lead by phenotypes of their mates is is called
assortative mating if they have a preference for mates with similar characteristics
and desassortative mating in the opposite case.

We can model (des)assortative mating by reweighting mating pairs (Ai, Aj) ×
(Ar , As) by weights wi,j×r,s. Mathematically this leads to the exact situation of
fertility selection. Therefore instead consider the more special situation of a sexe-
dominated mating system, where a mating pair is formed by first choosing a fa-
ther from the population, and next a mother of a genotype chosen according to a
probability distribution dependent on the genotype of the father. If pi,j is the rel-
ative frequency of genotype (Ai, Aj) in the current population, then a mating pair
(Ai, Aj) × (Ar , As) is formed with probability pi,jπr,s|i,j , for (r, s) → πr,s|i,j given
probability distributions over the set of genetic types (Ar, As). This gives the situa-
tion of fertility selection with weights of the special form wi,j×r,s = πr,s|i,j/pr,s. The
fact that

∑

r,s πr,s|i,j = 1, for every (i, j), creates a Markov structure that makes
this special scheme easier to analyse.



2.8: Assortative Mating 51

2.8.1 Single Locus

The basic recursion is given by (2.32), but can be simplified to, for πj|i,k =
1
2

∑

l(πj,l|i,k + πl,j|i,k),

p′i,j = 1
2

∑

k

(pi,kπj|i,k + pk,iπj|k,i).

In vector form, with p′ and p the vectors with coordinates p′i,j and pi,j , these equa-

tions can be written as p′ = AT p, for A the matrix with in its rsth row and ijth
column the number

Ars,ij = πj|r,s(
1
21r=i6=s + 1

21r 6=i=s + 1r=i=s).

The sum over every row of A can be seen to be 1, so that A is a transition matrix
of a Markov chain with state space the set of genotypes (Ai, Aj). The chain moves
from state (Ar, As) to state (Ai, Aj) with probability Ars,ij . These moves can be
described in a more insightful way by saying that the chain determines its next
state (Ai, Aj) by choosing Ai randomly from {Ar, As} and by generating Aj from
the probability distribution π·|r,s.

The dynamics (p′)T = pTA is described by considering the current relative
frequency vector p as the current distribution of the Markov chain and p′ as the
distribution at the next time. Thus a current state (a “father”) of type (Ar, As) is
chosen according to the current distribution pr,s, and the next state (a “child”) is
formed by choosing the child’s “paternal allele” randomly from its father’s alleles
{Ar, As} and its “maternal allele” according to the probability distribution π·|r,s.

The long term dynamics of a sequence of populations is given by the consecu-
tive laws of the Markov chain. If the transition matrix is aperiodic and irreducible,
then the sequence p, p′, p′′, . . . will converge exponentially fast to the unique sta-
tionary distribution of the transition matrix. A sufficient condition for this is that
πj|r,s > 0 for every j, r, s, meaning that no genotype (Ar , As) completely excludes
individuals carrying an allele Aj . Of course, convergence will take place even if the
transition matrix is reducible, as long as it is not periodic, but the limit will depend
on the starting distribution. On the other hand, it is not too difficult to create
periodicities,?? which will give cycling relative frequencies.

2.33 Example. Suppose that a father chooses a random mate with probability
1 − λ and a mate of his own type otherwise. Because he would choose the mate
based on phenotype and as usual we like to assume that genotypes (Ai, Aj) and
(Aj , Ai) lead to the same phenotype, we understand the mate as an unordered
genotype {Ai, Aj}. Thus a father (Ar , As) chooses a mate (Ai, Aj) with probability
πi,j|r,s = (1 − λ)pi,j + λqi,j1{i,j}={r,s}, for qi,j = pi,j/(pi.j + pj,i) the probability
that a randomly chosen individual of type {Ai, Aj} has ordered genotype (Ai, Aj).
This leads to

πj|r,s = (1 − λ)1
2 (pj. + p.j) + λ(1r=j=s + 1

21r=j 6=s + 1
21r 6=j=s).
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These probabilities do depend on the marginals of the current relative frequency
vector p, which may change from generation to generation. The Markovian inter-
pretation of the dynamics given previously is still valid, but the transition matrix
changes every iteration. Convergence??

2.34 Example (Biallelic locus). If the transition probabilities πj|r,s are symmetric
in r and s, then so are the transition probabilities Ars.ij , and the corresponding
Markov chain on the genotypes (Ai, Aj) can be collapsed into a Markov chain on
the unordered genotypes {Ai, Aj}. For a biallelic locus with alleles a and A this gives
a Markov chain on a state space of three elements, which we write as {aa, aA,AA}.
The transition kernel is





πa|aa πA|aa 0
1
2πa|Aa

1
2πA|Aa + 1

2πa|Aa
1
2πA|Aa

0 πa|AA πA|AA





Apart from the zeros in the first and third row, the three rows of this matrix can
be any probability vector. If the probabilities πA|aa and πa|AA are strictly between
0 and 1, then the chain possesses a unique stationary distribution, given by

(πaa, πAa, πAA) ∝
( πa|Aa

2πA|aa
, 1,

πA|Aa
2πa|AA

)

.

Thus all three types exist in the limit, but not necessarily in equal numbers, and
their fractions may be far from the starting fractions.

* 2.9 Mutation

In the biological model of meiosis as discussed so far pieces of parental chromosomes
were recombined and then passed on without changes. In reality one or more base
pairs may be substituted by other base pairs, some base pairs may be deleted,
and new base pairs may be added (for instance by repetition). Any such change is
referred to by the term mutation. Mutations play an important role in creating new
genetic varieties, and are the drivers of evolutionary change. Because they are rare,
they are typically excluded from consideration in genetic studies of pedigrees that
involve only a few generations. The influence of mutation on evolution works over
many generations.

Certain disease genes are thought to have arisen due to mutation and since
then passed on to descendants. In Chapter?? we discuss approaches that try to find
such genes by tracing such genes to their “common ancestor”.
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* 2.10 Inbreeding

Inbreeding is a deviation of random mating caused by a preference for relatives as
partners, but the term is not very clearly defined. For instance, small populations
may be considered to be inbred, even if within the population there is random
mating.

In human genetics inbreeding is not often important. On the other hand, ani-
mals or plants may be inbred on purpose to facilitate genetic analysis or to boost
certain phenotypes. In particular, there are several standard experimental designs
to create strains of genetically identical individuals by inbreeding.

1

Figure 2.2. Four generations of inbreeding. A father and mother (the square and circle at the top)
conceive a son and daughter who in turn are parents to a son and a daughter, etc.

The basis of these designs is to mate a son and daughter of a given pair of
parents recursively, as illustrated for four generations in Figure 2.2. Eventually this
will lead to offspring that is:
(i) identical at the autosomes.
(ii) homozygous at every locus.
The genetic make-up of the offspring depends on the genomes of the two parents
and the realization of the random process producing the offspring.

2.35 Lemma. Consider a sequence of populations each of two individuals, starting
from two arbitrary parents and each new generation consisting of a son and a daugh-
ter of the two individuals in the preceding generation. In the absence of mutations
there will arise with probability one a generation in which the two individuals are
identical and are homozygous at every locus.

Proof. Properties (i) and (ii) are retained at a given locus in all future generations
as soon as they are attained at some generation. Because there are only finitely
many loci in the genome, it suffices to consider a single locus. The two parents
have at most four different alleles at this locus, and the mating scheme can never
introduce new allele types. If we label these four alleles by 1, 2, 3 and 4, then there
are at most 16 different ordered genotypes ab ∈ {1, 2, 3, 4}2 for each individual and
hence at most 256 different pairs ab.cd of ordered genotypes for the male and female
in a given generation. The consecutive genotypic pairs form a Markov chain, whose
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transition probabilities can be computed with the help of Mendel’s first law. The
states 11.11, 22.22, 33.33 and 44.44 are clearly absorbing. A little thought will show
that the Markov chain is irreducible and aperiodic with no other absorbing states.
Absorption will happen eventually with probability one.

Suppose one repeats the inbreeding experiment as shown in Figure 2.2 with
multiple sets of parents. This will yield a number of strains (biologists also speak
of models) that each satisfy (i)–(ii), but differ from each other, depending on the
parents and the breeding. The parents of the strains are often selected based on
a phenotype of interest. If the parents differ strongly in their phenotype, then the
descendants will likely also differ in their phenotype, and hence comparison of the
strains will hopefully reveal the genetic determinants.

The next step in the experimental design is to cross the different strains. All
descendants of a given pair of strains are identical, their two chromosomes being
copies of the (single) chromosomes characterizing the strains. A back-cross experi-
ment next mates a descendant with a parent of the strain, while an intercross mates
two descendants of different strains??. The genomes of the resulting individuals are
more regular than the genomes of randomly chosen individuals and can be charac-
terized by markers measured on the parents of the strains. This facilitates statistical
analysis.



3
Pedigree Likelihoods

A pedigree is a tree structure of family relationships, which may be annotated with
genotypic and phenotypic information on the family members. In this chapter we
show how to attach a likelihood to a pedigree, and apply it to parametric linkage
analysis. The likelihood for observing markers and phenotypes of the individuals in
a pedigree is written as a function of recombination fractions between markers and
putative disease loci and “penetrances”, and next these parameters are estimated
or tested by standard statistical methods. The idea is that relative positions of
markers, if not known, can be deduced from their patterns of cosegregation in
families. Markers that are close are unlikely to be separated by crossovers, and
hence should segregate together, and vice versa. A likelihood analysis permits to
make this idea quantitative and form a “map” of the relative positions of marker
loci. Similarly loci that are responsible for a disease can be positioned relative to this
“genetic map” by studying the cosegregation of putative disease loci and marker
loci and relating this to the disease phenotype. The estimation of recombination
fractions between marker and disease loci is called “linkage analysis”. With the help
of a map function these recombination fractions can be translated into a “genetic
map” giving the relative positions of the genes and markers.

3.1 Pedigrees

Figure 3.1 gives an example of a three-generation pedigree. Squares depict males
and circles females, horizontal lines mean mating, and connections with a vertical
component designate descendants. Squares and circles are filled or empty to indi-
cate a binary phenotype of the individual; for ease of termininology “filled” will
be referred to as “affected”, and “empty” as “unaffected”. Figure 3.1 shows eight
individuals, who have been numbered arbitrarily by 1, 2, . . . , 8 for identification.
Individuals 1 and 2 in the pedigree have children 3 and 4, and individuals 4 and 5
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1 2

3 4 5

6 7 8

1

Figure 3.1. A three-generation pedigree.

have children 6, 7 and 8.
Individuals in a pedigree fall into two classes: founders and nonfounders. Indi-

viduals of whom at least one parent is also included in the pedigree are nonfounders,
whereas individuals whose parents are not included are founders. This classification
is specific to the pedigree and may run through the generations. For instance, in
Figure 3.2 the grandparents 1 and 2, but also the spouse 5 in the second generation,
are founders. The other individuals are nonfounders.

In this chapter we always assume that the founders of a pedigree are sampled
independently from some given population. In contrast, given the founders the ge-
netic make-up of the nonfounders is determined by their position in the pedigree
and the chance processes that govern meiosis. The pedigree structure (who is hav-
ing children with whom and how many) is considered given. Each nonfounder is the
outcome of two meioses, a paternal and a maternal one. All meioses in the pedigree
are assumed independent.

In typical pedigrees both parents of a nonfounder will be included, although
it may happen that there is information on one parent only. In general we include
all individuals in a pedigree that share a family relationship and on whom some
information is available, and perhaps also both parents of every nonfounder. Indi-
viduals who share no known family relationship are included in different pedigrees.
Our total set of information will consist of a collection of pedigrees annotated with
the phenotypic and genotypic information.

Different pedigrees are always assumed to have been sampled independently
from a population. This population may consist of all possible pedigrees, or of special
pedigrees. If some pedigrees have more probability to be included than others, then
this should be expressed through their likelihood. Statisticians speak in this case
of “biased sampling”, geneticists of ascertainment. If a pedigree is included in the
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analysis, because one of the individual was selected first, after which the other
individuals were ascertained, then this first individual is called the proband.

3.2 Fully Informative Meioses

The pedigree in Figure 3.2 shows a family consisting of a father, a mother, a son
and a daugher, and their alleles (labelled with the arbitrary names 1, 2, 3, or 4)
at a given marker locus. The father and the daughter are affected, and we wish
to investigate if the affection is linked to the marker locus. In practice we have
more than one pedigree and/or a bigger pedigree, but this small pedigree serves to
introduce the idea. The family is assumed to have been drawn at random from the
population.

1 3 2 4

3 4 1 4

Figure 3.2. Pedigree showing a nuclear family, consisting of father, mother and two children, and
their unordered genotypes at a marker location. The father and daughter are affected.

For further simplicity suppose that the affection is known to be caused by
a single allele A at a single biallelic locus (a Mendelian disease), rare, and fully
dominant without phenocopies. Dominance implies that an individual is affected if
he has unordered genotype AA or Aa at the disease locus, where a is the other allele
at the disease locus. The assumption that the affection is rare, makes both unordered
genotypesAa andAA rare, but the genotypeAamuch more likely than the genotype
AA (under Hardy-Weinberg equilibrium). Under the added assumption that no
individual with genotype aa is affected (“no phenocopies”), the affection status
indicated in Figure 3.2 makes it reasonable to assume that the unordered genotypes
at marker and disease location are as in Figure 3.3.

Thus far we have considered unordered genotypes. The next step is to try and
resolve the phase of the genotypes, i.e. to reconstruct the pairs of haplotypes for
the two loci. The situation in Figure 3.3 is fortunate in that the marker alleles of
the parents are all different. This allows to decide with certainty which allele the
two parents have segregated to the children. In fact, the marker alleles of the two
children, although considered to form unordered genotypes so far, have already been
written in the “correct” paternal/maternal order. For instance, the allele 3 of the
son clearly originates from the father and allele 4 from the mother. Reconstructing
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A a

1 3

a a

2 4

a a

3 4

A a

1 4

1

Figure 3.3. Pedigree showing a nuclear family, consisting of father, mother and two children, and
their unordered genotypes at a marker location and the disease location. The disease is assumed to be
Mendelian, and dominant with no phenocopies.

the phase requires that we put the alleles at the disease locus in the same order. The
mother and the son are homozygous at the disease locus, and hence the ordering
does not matter. For the daughter it is clear that both the disease allele A and
the marker allele 1 were received from the father and hence her phase is known.
Thus we infer the situation shown in Figure 3.4. The phase of the mother has been
resolved in this figure, in the sense that her haplotypes are a2 and a4, even though
the positioning of the haplotypes (a2 left, a4 right) is not meant to reflect parental
or maternal origin, as this cannot be resolved.

A a

1 3

a a

2 4

a a

3 4

A a

1 4

Figure 3.4. Pedigree showing a nuclear family, consisting of father, mother and two children, and
their genotypes at a marker location and the disease location, including phase information for the mother
and the children.

The phase of the father cannot be resolved from the information in the pedigree.
If we care about haplotypes, but not about the (grand)paternal and (grand)maternal
origins of the alleles, then there are clearly two possibilities, indicated in Figure 3.5.

There are four meioses incorporated in the pedigree: the father segregated a
gamete to each of the children, and so did the mother. A meiosis is said to be
recombinant if the haplotype (gamete) passed on by the parent consists of alleles
taken from different parental chromosomes. Given the pedigree on the left in Fig-
ure 3.5, the father segregated the haplotype a3 to his son and the haplotype A1
to his daughter, and both are nonrecombinant. Given the pedigree on the right in
Figure 3.5, the father segregated the same haplotypes, but both meioses were re-
combinant. The mother segregated the haplotype a4 to both children, but neither
for the pedigree on the left nor for the one on the right can the meioses be resolved
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A a

1 3

a a

2 4

a a

3 4

A a

1 4

a A

1 3

a a

2 4

a a

3 4

A a

1 4

1

Figure 3.5. Pedigrees showing a nuclear family, consisting of father, mother and two children, and
their ordered genotypes at a marker location and the disease location.

to be recombinant or not. The four meioses are assumed to be independent, and
hence independently recombinant or not. Recombination in a single meiosis occurs
with probability equal to the recombination fraction between the disease and marker
locus, which is directly related to their genetic map distance.

Under linkage equilibrium the two pedigrees in Figure 3.5 are equally likely.
Because the left pedigree implies two nonrecombinant meioses and the right one two
recombinant meioses, it is reasonable to assign the original pedigree of Figure 3.2
the likelihood

1
2 (1 − θ)2 + 1

2θ
2,

where θ is the recombination fraction between the disease and marker locus.
As a function of θ this function is decreasing on the interval [0, 1

2 ]. Therefore, the

maximum likelihood estimator for the recombination fraction is θ̂ = 0, indicating
that the disease locus is right on the marker locus. Of course, the small amount
of data makes this estimate rather unreliable, but the derivation illustrates the
procedure. In practice we would have a bigger pedigree or more than one pedigree.
The total likelihood would be defined by multiplying the likelihoods of the individual
pedigrees.

In practice rather than estimating the recombination fraction one often tests
the null hypothesis H0: θ = 1

2 that the recombination fraction is 1
2 , i.e. that there

is no linkage between marker and disease. This can be done by the likelihood ratio
test. In the example the log likelihood ratio statistic is

log
1
2 (1 − θ̂)2 + 1

2 θ̂
2

1
2 (1 − θ̂0)2 + 1

2 θ̂
2
0

,

with θ̂ the maximum likelihood estimator and θ̂0 = 1
2 the maximum likelihood

estimator under the null hypothesis. The null hypothesis is rejected for large values
of this statistic. In that case it is concluded that a gene in the “neighbourhood” of
the marker is involved in causing the disease.
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3.3 Pedigree Likelihoods

Consider a more formal approach based on writing a likelihood for the observed
data, the pedigree in Figure 3.2. We assume that the father and mother are chosen
independently at random from a population that is in combined Hardy-Weinberg
and linkage equilibrium. Under this assumption the probabilities of observing the
pedigrees with the indicated marker and disease genotypes on the left or on the
right in Figure 3.5 are given by

(3.1) pApap1p3 × p2
ap2p4 × 1

2 (1 − θ)1
2 × 1

2 (1 − θ)1
2 ,

and

(3.2) pApap1p3 × p2
ap2p4 × 1

2θ
1
2 × 1

2θ
1
2 ,

respectively. Here pA and pa are the frequencies of alleles A and a at the disease
locus, and p1, p2, p3, p4 are the frequencies of the marker alleles in the population.
The probabilities are computed by first writing the probability of drawing two
parents of the given types from the population and next multiplying this with the
probabilities that the children have the indicated genotypes given the genotypes of
their parents. The structure of the pedigree (father, mother and two children) is
considered given. The probabilities of drawing the parents are determined by the
assumption of combined Hardy-Weinberg and linkage equilibrium. The conditional
probabilities of the genotypes of the children given the parents are determined
according to Mendelian segregation and the definition of the recombination fraction
θ. For instance, for the pedigree on the left pApap1p3 is the probability that an
arbitrary person has the genotype of the father, p2

ap2p4 is the probability that an
arbitrary person has the genotype of the mother, 1

2 (1 − θ)1
2 is the probability that

the son has the given genotype given the parents (the father must choose to pass
on allele a and then not recombine; the mother must choose allele 4) and 1

2 (1− θ)1
2

is the probability that the daughter is as indicated given the parents’ genotypes.
We multiply the four probabilities, because the parents are founders of the pedigree
and are assumed to have been selected at random from the population, while the
four meioses are independent by assumption.

In the preceding section we argued that the two annotated pedigrees in Fig-
ure 3.5 are the only possible ones given the observed pedigree in Figure 3.2. As the
two pedigrees have likelihoods as in the preceding displays and they seem equally
plausible, it seems reasonable to attach the likelihood

(3.3)
1
2

[
pApap1p3 × p2

ap2p4 × 1
2 (1 − θ)1

2 × 1
2 (1 − θ)1

2

]

+ 1
2

[
pApap1p3 × p2

ap2p4 × 1
2θ

1
2 × 1

2θ
1
2

]

to the annotated pedigree in Figure 3.2. This is not at all the likelihood 1
2 (1 −

θ)2 + 1
2θ

2 that was found in the preceding section. However, as functions of the
recombination fraction θ the two likelihoods are proportional, and as likelihood
functions they are equivalent.
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We would like to derive a better motivation for combining the likelihoods for
the two pedigrees in Figure 3.5 by taking their average. The key is that we would
like to find the likelihood for the observed data, which is the annotated pedigree in
Figure 3.2. Figure 3.5 was derived from Figure 3.2, but contains more information
and consists of two pedigrees. Suppose we denote the observed data contained in
the annotated pedigree in Figure 3.2 by x, a realization of a random variable X
that gives the unordered marker genotypes of the four individuals in the pedigree.
We would like to find the likelihood based on observing X , which is the density
pθ(x) viewed as function of the parameter θ. The annotated pedigrees in Figure 3.5
contain more information, say (x, y), where y includes the genotypes at the disease
locus and the phase information. The two pedigrees in Figure 3.5 correspond to
(x, y) for the same observed value of x, but for two different possible values of
y. The probabilities in (3.1) and (3.2) are exactly the density qθ(x, y) at the two
possible realized values (x, y) of the vector (X,Y ) that gives the ordered genotypes
at both marker and disease locus together with phase information. Since we only
observe X , the density of (X,Y ) does not give the appropriate likelihood. However,
the density of X can be derived from the density of (X,Y ) through marginalization:

pθ(x) =
∑

y

pθ(x, y).

The sum is over all possible values of y. In the preceding section it was argued
that only two values of y are possible for the realized value of x, and they are
given in Figure 3.5. The likelihood based on the observed value x in Figure 3.2 is
therefore the sum of the probabilities in (3.1) and (3.2). Thus we obtain (3.3), but
without the factors 1

2 . These factors seemed intuitive (“each of the two possibilities
in Figure 3.5 has probability 1

2”), but it would be better to omit them. Of course,
from the point of view of statistical inference multiplication of the likelihood by
1
2 is inconsequential, and we need not bother. (You can probably also manage to
interprete the likelihood with the 1

2 as a “conditional likelihood” of some type.)
Actually in the preceding section we made life simple by assuming that each

affected individual has disease genotype Aa and each unaffected individual has
genotype aa. In reality things may be more complicated. Some diseased people may
have genotype AA and some may even have genotype aa (phenocopies) and not
every individual with AA or Aa may be ill (incomplete penetrance). Let fAA, fAa
and faa be the penetrances of the disease: individuals with unordered genotypes
AA, Aa or aa are affected with probability fAA, fAa, or faa. (As is often done, we
assume that the penetrances do not depend on paternal and maternal origin of the
alleles: fAa = faA if Aa and aA are ordered genotypes.) So far we have assumed
that fAA = 1 = fAa and faa = 0, but in general the penetrances may be strictly
between 0 and 1. Then besides the two pedigrees in Figure 3.5 many more pedigrees
will be compatible with the observed data in Figure 3.2. To find the likelihood for
the observed data we could enumerate all possibilities, write the probability of each
possibility, and add all these expressions. We have the same observed data x, but
many more possible values of y, and find the likelihood for observing X by the same
method as before.
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Even for the simple pedigree in Figure 3.2 enumerating all possibilities can
be forbidding. In particular, if all three penetrances fAA, fAa, or faa are strictly
between 0 and 1, then every of the four individuals may have disease genotype AA,
Aa or aa, irrespective of affection status. The disease genotypes given in Figure 3.3
are by far the most likely ones if allele A is rare and faa ≈ 0, but correct inference
requires that we also take all other possibilities into account. There are 34 possible
unordered disease genotypes for the set of four individuals in the pedigree of Fig-
ure 3.2, and for each of these there may be 1 to 23 possible resolutions of the phase
of the genotypes. We need a computer to perform the calculations. For somewhat
bigger pedigrees we even need a fast computer and good algorithms to perform the
calculations in a reasonable time.

Conceptually, there is no difficulty in implementing this scheme. For instance,
in Figure 3.2 the marker genotypes of the children can unequivocally be determined
to be in the order as given (left paternal, right maternal). We do not care about
paternal and maternal origins of the marker alleles of the parents. We can therefore
enumerate all possible disease/marker genotypes, by adding the 44 ordered disease
genotypes (4 individuals, each with genotype A, Aa, aA or aa), defining the phase
by the order in which the alleles are written. Figure 3.5 gives two of the 256 pos-
sibilities. Given penetrances between 0 and 1 the probabilities of the two pedigrees
in Figure 3.5 must be revised (from (3.1) and (3.2)) to

pApap1p3fAa × p2
ap2p4(1 − faa) × 1

2 (1 − θ)1
2 (1 − faa) × 1

2 (1 − θ)1
2fAa,

and
pApap1p3fAa × p2

ap2p4(1 − faa) × 1
2θ

1
2 (1 − faa) × 1

2θ
1
2fAa.

These expressions must be added to the 254 other expressions of this type (pos-
sibly equal to 0) to obtain the likelihood for observing the annotated pedigree in
Figure 3.2.

In deriving the preceding expressions it has been assumed that given their geno-
types the individuals are independently affected or unaffected (with probabilities
given by the penetrances faa, fAa and fAA). This is a common assumption, which
is not necessarily realistic in case the disease is also determined by environmental
factors, which may be common to the individuals in the pedigree. The influence
of the environment is particularly important for complex traits and is discussed
further in Chapter 8.

Missing marker information can be incorporated in the likelihood by the same
method of enumerating all possibilities. For instance, in Figure 3.6 the marker infor-
mation on the mother is missing (so that there is no information about the mother
at all). From the genotypes of the children it is clear that the mother must have
at least one marker allele 4, but the other allele cannot be resolved. The likelihood
for the pedigree can be constructed by considering the possibilities that the missing
marker allele is of type 1, 3 or 4 or another known type for the locus, and adding
their probabilities. Because the number of possibilities is unpleasantly large, a bet-
ter algorithm than a complete listing is advisable. For instance, one possibility for
the missing markers in Figure 3.6 is given by Figure 3.2 and we have seen that
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this leads to 256 possible annotated pedigrees with information on disease locus
and phase. The other possibilities for the missing marker contribute comparable
numbers of annotated pedigrees.

1 3

3 4 1 4

1

Figure 3.6. Pedigree showing a nuclear family, consisting of father, mother and two children, and
the unordered genotypes of father and children at a marker location. The genotype of the mother is not
observed. The father and daughter are affected.

3.3.1 Multilocus Analysis

Extension of the likelihood analysis to more than one marker and multigenic diseases
is straightforward, except that the computational complications increase rapidly,
and we need a workable model for joint recombination events.

α β
A a

1 3

α γ
a a

2 4

α α
a a

3 4

α γ
A a

1 4

Figure 3.7. Pedigree showing a nuclear family, consisting of father, mother and two children, and
their ordered genotypes at two marker locations and the disease location.

As an example consider the pedigree in Figure 3.7. It is identical to the pedigree
in the left panel of Figure 3.5, except that marker information on an additional locus,
placed on the other side of the disease locus has been added. The pedigree has been
annotated with complete information on phase and disease locus alleles. Hence, in
practice it will be only one of the many possible pedigrees that correspond to the
observations, which would typically consist of only the unordered genotypes at the
two marker loci. The likelihood would be the sum of the likelihood of the pedigree
in Figure 3.7 and of the likelihoods of all the other possible pedigrees.

In Figure 3.7 the disease locus has been placed between the two marker loci. In
the following we shall understand this to reflect its spatial position on the genome.
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In practice, with only the marker loci given, the positioning would be unknown,
and one would compute the likelihood separately for each possible positioning of
the loci, hence also for the case that the disease locus is left or right (or rather
“above” or “below” in the figure) of both marker loci.

Under the Poisson/Haldane model recombinations in disjoint intervals are in-
dependent. If we denote the recombination fractions of the interval between first
marker and disease locus by θ1 and between disease locus and second marker by θ2,
then the likelihood of the pedigree is

(3.4)

pαpβpApap1p3fAa × pαpγp
2
ap2p4(1 − faa)

× 1
2θ1(1 − θ2)

[
1
2θ1(1 − θ2) + 1

2 (1 − θ1)θ2
]
(1 − faa)

× 1
2 (1 − θ1)(1 − θ2)

[
1
2θ1θ2 + 1

2 (1 − θ1)(1 − θ2)
]
fAa.

The appearance of the terms 1
2θ1(1−θ2)+ 1

2 (1−θ1)θ2 and 1
2θ1θ2 + 1

2 (1−θ1)(1−θ2)
(in square brackets) indicates a novel difficulty. Because the mother is homozygous
at the disease locus, it is impossible to know whether she segregated her paternal or
maternal disease allele a. Without this information it cannot be resolved whether
recombination occurred between the loci and hence when writing down the likeli-
hood we sum over the two possibilities. In general we can solve such ambiguities by
annotating the pedigree for each locus both with the ordered founder genotypes and
for each meiosis which of the two parental alleles is segregated. This information is
captured in the “inheritance indicators” in Section 3.6.

The likelihood in the preceding display, and the observed likelihood of which
the display gives one term, is a function of the two recombination fractions θ1 and
θ2. For known marker loci, the genetic distance between the two markers is known,
and hence the pair of parameters (θ1, θ2) can be reduced to a single parameter. (The
known recombination fraction between the markers is equal to θ12 = θ1(1−θ2)+(1−
θ1)θ1); we can express one of θ1 or θ2 in θ12 and the other parameter.) The likelihood
can next be maximized to estimate this parameter. Alternatively, geneticists usually
test the hypothesis that the disease locus is at recombination fraction 1

2 versus the
hypothesis that the disease locus is at a putative locus between the markers using
the likelihood ratio test, for every given putative locus (in practice often spaced 0.5
cM).

There is no conceptual difficulty in extending this analysis to include more than
two marker loci. Incorporating more loci increases the power of the test, but also
increases the computational burden. Markers with many alleles (“highly polymor-
phic markers”) permit to resolve the paths by which the alleles are segregated and
hence help to increase statistical power. If the disease locus is enclosed by two of
such informative markers, then adding further markers outside this interval will not
help much. In particular, under the Haldane model with marker loci M1, . . . ,Mk,
the recombination events between Mi and Mi+1 are independent of the recombi-
nation events before Mi and past Mi+1. Thus if the disease locus is between Mi

and Mi+1 and the segregation at Mi and Mi+1 can be completely resolved, then
the markers before Mi and past Mi+1 will not help in locating the disease locus.
(These additional markers would just add a multiplicative factor to the likelihood.)
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In practice, the phase of segregation at a given marker cannot be perfectly resolved
and nearby markers may be helpful, but only to the extent of resolving segregation
of the markers near the disease locus.

The likelihood (3.4) employs the Haldane map function for the joint probabili-
ties of recombination or not, in the two intervals between first marker, disease locus
and second marker. For a general map function these probabilities can be expressed
in the map function as well. For instance, for m1 and m2 the genetic map distances
of the two intervals, the probability of recombination in the first interval and no
recombination in the second interval is given by (see Theorem 1.3)

P (R1 = 1, R2 = 0) = 1
4

(
P (N1 +N2 > 0) − P (N1 > 0) − P (N2 > 0)

)

= 1
2

[

θ
(

1
2 (m1 +m2)

)
+ θ

(
1
2m1)

)
− θ

(
1
2m2

)]

.

The second equality follows from the definition (1.5) of map function. The right side
of the display would replace the expression θ1(1−θ2) in (3.4). The joint probabilities
of recombinations in other pairs of adjacent intervals can be expressed similarly.

A multipoint analysis with more than two marker loci requires the joint prob-
abilities of recombinations over three or more intervals. As noted in Section 1.3,
in general a map function is not sufficient to express these probabilities, but other
properties of the chiasmata process must be called upon. Theorem 1.3 shows how to
express these probabilities in the avoidance probabilities of the chiasmata process.
Of course, under the Haldane/Poisson model the occurrences of recombinations over
the various intervals are independent and the map function suffices to express their
probabilities.

The analysis can in principle also be extended to affections or traits that are
caused by more than one gene. One simply places two or more loci among the mark-
ers and computes a likelihood for the resulting annotated pedigree, marginalizing
over the unobserved genotypes at the “putative loci”. The penetrances become func-
tions of the genotypes at the vector of putative loci. Writing plausible models for the
penetrances may be difficult, adding to the difficulty of the necessary computations.

3.3.2 Penetrances

If the measured phenotype is binary and caused by a single biallelic disease gene,
then three penetrance parameters fAA, fAa and faa suffice to specify the genetic
model, for A and a the alleles at the disease locus. However, phenotypes may have
many values (and may even be continuous variables), diseases may be multigenic,
and disease genes may be multiallelic. Then a multitude of penetrance parameters is
necessary to write a pedigree likelihood. These parameters will often not be known
a-priori and must be estimated from the data.

Furthermore, penetrances could be made dependent on covariates, such as age
or sex. Possible shared environmental influences on the phenotypes can also be in-
corporated. To keep the dimension of the parameter vector under control, covariates
are often discretized: a population is divided up in subclasses, and penetrances are
assumed to be constant in subclasses.



66 3: Pedigree Likelihoods

3.3.3 Why Hardy-Weinberg and Linkage Equilibrium?

In the preceding the likelihoods of the founders were computed under the as-
sumption that these are chosen independently from a population that is in Hardy-
Weinberg and linkage equilibrium. Actually most of the work is in listing the various
possible pedigrees and working out the probabilities of the meioses given the par-
ents. The equilibrium assumptions play no role in this, and other models for the
founder genotypes could easily be substituted.

Why are the equilibrium assumptions made? One reason is in the computation
of the maximum of the likelihood. Under Hardy-Weinberg and linkage equilibrium
the observed unordered genotypes of a founder contribute the same multiplicative
factor to the likelihood of every possible fully annotated pedigree, given by the prod-
uct of the population marginal frequencies of all the founder’s single locus alleles.
Consequently, these founder genotypes contribute the same multiplicative factor to
the likelihood of the observed pedigree, as this is the sum over the likelihoods of
fully annotated pedigrees. Because multiplicative factors are of no importance in a
likelihood analysis, this means that this part of the founder probabilities drop out
of the picture.

As an alternative model suppose that we would assume random mating, but
not linkage equilibrium. If the founders are viewed as chosen from a given popula-
tion, then their genotypes are random combinations of two haplotypes and would
add factors of the type hihj to the likelihood, where h1, . . . , hk are the haplotype
relative frequencies in the population. Even in a two-locus analysis of marker loci,
these contributions would depend on the (unknown) phase of the unordered geno-
types at the two loci and hence would not be the same for every possible fully
annotated (phase-resolved) pedigree. Therefore, in a likelihood analysis the haplo-
type frequencies would not factor out, but remain inside the sum over the annotated
pedigrees.

The preceding concerns observed marker genotypes, and unfortunately not to
all founder genotypes. The relative frequencies of the the disease alleles will factor
out of the likelihood only if in every possible annotation of the likelihood the (un-
ordered) disease genotypes contain the same alleles. In the preceding this was true
for the two annotations of the pedigree in Figure 3.2 given in Figure 3.3, but this is
typically not the case for all possible annotated pedigrees without the assumptions
of full penetrance and absence of phenocopies. A second problem arises if some
marker genotypes are not observed as in Figure 3.6, which requires summing out
over all possible missing genotypes.

Even in these cases the equilibrium assumptions simplify the expression of the
likelihood, to an extent that given the present computing power is desirable.

Often there are also independent estimates of allele frequencies available, which
are used to replace these quantities in the likelihood by numbers.
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3.4 Parametric Linkage Analysis

In the preceding sections we have seen how to express the likelihood of an observed
pedigree in penetrances and recombination fractions between marker and disease
loci. If one or more recombination fractions are unknown, these can be viewed as
parameters of a statistical model, resulting in an “ordinary” likelihood function for
the observed pedigree. Statistical inference based on this is known as parametric
linkage analysis.

The location of the maximum of the likelihood function is of course a reasonable
estimator of the unknown parameters. However, one must keep in mind that the
disease loci may not belong to the marker area under consideration. Geneticists
therefore typically report their analysis in terms of a test of the null hypothesis
that the disease locus is unlinked to the observed markers. If the test rejects, then
the disease locus is estimated by the maximum likelihood estimator.

Under the assumption that there is at most a single causal locus in the marker
area under consideration, the location of this locus can be parametrized by a single
parameter θ. If this is chosen equal to a recombination fraction with a marker, then
the null hypothesis H0: θ = 1/2 expresses that the disease is unlinked. It can be
tested with the likelihood ratio test, which rejects for large values of the ratio

`(θ̂)

`(1
2 )
.

Here θ 7→ `(θ) is the likelihood for the model, and θ̂ the maximum likelihood
estimator.

Under mild conditions (e.g. that the number of informative meioses or the num-
ber of independently sampled pedigrees tends to infinity), we can employ asymptotic
arguments to derive an approximation to the (null) distribution of (twice) the log
likelihood ratio statistic, from which a critical value of p-value can be derived. In
the present situation the asymptotic distribution of twice the log likelihood ra-
tio statistic under the null hypothesis is slightly unusual, due to the fact that the
null hypothesis corresponds to the boundary point θ = 1/2 of the possible interval
[0, 1/2] of recombination fractions. It is not a standard chisquare distribution, but
a 1/2–1/2 mixture of the chisquare distribution with one degree of freedom and a
pointmass at 0. (See Example 14.19.) The critical value is therefore chosen as the
upper 2α-quantile of the chisquare distribution with one degree of freedom.

In genetics it is customary to replace the log likelihood ratio by the LOD
score (from “log odds”), which is the log likelihood ratio statistic with the natural
logarithm replaced by the logarithm at base 10. Because 10 log x = 10 log e log x and
10 log e ≈ 0.434, a LOD score is approximately 0.434 times the log likelihood ratio
statistic. In practice a LOD-score of higher than 3 is considered sufficient proof of
linkage. This critical value corresponds to a p-value of 10−4, and is deliberately,
even though somewhat arbitrarily, chosen smaller than usual in the light that one
often carries out the test on multiple chromosomes or marker areas simultaneously.

The LOD-scores are typically reported in the form of a graph as a function of
the position of the putative disease locus. A peak in the graph indicates a probable
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location of a disease locus, the global maximum being assumed at the maximum
likelihood estimator. Figure 3.8 gives an example with a likelihood based on three
marker loci. In this example the likelihood goes down steeply at two of the marker
loci, because the observed segregation patterns in the data are incompatible with
the causal locus being at these marker loci.

To overcome computational burden in practice one may perform multiple anal-
yses trying to link a disease to one marker or a small group of markers at a time,
rather than an overall analysis incorporating all the information. Because part of
the data is common to these analyses, this leads to the problem of assigning an
overall significance level to the analysis.

The likelihood inference extends to multiple disease loci, but then entails con-
sideration of multiple recombination fractions. For linked disease loci the LOD-graph
will have a multidimensional domain.

Figure 3.8. Twice the likelihood ratio (vertical scale) for parametric linkage analysis based on three
marker loci, A, B, C and putative disease locus D. Data simulated to correspond to Duchenne muscular
dystrophy. LOD-scores can be computed by dividing the vertical scale by 2 log 10 ≈ 4.6. The parameter
θ on the horizontal scale is defined as the recombination fraction with marker locus A transformed to
genetic map coordinates using the Kosambi map function. The null hypothesis of no linkage is identified
with the locus at the far left side of the horizontal axis. (Source: GM Lathrop et al. (1984). Strategies
for multilocus linkage analysis in humans. Proc. Natl. Acad. Sci. 81, 3443–3446.)

3.5 Counselling

Pedigree likelihoods are also the basis of genetic counselling. We are given a pedi-
gree in which a phenotype of one of the members, for instance an unborn child, is
unknown. We wish to assign a probability distribution to this unknown phenotype,
based on all the available evidence.

The solution is simply a conditional distribution, which can be computed as the
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quotient of two pedigree likelihoods. The denominator is the probability of the given
pedigree, annotated with all known information. The numerator is the probability
of this same pedigree, but augmented with the extra information on the unknown
phenotype.

3.6 Inheritance Vectors

In order to write the likelihood of an annotated pedigree, it is necessary to take into
account all the possible paths by which the founder alleles are segregated through
the pedigree. The “inheritance vectors” defined in this section fullfil this task. They
will serve to describe Lander-Green algorithm for computing a pedigree likelihood
in Section 3.8, and will later be useful for other purposes as well.

In Section 1.4 we defined a pair of inheritance indicators for the two meioses
resulting in a zygote. Given a pedigree we can attach such a pair to every nonfounder
i and locus u in the pedigree:

P iu =

{
0, if the paternal allele of i is grandpaternal,
1, if the paternal allele of i is grandmaternal.

M i
u =

{
0, if the maternal allele of i is grandpaternal,
1, if the maternal allele of i is grandmaternal.

These inheritance indicators trace the two alleles of nonfounder i at a given locus
back to two of the four alleles carried by his parents at that locus. Together the
inheritance vectors of all nonfounders allow to reconstruct the segregation path of
every allele, from founder to nonfounder. For an example see Figure 3.9, in which
the founder alleles have been labelled (arbitrarily) by the numbers 1, . . . , 8. Every
nonfounder alleles is a copy of some founder allele and in the figure has received
the label of the relevant founder allele. These labels can be determined by repeat-
edly tracing and allele back upwards from child to parent, choosing the paternal
or maternal allele of the parent in accordance with the value of the inheritance
indicator.

Given a pedigree with f founders and n nonfounders, and k given loci 1, . . . , k,
we can form inheritance vectors by collecting the inheritance indicators of all non-
founders per locus, in the form

(3.5)













P 1
1

M1
1

P 2
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1

...
Pn1
Mn

1













,













P 1
2

M1
2

P 2
2

M2
2

...
Pn2
Mn

2













, . . . . . . ,













P 1
k

M1
k

P 2
k

M2
k

...
Pnk
Mn
k













.
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1|2 3|4

1|3
0|0

2|3
1|0

5|6 2|4
1|1

7|8

3|6
1|1

2|6
0|1

2|8
0|1

2|2
0|0

1

Figure 3.9. Inheritance indicators for a single locus. The founder alleles are numbered (arbitrarily)
by 1, . . . , 8 and printed in italic. They are considered different entities, even if they may be identical in
state. The nonfounder alleles are marked by the label of the founder allele and printed inside the squares
and circles. The inheritance indicators are shown below the squares and circles.

Alternatively, we can form an inheritance matrix of dimension (2n×k) by consider-
ing these k vectors as the k columns of a matrix. Each row of this matrix corresponds
to a different meiosis. As meioses are assumed stochastically independent, the rows
of the matrix are independent stochastic processes.

For each locus j the f founders contribute 2f alleles, which are passed on to
the nonfounders in the pedigree. If no mutations occur, then the 2n alleles of the
nonfounders at locus j are copies of founder alleles at locus j, typically with dupli-
cates and/or not all founder alleles being present. The jth vector in the preceding
display allows to reconstruct completely the path by which the 2f alleles at locus
j are segregated to the nonfounders. Thus the ordered genotypes at locus j of all
individuals in the pedigree are completely determined by the ordered genotypes of
the founders at this locus and the jth column of the inheritance matrix.

In Section 1.4 we have seen that under the Haldane model each row of the
inheritance matrix is a discrete-time Markov chain. Because the combination of
independent Markov processes is again a Markov process, the vectors given in (3.5)
are also a Markov chain, with state space {0, 1}2n. Its transition matrices can easily
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be obtained from the transition matrices of the coordinate processes, by the equation

P
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P (P ij+1 = pij+1|P ij = pij
)
P (M i
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j+1|M i

j = mi
j

)
.

If we order the states lexicographically, then the transition matrix at locus j is the
Kronecker product of the 2n transition matrices of dimension (2×2) given in (1.13).
(See Section 14.13.2 for the definition of the Kronecker product.)

Typically, the inheritance process in a given pedigree is not (or not completely)
observed. In the Haldane/Poisson model it is thus a hidden Markov chain. Ob-
served marker or phenotypic information can be viewed as “observable outputs” of
this process. There are several standard algorithms for hidden Markov processes,
allowing computation of likelihoods, maximum likelihood estimation of parameters
(Baum-Welch), and reconstruction of a most probable state path (Viterbi). These
algorithms are described in Section 14.8.

Rather than considering the inheritance vectors at finitely many loci, we may
think of them as processes indexed by a continuous genome. As seen in Section 1.4,
the inheritance indicators u 7→ P iu and u 7→ M i

u for every individual then become
Markov processes in continuous time. As all meioses are independent, their combi-
nation into the vector-valued processes u 7→ (P 1

u ,M
1
u, . . . , P

n
u ,M

n
u ) is also a Markov

process in continuous time.

3.7 Elston-Stewart Algorithm

The likelihood for a pedigree that is completely annotated with ordered genotypes
is easy to calculate, by first multiplying the likelihoods of all founders, then going
down into the pedigree and recursively multiplying the conditional likelihoods of
descendants given their parents.

With F denoting the founders,NF the nonfounders and giP and giM the ordered
genotypes of the parents of individual i, this gives an expression for the likelihood
of the genotypes of the form

∏

i∈F
p(gi)

∏

i∈NF
p(gi| giP , giM ).

Here gi is the ordered genotype of individual i, p(g) is the probability that a founder
has genotype g, and p(g| gP , gM ) is the probability that two parents with genotypes
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gP and gM have a child with genotype g. For multilocus genotypes the latter prob-
abilities may be sums over different inheritance patterns if one of the parents is
homozygous at a locus.

This expression is next multiplied by the conditional probabilities of the pheno-
types given the genotypes. Under the assumption that the individuals’ phenotypes
are conditionally independent given their genotypes, this results in an overall like-
lihood of the form

∏

i∈F∪NF
f(xi| gi)

∏

i∈F
p(gi)

∏

i∈NF
p(gi| giP , giM ).

Here xi is an observed phenotype of individual i and f(x| g) is the (penetrance) prob-
ability that an individual with genotype g has phenotype x. The independence of
phenotypes given genotypes is not always realistic, but the formula can be amended
for this. For instance, the assumption excludes influences from environmental factors
that are common to groups of individuals.

In reality we typically observe only unordered genotypes at certain marker
loci. The likelihood for the observed data is obtained by marginalizing over the
unobserved data, i.e. the true likelihood is the sum of expressions as in the preceding
display over all configurations of ordered genotypes and segregation paths that are
compatible with the observed marker data. As we have seen in Section 3.3 the
number of possible configurations may be rather large. Even for a simple pedigree
as shown in Figure 3.2 and a single disease locus, there are easily 256 possibilities.
To begin with we should count 2 possibilities for ordering the two alleles at each
locus of each person, giving 2nk possible annotated pedigrees, if there are k loci.
For each locus for which the unordered genotype is not observed, the factor 2 must
be replaced by l2 for l the number of alleles for that locus. For homozygous loci
there are additional possibilities hidden in the factors p(g| gP , gM ). It is clear that
the number of possibilities increases rapidly with the number of loci and persons.

Fortunately, listing all possible pedigrees and adding their likelihoods is not
the most efficient method to compute the overall likelihood for the pedigree. The
Elston-Stewart algorithm provides an alternative method that is relatively efficient
for pedigrees with many individuals and not too many loci. (For pedigrees with many
loci and few individuals, there is an alternative, described in Section 3.8.) Adding
the likelihoods of all possible annotated pedigrees comes down to computing the
multiple sum over the genotypes of all n individuals, the overall likelihood being
given by

∑

g1

∑

g2

· · ·
∑

gn

∏

i∈F∪NF
f(xi| gi)

∏

i∈F
p(gi)

∏

i∈NF
p(gi| giP , giM ).

Here
∑

gi
means summing over all compatible genotypes for individual i (or sum-

ming over all genotypes with a likeihood of 0 attached to the noncompatible ones).
The structure of the pedigree allows to move the sums of nonfounders to the right
in this expression, computing and storing the total contributions of the individuals
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1 2

3 4 5 6

7 8

1

Figure 3.10. Pedigree of two nuclear families bound together used to illustrate the Elston-Stewart
algorithm.

lower in the pedigree for fixed values of their ancestors, before combining them in
the total.

An example makes this clearer. The pedigree in Figure 3.10 contains eight
individuals. It can be viewed as consisting of the combination of the two families
consisting of individuals 3, 4 and 7, and 5, 6 and 8, respectively, which are bound
together by the grandparents 1 and 2. A computation of the likelihood by listing
all possible pedigrees could schematically be represented by a multiple sum of the
form

∑

1

∑

2

· · ·
∑

8

[ 8∏

i=1

f(i| i)
]

p(1)p(2)p(3)p(6)p(4| 12)p(5| 12)p(7| 34)p(8| 56).

This leads to a sum of at least 28k terms (under the assumption that only the
unordered genotypes are known for k loci), each of which requires 15 multiplications
(not counting the multiplications and additions to evaluate the probabilities p(i) and
p(j| k, l)). The Elston-Stewart algorithm would rewrite this expression as

∑

1

∑

2

f(1| 1)p(1)f(2| 2)p(2)×

×
[∑

3

∑

4

f(3| 3)p(3)f(4| 4)p(4| 12)
(∑

7

f(7| 7)p(7| 34)
)]

×
[∑

5

∑

6

f(5| 5)p(5| 12)f(6| 6)p(6)
(∑

8

f(8| 8)p(8| 56)
)]

.

Thus the algorithm works bottom-up; it is said to be peeling. It first computes the
contributions (between round brackets) of the individuals 7 and 8, separately, for
each given value of the parents of these individuals (3 and 4 and 5 and 6, respec-
tively). Next the algorithm moves one step higher by computing the contributions
of the individuals 3 and 4, and 5 and 6, separately, for each possible value of the
parents 1 and 2. Finally it combines these expressions with the contributions of the
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parents 1 and 2. The algorithm needs of the order 2k2+4k4 additions and 2k2+11k4

multiplications, well below the 28k operations if using the naive strategy.
For pedigrees that possess tree structure (no loops), the algorithm can sweep

linearly through the generations and its efficiency is mainly determined by the num-
ber of loci under consideration, as these determine the size of the remaining sums.
Pedigrees with some amount of inbreeding pose a greater challenge. There are many
tricks by which the burden of computation can be reduced, such as factorization of
the likelihood over certain loci, and efficient rules to eliminate genotypes that not
consistent with the observed data. The issues here are the same as in the computa-
tion of likelihoods for graphical models.

3.8 Lander-Green Algorithm

The Lander-Green algorithm to compute the value of a likelihood is a particular
instance of the Baum-Welch algorithm for hidden Markov models. The underlying
(hidden) Markov process is the process of inheritance vectors (3.5), which deter-
mines the segregation of alleles at k loci. To ensure the Markov property we adopt
the Haldane/Poisson model for the chiasmata process. For n nonfounders the states
of the Markov process are vectors of length 2n. In agreement with the general treat-
ment of hidden Markov processes in Section 14.8 we shall denote the inheritance
vectors by Y1, . . . , Yk.

The outputs X1, . . . , Xk of the hidden Markov model are the observed marker
data of all individuals at the marker loci, and the phenotypes of all individuals at
the disease locus. The marker data for a given locus (state) j are typically a vector
of n + f unordered pairs of alleles, one pair for every individual in the pedigree.
The 2n alleles in this vector corresponding to nonfounders are all copies of the 2f
founder alleles, where some founder alleles may not reappear and others appear
multiple times. If the founders are chosen at random from a population that is
in combined Hardy-Weinberg and linkage equilibrium, then the founder alleles are
independent across loci. They are also independent of the inheritance process, as
the latter depends on the meioses only. Given the inheritance process the marker
data that are output at the loci are then independent. We also assume, that given
the genetic information at the disease locus, the disease status (or trait value) of an
individual is independent of all other variables. Under these conditions the outputs
X1, . . . , Xk fit the general structure of the hidden Markov model, as described in
Section 14.8.

If the founder alleles at a marker locus j are not observed, then the output
density (giving the probability of the observed markers xj given the inheritance
vector yj at locus j) at this locus can be written as

qj(xj | yj) =
∑

P (founder allelesj)P
(
xj | yj , founder allelesj),

where the sum is over all possible ordered sets of founder alleles at locus j. Here the
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probabililities P (founder allelesj) can be expressed in the allele frequencies of the
alleles at locus j using Hardy-Weinberg equilibrium. Furthermore, every of the prob-
abilities P

(
xj | yj , founder allelesj) is degenerate: it is 1 if the observed marker data

for locus j is compatible with the inheritance vector yj and set of founder alleles,
and 0 otherwise. This follows because the inheritance vector completely describes
the segregation of the founder alleles, so that the event {yj , founder allelesj} com-
pletely determines xj . If the founder alleles are observed, then the output density
is defined without the sum.

The output at the disease locus j is the vector of the phenotypes of all indi-
viduals. Its density can be written as

qj(xj | yj) =
∑

P (founder allelesj)
∏

i

f(xij | founder allelesj , yj),

where xij is the disease status of individual i, and f is the penetrance. This assumes
that the phenotypes of the individuals are independent given their genotypes. Pos-
sible environmental interactions could be included by replacing the product by a
more complicated expression.

To remain within the standard hidden Markov model set-up the outputs, in-
cluding the disease phenotype, must be independent of all other variables given
the state. This appears to allow diseases that depend on a single locus only?? It is
not difficult, however, to extend the preceding to diseases that depend on multiple
unlinked loci, e.g. on different chromosomes, which we could model with several
independent Markov chains of inheritance vectors??

If the allele frequencies and penetrances are not known, then they must be
(re)estimated in the M-step of the EM-algorithm, which may be computationally
painful??

The underlying Markov chain consists of 2n independent Markov chains, each
with state space {0, 1}, corresponding to the 2n meioses in the pedigree. The chains
do not have a preferred direction along the chromosome, but their initial distribu-
tions are (1

2 ,
1
2 ) and their transition probabilities are given by the recombination

fractions between the loci. Thus for the 2n-dimensional chain Y1, . . . , Yk

π(y1) =
(1

2

)2n

,

pj(yj | yj−1) = θ
uj

j (1 − θj)
2n−uj ,

where Uj =
∑n

i=1|P ij − P ij−1| + |M i
j − M i

j−1| is the number of meioses that are
recombinant between the loci j − 1 and j. The recombination fraction θj may be
known if both j − 1 and j are marker loci. We desire to estimate it if it involves
the disease locus. If the (putative) disease locus D is placed between two markers
whose recombination fraction θMM is known, then we could use the relationship
θMM = θMD(1 − θDM ) + (1 − θMD)θDM for the recombination fractions between
the three loci to parameterize the likelihood by a single parameter. For instance, we
could choose θ = θMD as the parameter, and then have θDM = (θMM −θ)/(1−2θ).
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The likelihood of the hidden Markov chain contains the factors (resulting from the
sequence of states marker-disease-marker)

θuMD

MD (1 − θMD)2n−uMDθuDM

DM (1 − θDM )2n−uDM .

In terms of the parameter θ this leads to the contribution to the log likelihood of
the full data, given by

uMD log θ+(2n− uMD) log(1 − θ)

+ uDM log
(θMM − θ

1 − 2θ

)

+ (2n− uDM ) log
(

1 − θMM − θ

1 − 2θ

)

.

In the M-step of the EM-algorithm the unobserved numbers of recombinations UMD

and UDM are replaced by their conditional expectations given the outputs, using
the current estimates of allele frequencies, penetrances and recombination fractions,
after which maximization over θ follows.

1 2

P M

3

Figure 3.11. Pedigree consisting of three individuals, labelled 1, 2 ,3. The vector (P,M) is the
inheritance vector of the child at a single locus.

* 3.6 Example. As an example consider the pedigree in Figure 3.11 consisting of a
father, a mother and a child (labelled 1, 2, 3), at three loci 1, 2, 3, where it is imag-
ined that the middle locus 2 is the (putative) disease locus, which we shall assume
not to be a marker locus. The corresponding hidden Markov model is pictured in
Figure 3.12. The father and mother are founders and hence the states are formed
by the inheritance vectors of the child, one for each locus:

Y1 =

(
P1

M1

)

, Y2 =

(
P2

M2

)

, Y3 =

(
P3

M3

)

.

The output from states 1 and 3 consists of the marker information at these loci,
measured on all three individuals. The output of the disease state 2 is the phenotypic
information X on all three individuals.

The hidden Markov model structure requires that the phenotype vector X =
(X1, X2, X3) given the state Y2 is independent of the states Y1, Y3 and their outputs.
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To operationalize the assumption that locus 2 is the (only) disease locus (linked to
loci 1 or 3) it is convenient to think of these phenotypes in the form

X1 = f(G1
P,2, G

1
M,2, C,E

1),

X2 = f(G2
P,2, G

2
M,2, C,E

2),

X3 = f(G3
P,2, G

3
M,2, C,E

3).

Here (GiP,j , G
i
M,j) is the ordered genotype of individual i at locus j, C is a

“common environmental factor” that accounts for dependence and E1, E2, E3

are “specific environmental factors” that account for randomness specific to the
individuals. Given the state Yj the genotype (G3

P,j , G
3
M,j) of the child at lo-

cus j is completely determined by the genotypes of the parents. Consequently,
given Y2 all three phenotypes are a deterministic function of the variables
(G1

P,2, G
1
M,2), (G

2
P,2, G

2
M,2), C,E

1, E2, E3. To ensure conditional independence of
these phenotypes (the output from state 2) from the other loci (states Y1 and Y3

and their outputs: the marker data on loci 1 and 3), we assume linkage equilibrium
in the population of parents, so that (G1

P,2, G
1
M,2), (G

2
P,2, G

2
M,2) are independent of

the alleles (G1
P,j , G

1
M,j), (G

2
P,j , G

2
M,j) for j = 1, 3.

With θ1 and θ2 the recombination fractions for the intervals 1–2 and 2–3, the
likelihood can be written in the form

1
4θ
Z1
1 (1 − θ1)

2−Z1θZ2
2 (1 − θ2)

2−Z2q1(O1|P1,M1)q2(X |P2,M2)q3(O3|P3,M3).

Here the variables Zj = 1Pj 6=Pj−1 + 1Mj 6=Mj−1 give the numbers of crossovers in the
two intervals (j = 1, 2), and qj are the output densities.

The output densities for states 1 and 3 refer to the marker data Oj for the two
loci and have a common form. We shall assume that the marker data on these loci
consists of the unordered genotypes {G1

P,1, G
1
M,1} and {G2

P,1, G
2
M,1} of the parents

and the unordered genotype {G1
P,1, G

1
M,1} of the child. Given the state (P1,M1) the

latter is completely determined by the ordered genotypes of the parents. Therefore,
the output is a sum over the probabilities of the ordered genotypes of the parents
that are compatible with the observed unordered genotypes of the parents and the
child. If a parent has ordered genotype (i, j) at locus 1 with probability h1ij , then
this yields the output density at locus 1

q1(O1|P1,M1) =
∑

i,j

∑

r,s

h1ijh1rs1{i,j}={G1
P,1

,G1
M,1

}1{r,s}={G2
P,1

,G2
M,1

}×

× 1{i(1−P1)+jP1,r(1−M1)+sM1}={G3
P,1

,G3
M,1

}.

Note that i(1 − P1) + jP1 is simply i if P1 = 0 (the grandpaternal allele) and j if
P1 = 1, and similarly for r(1 −M1) + sM1. Only few terms in the double sum give
a nonzero contribution.

The output at locus 2 is the phenotypic vector X . If x 7→ f(x| i, j) is the
penetrance density for an individual with ordered genotype (i, j), then the output
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density can be written

q2(O1|P2,M2) =
∑

i,j

∑

r,s

h1ijh1rsf(X1| i, j)f(X2| r, s)×

× f(X3| i(1 − P1) + jP1, r(1 −M1) + sM1).

This assumes that all three phenotypes are observed, and no marker data for locus
2.

1 2 3

Figure 3.12. Hidden Markov model for observations on three loci.



4
Identity by Descent

Parametric linkage analysis as in Section 3.4 relies on analyzing likelihoods for
observed genotypes and phenotypes for members of given pedigrees. In order to
write down a likelihood it is necessary to have models for:
(i) the probabilities of the genotypes of the founders.
(ii) the segregation probabilities, describing how the founder alleles are passed on

through the pedigree.
(iii) the penetrances, connecting phenotypes to genotypes.
For (i) we might assume Hardy-Weinberg and linkage equilibrium, thus describing
the model completely through the allele frequencies in the population; these might
be estimated from the data at hand and/or other data. For (ii) we need a map
function and a model of recombination; this is the least troublesome part. The
penetrances in (iii) cause no problem under an assumption of full (recessive or
dominant) penetrance without phenocopies and affections that depend on a single
locus, but more realistic models might require many parameters.

A full specification of the model and its parameters is referred to as paramet-
ric linkage analysis. In contrast, nonparametric linkage analysis tries to analyse
pedigrees avoiding potential modelling difficulties. In particular, it tries to avoid
modelling penetrances and the distribution of founder genotypes. The general idea
is to sample (pedigrees of) individuals with similar phenotypes and to investigate
which genes they have in common. It seems reasonable to think that these shared
genes are related to the phenotype. Here “shared” is typically interpreted in the
sense of “identity by descent”.

In this chapter we introduce the latter notion. We study applications to linkage
of qualitative and quantatative traits in Chapters 5 and 8, respectively.
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4.1 Identity by Descent and by State

Given a pedigree and a given locus, a pair of alleles of two individuals in the pedigree
is called identical by descent (IBD) if they originate from (or are“physical copies” of)
the same founder allele. Remember here that each founder contributes two alleles
at each given locus, and all nonfounder alleles are physical copies of founder alleles,
the “copying” taking place by segregation in a meiosis or a sequence of meioses.

Two alleles that are identical by descent are also identical by state (IBS) apart
from mutations that may have occurred during the segregation process, meaning
that they have the same genetical code. Conversely, alleles that are identical by state
need certainly not be IBD. IBD-status is determined by the segregation process, not
by the nature of the alleles.

Unless there is inbreeding in the pedigree, the two alleles of a single individual
are never IBD, and two individuals may share 0, 1, or 2 alleles IBD, depending on
chance and their family relationship. For instance, a father and child always have
exactly one allele IBD, if the possibility that the father carries the maternal allele
of his child is excluded. A paternal grandfather and grandchild carry 1 gene IBD if
the child receives his father’s paternal allele and the child’s mother is not related
to the grandfather.

1|2
1

3|4
2

5|6
3

1|3
4

1|3
5

7|8
6

3|5
7

7|3
8

Figure 4.1. Pedigree without inbreeding. The found allels are labelled with the numbers 1 ,2 , . . . , 8
in italic. The nonfounder alleles carry the same labels in ordinary font. The vector V of alleles of the
nonfounders has realization 1, 3, 1, 3, 3, 5, 7, 3. Individuals 7 and 8 share 1 allele IBD.

The following notation is useful. For a pedigree with f founders and n non-
founders there are at each given locus 2f founder alleles, which “segregate” to the
2n nonfounder alleles. Note that the 2f alleles here refer to (idealized) physical
entities, not to the possible genetic codes at the given locus. If we label the founder
alleles arbitrarily by the numbers 1, 2, . . . , 2f , then we can collect full segregation
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information in a vector V of length 2n, with coordinates

V 2i−1 = label of paternal allele of nonfounder i,

V 2i = label of maternal allele of nonfounder i.

The values of the coordinates V i of V refer to the 2n nonfounder alleles; the coor-
dinates (or indices i) themselves correspond to the nonfounder alleles. The pair of
nonfounder alleles corresponding to the coordinates V i and V j is IBD if and only
if V i = V j . Figure 4.1 shows eight founder alleles and their segregation to eight
nonfounder alleles. The paternal allele of individual 7 is IBD with the maternal
allele of individual 8. We shall refer to the vector V as the segregation vector.

An alternative notation is furnished by the inheritance vectors of the pedigree,
as introduced in Section 3.6. Because the inheritance vectors completely determine
the segregation of founder alleles through the pedigree, IBD-status can also be
written as a function of the inheritance vectors. For large pedigrees this function
is somewhat complicated, but the inheritance vectors have the advantage of having
a simpler distribution. Thus we shall use the segregation vector V and inheritance
vector of Section 3.6 interchangeably.

IBD-status depends on the locus. If it is important to stress this, we may label
the vector Vu or the number Nu of alleles shared IBD by two individuals by a
locus label u. The vectors Vu1 and Vu2 , the inheritance vectors Iu1 and Iu2 , or the
numbers Nu1 and Nu2 , attached to two loci u1 and u2 are independent if the loci
are unlinked, but they are dependent if the loci are on the same chromosome. For
loci that are close together the IBD-status is the same with high probability, as it is
likely that the two loci have been passed down in the pedigree without a crossover
between them.

The general idea of nonparametric linkage analysis (see Chapters 5 and 8) is
to find loci with relatively high IBD-values among individuals with similar pheno-
types, higher than can be expected by chance. More formally, we search for loci for
which the IBD-values, or equivalently the inheritance vector, is not stochastically
independent of the phenotypes.

4.2 Incomplete Data

In practice, meiosis is not observed and IBD-status must be inferred from the types
of alleles of the individuals in the pedigree. If all founder alleles at a maker locus
are different by state, then the IBD-status can be determined without error. This
ideal situation is approximated by highly polymorphic markers, but in practice IBD-
status is uncertain for at least some loci and individuals. The typing of additional
family members may improve the situation, as this may help to resolve unknown
phase. However, IBD-status involving homozygous individuals or parents can never
be ascertained with certainty.
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It is reasonable to replace unresolved IBD-numbers in inference by their most
likely value given the observed data or, better, their conditional distributions or
expectations given the observed data. IBD-status at nearby (polymorphic) loci can
be almost as good, as the IBD-values at two adjacent loci are the same in the absence
of recombination, which is likely if the loci are close. A conditional distribution of
IBD-value given the observed marker data can correctly take the probabilities of
recombination into account.

Computation of such a conditional distribution requires a probability model.
Because the IBD-values at a given locus are determined completely by the segre-
gation of the founder alleles through the pedigree, the conditional distribution of
IBD-status can be inferred from the conditional distribution of the inheritance vec-
tors, introduced in Section 3.6. This is particularly attractive under the Haldane
model for the chiasmata process. As explained in Section 3.6 the inheritance vec-
tors at a sequence of ordered loci form a Markov chain I1, . . . , Ik, and the observed
marker data for all individuals can be viewed as the outputs X1, . . . , Xk satisfy-
ing the general description of a hidden Markov model in Section 14.8. Therefore,
the conditional distributions of the states Ij given the outputs X1, . . . , Xk can be
computed recursively using the smoothing algorithm described in Section 14.8.

This approach does require the assumption of linkage equilibrium and uses the
allele frequencies for the founders.

4.3 Distribution of IBD-indicators

The distribution of an IBD-indicator depends on the shape of the pedigree and the
position of the pair of alleles therein. In this section we consider the distribution
of IBD-indicators, both at a single locus and the joint distribution at multiple loci.
The key is to express the IBD-values in the inheritance indicators of Section 3.6,
which have a simple distribution.

4.3.1 Marginal Distributions

For a given locus u and two given individuals in the pedigree the numberNu of alleles
shared IBD is a random variable that can take the values 0, 1 or 2. Its distribution
does not depend on the locus u, and can of course be parametrized by two of the
three probabilities P (Nu = j) for j = 0, 1, 2. Another common parametrization is
through the kinship coefficient and fraternity coefficient, defined by

Θ = 1
4ENu,

∆ = P (Nu = 2).

The kinship coefficient Θ is also the probability that a gene sampled at random
from the first individual is IBD with a gene sampled at random from the second
individual.
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4.1 EXERCISE. Show this. [Hint: decompose the probability of this event A as
EP (A|Nu) = 0P (Nu = 0) + 1

4P (Nu = 1) + 1
2P (Nu = 2).]

Standard family relationships, such as “sibs” or “cousins”, are usually thought
to have given kinship and fraternity coefficients. (See Table 4.1 for examples.) The
implicit understanding here is that the individuals belong to a simple pedigree
without inbreeding. The coefficients can be computed by recursive conditioning on
parents, as illustrated in the following two examples.

4.2 Example (Sibs). Consider a pedigree consisting of a father, a mother and two
children (two “sibs” in a “nuclear family”; see Figure 5.3). The father and mother
are the founders and hence we concentrate on the IBD-status of the alleles of the
children. Each child receives one allele from the father, who chooses this allele at
random from his two alleles. If the father chooses the same allele for both childeren,
then this paternal allele is IBD; otherwise it is not. These possibilities happen
with probability 1

2 . Thus the variable NP,u defined to be 1 if the paternal allele is
IBD and 0 otherwise possesses a Bernoulli distribution with parameter 1

2 . The same
considerations are true for the maternal allele, and the corresponding variable NM,u

is also Bernoulli distributed with parameter 1
2 . Furthermore, the variables NP,u and

NM,u are independent.
The total number of alleles shared IBD by the two sibs is equal to Nu =

NP,u+NM,u and possesses a binomial distribution with parameters (2, 1
2 ). It follows

that the kinship and fraternity coefficients are equal to 1/4 and 1/4, respectively.

1 2 3 4

1 4 2 4

Figure 4.2. Two sibs in a nuclear family with IBD-value equal to 1 at a given locus. The alleles of
the parents are labelled 1, 2, 3, 4, and the children’s alleles carry the corresponding label.

4.3 Example (Cousins). Consider the two cousins 7 and 8 in Figure 4.1. As
individuals 3 and 6 are unrelated founders, the cousins can carry at most one allele
IBD: the paternal allele of cousin 7 and the maternal allele of cousin 8. Under the
realization of the inheritance vectors given in Figure 4.1 these alleles are indeed
IBD, but under other realizations they need not be.

It follows immediately that the fraternity coefficient ∆ is equal to zero. To com-
pute the kinship coefficient, we condition on the IBD-indicator N45

u of individuals 4
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and 5. The unconditional distribution of N45
u is binomial with parameter (2, 1/2),

as in a nuclear family. Given that N45
u = 0, the IBD-indicator N78

u of individuals 7
and 8 is clearly zero; given that N45

u = 1, the cousins have an allele in common if
and only if both individual 4 and 5 segregate the allele they share IBD, with has
probability 1/4; given that N45

u = 2, the probability that the cousins have an allele
in common is twice as big. Thus

P (N78
u = 1) =

2∑

i=0

P (N78
u = 1|N45

u = i)P (N45
u = i) = 0 1

4 + 1
4

1
2 + 1

2
1
4 = 1

4 .

Consequently P (N78
u = 0) = 3/4. The kinship coefficient is 1

4EN78
u = 1

4 (3/4 ∗ 0 +
1/4 ∗ 1 + 0 ∗ 2) = 1/16.

Relationship Θ ∆
Sibs 1

4
1
4

Parent-child 1
4 0

Grandparent-grandchild 1
8 0

Cousins 1
16 0

Uncle-nephew 1
8 0

Table 4.1. Kinship and fraternity coefficients of some simple pedigree relationships, under the
assumption of no inbreeding.

4.3.2 Bivariate Distributions

The joint distribution of the inheritance vectors at two given loci u1 and u2 (two
vectors as in (3.5)) can be expressed in the recombination fraction θ1,2 between the
loci. As the IBD-values at the loci are functions of this vector, the same is true for
the joint distribution of the IBD-values at two given loci, of any pair of alleles. We
illustrate this by the example of two sibs.

4.4 Example (Sibs). Consider the numbers of alleles Nu1 and Nu2 shared IBD by
two sibs in a nuclear family, as in Example 4.2. They are the sum of independent
paternal and maternal contributions, and therefore their joint distribution can be
obtained from the distribution of (NP,u1 , NP,u2).

If NP,u1 = 0, meaning that the father sends different alleles to his two children
at locus u1, then NP,u2 = 0 if and only if both meioses are non-recombinant or
if both meioses are recombinant. This, and a similar argument for the case that
NP,u1 = 1, readily shows

P
(
NP,u2 = 0|NP,u1 = 0

)
= (1 − θ)2 + θ2,

P
(
NP,u2 = 1|NP,u1 = 1

)
= (1 − θ)2 + θ2.

Together with the Bernoulli marginal distributions, this allows to derive the full
joint distribution of NP,u1 and NP,u2 , as given in Table 4.2.
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The vector (Nu1 , Nu2) is distributed as the sum of two independent vectors with
the distribution in Table 4.2. This leads to the joint distribution given in Table 4.3.

NP,u1/NP,u2 0 1
0 1

2 (1 − θ)2 + 1
2θ

2 θ(1 − θ) 1
2

1 θ(1 − θ) 1
2 (1 − θ)2 + 1

2θ
2 1

2
1
2

1
2 1

Table 4.2. Joint distribution of IBD-counters at two loci. The parameter θ is the recombination
fraction between u1 and u2.

Nu1/Nu2 0 1 2
0 1

4ψ
2
1,2

1
2ψ1,2(1 − ψ1,2)

1
4 (1 − ψ1,2)

2 1
4

1 1
2ψ1,2(1 − ψ1,2)

1
2 (1 − 2ψ1,2(1 − ψ1,2))

1
2ψ1,2(1 − ψ1,2)

1
2

2 1
4 (1 − ψ1,2)

2 1
2ψ1,2(1 − ψ1,2)

1
4ψ

2
1,2

1
4

1
4

1
2

1
4 1

Table 4.3. Joint distribution of IBD-counters at two loci. The parameter ψ1,2 is defined as ψ1,2 =
(1 − θ)2 + θ2 for θ the recombination fraction between u1 and u2, and can be computed to be the
covariance between Nu1 and Nu2 .

4.3.3 Multivariate Distributions

Inheritance indicators and IBD-indicators at multiple loci depend on the occurrence
of crossovers between the loci, and therefore their joint distribution depends on the
model used for the chiasmata process (cf. Theorem 1.3). In this section we restrict
ourselves to the Haldane/Poisson model, which permits a simple description of the
inheritance and IBD-indicators as Markov stochastic process.

In Section 1.4 it was seen that under the Haldane/Poisson model the inheritance
indicators of a given meiosis indexed by continuous locus (a paternal u 7→ Pu or a
maternal u 7→Mu process) of a given meiosis are continuous time Markov processes.
In a given pedigree there are multiple meioses, every one of which has an inheritance
process u 7→ Iiu attached. These processes are identically distributed stochastically
independent. The IBD-indicators of the pedigree can be expressed in the inheritance
processes, and hence their distribution can be derived.

As an example consider the IBD-indicators of the alleles of two sibs in a nuclear
family, as in Example 4.2. The two paternal alleles of the two sibs are IBD if and
only if the two paternal meioses have the same inheritance indicator. Therefore the
variable NP,u defined to be 1 or 0 if the paternal alleles of the sibs are IBD is
distributed as the indicator of equality of two inheritance processes,

(4.5) u 7→ 1I1u = II3u .
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This indicator process also switches between 0 and 1, the jump times being the times
where one of the two processes u 7→ I1

u or u 7→ I3
u switches. As each of the latter

switches at the event times of a Poisson process of intensity 1 (per Morgan), the
process (4.5) switches at the superposition of these two Poisson processes. By the
independence of meioses the latter is a Poisson process of intensity 2 (per Morgan).
In view of Lemma 1.14 the indicator process (4.5) is a Markov process with transition
probabilities as in the lemma with λ = 2.

0 1

2

2

Figure 4.3. The two states and transition intensities of the Markov process u 7→ 1
Ii
u

= 1
I

j
u
, given

two independent inheritance processes under the Haldane/Poisson model for crossovers.

A schematic view of the process u 7→ 1I1u=I3u
is given in Figure 4.3. The two

circles represent the two states and the numbers on the arrows the intensities of
transition between the two states. In the language of Markov processes the matrix

(
−2 2

2 −2

)

is the generator of the process (see Section 14.13).
The distributions of other IBD-indicators can be obtained similarly. For in-

stance, the total number of alleles shared IBD by the two sibs in a nuclear family
can be written as the sum of two independent processes of the preceding type,
corresponding to the paternal and maternal meioses (the variables NP and NM of
Example 4.2). For inheritance processes I1, I2, I3, I4 of four different meioses, the
sum process u 7→ 1I1u=I3u

+ 1I2u=I4u
has state space {0, 1, 2} and generator matrix





−4 4 0
2 −4 2
0 4 −4



 .

Transitions from the extreme states 0 or 2 to the middle state 1 occur if one of
the two indicator processes switches and hence have double intensity. A graphical
representation of this Markov chain is given in Figure 4.4.

4.6 EXERCISE. Table 4.2 allows to express the conditional probability that
NP,u1 = 1 given that NP,u2 = 0 as 2θ(1− θ). Show that under the Haldane/Poisson
map function this is identical to the transition probability as in Lemma 1.14 with
λ = 2.
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0 1 2

4

2

2

4

Figure 4.4. The three states and transition intensities of the Markov process u 7→ 1
I1
u=I3

u
+ 1

I2
u=I4

u
,

given four independent inheritance processes under the Haldane/Poisson model for crossovers.

4.4 Conditional Distributions

The preceding concerns the unconditional distributions of the various processes.
Nonparametric linkage analysis is based on the idea that the IBD-status at a locus
and a given phenotype are stochastically dependent if and only if the locus is linked
to a causal locus for the phenotype. In other words, the conditional distribution of
IBD-status at a (marker) locus given the phenotype is different from the uncondi-
tional distribution if and only if the marker locus is linked to a causal locus. The size
of the difference between conditional and unconditional distributions is important
for the statistical power to find such a locus, and depends both on the strength of
association between causal locus and phenotype, and on the distance between the
marker and the causal locus.

Suppose that the phenotype depends on k causal loci in that the phenotypes
of n individuals in a pedigree can be written

(4.7) X i = f(Giτ1 , . . . , G
i
τk
, Ci),

where the variables Giτ1 , . . . , G
i
τk

are the genotypes at the k causal loci τ1, . . . , τk,
the variables Ci account for additional random variation in the phenotypes, and f
is a given function. We think of these variables as random through a combination of
random sampling of founder genotypes, random meioses in the pedigree, and ran-
dom “environmental influences” C1, . . . , Cn, where the three sources of randomness
are assumed stochastically independent. The following theorem shows that under
these assumptions the inheritance indicators at the non-causal loci depend on the
phenotypes only through the inheritance indicators at the causal loci.

Let Iu = (I1
u, . . . , I

2n
u )T denote the inheritance vector at locus u, which collects

the inheritance indicators of the 2n meioses in a pedigree with n nonfounders (one
of the columns in (3.5)), and for a set U of loci let IU = (Iu:u ∈ U).

4.8 Theorem. Under (4.7) and the stated assumptions the vector I6=τ = (Iu:u /∈
{τ1, . . . , τk}) is conditionally independent of X = (X1, . . . , Xn) given Iτ =
(Iτ1 , . . . , Iτk

). Consequently, for any set of loci U ,

P
(
IU = i|X

)
=

∑

y

P
(
IU = i| Iτ = y

)
P (Iτ = y|X).
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In particular, if U is a set of loci that are unlinked to the causal loci τ1, . . . , τk, then
IU is independent of (X1, . . . , Xn).

Proof. Let GFτ be the genotypes of the founders of the pedigree at the loci τ1, . . . , τk
and set C = (C1, . . . , Cn). The conditional distribution of I6=τ given X and Iτ can
be decomposed as

P
(
I6=τ = i|X, Iτ ) = E

(

P
(
I6=τ = i|X, Iτ , C,GFτ )|X, Iτ

)

.

The founder genotypes GFτ and the inheritance matrix Iτ completely determine
the genotypes at the causal loci of all nonfounders in the pedigree. Therefore, by
assumption (4.7) the vector X can be written as a function of (Iτ , C,G

F
τ ), and

hence can be deleted in the inner conditioning. Next we can also delete (C,GFτ )
from the inner conditioning, as the inheritance matrices I6=τ and Iτ are completely
determined by the meioses, and these are assumed independent of C and the founder
genotypes. The preceding display then becomes

E
(
P

(
I6=τ = i| Iτ )|X, Iτ

)
.

Here the inner probability is already a function of (X, Iτ ) (and in fact of Iτ only)
and hence the outer conditioning is superfluous. Thus we have proved that P

(
I6=τ =

i|X, Iτ ) = P
(
I6=τ = i| Iτ ), which implies the first assertion of the theorem (see

Exercise 4.9).
The mixture representation in the second assertion is an immediate consequence

of the first assertion. Furthermore, if the loci U are unlinked to the causal loci, then
IU is independent of Iτ , and the mixture representation collapses to

∑

y P (IU =
i)P (Iτ = y|X) = P (IU = i). This shows that IU is conditionally independent of
the phenotypes X .

The formula given in the preceding theorem represents the conditional distri-
bution of the inheritance matrix IU given the phenotypes (X1, . . . , Xn) as a mixture
of the conditional distribution of IU given Iτ , with weights the conditional distri-
bution of Iτ given X . If U is only linked to a subset τ0 ⊂ τ of the causal loci, then
the unlinked causal loci can be marginalized out of the mixture and we obtain

P
(
IU = i|X

)
=

∑

y

P
(
IU = i| Iτ0 = y

)
P (Iτ0 = y|X).

Thus the dependence of the inheritance process on the phenotype goes via the
linked causal loci. The probabilities P (IU = i| Iτ0 = y) of the mixed distribution
are given by “transition probabilities” of the inheritance process, and do not involve
the phenotypes.

Under the Haldane/Poisson model for the chiasmata the inheritance process
is a Markov chain. The representation is then particularly attactive if U is linked
to only a single locus τ , because the terms of the mixture are then precisely the
transition probabilities of the Markov chain u 7→ Iu started at τ . If there are multiple
linked causal loci, the Markov chain is conditioned to be in certain states at multiple
times.
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4.9 EXERCISE. Show that the following statements are equivalent ways of ex-
pressing that the random variables X and Y are conditionally independent given
the random variable Z:
(i) P (X ∈ A, Y ∈ B|Z) = P (X ∈ A|Z)P (Y ∈ B|Z) almost surely for every

events A and B.
(ii) P (X ∈ A|Y, Z) = P (X ∈ A|Z) almost surely for every event A.
(iii) P (Y ∈ B|X,Z) = P (Y ∈ B|Z) almost surely for every event B.



5
Nonparametric Linkage Analysis

It was seen in the preceding chapter that the IBD-indicators at loci that are not
linked to the causal loci are stochastically independent of the phenotype. Therefore
the null hypothesis of no linkage of a given locus can be tested by testing for in-
dependence between IBD-indicator and phenotype. Nonparametric linkage analysis
operationalizes this idea by comparing IBD-sharing among individuals with similar
phenotypes. For an unlinked locus there should be no difference in sharing between
affected and nonaffected individuals, whereas for a linked locus higher IBD-numbers
among individuals with a similar phenotype are expected.

In this chapter we apply this general principle to finding loci involved in caus-
ing qualitative traits, for instance binary traits (“affected” or “nonaffected”). We
consider in particular the nonparametric linkage test based on nuclear families with
two affected sibs.

5.1 Nuclear Families

Consider the number Nu of alleles shared IBD at locus u by two sibs in a nuclear
family, as in Figure 4.2. In Example 4.2 this variable was seen to be binomially
distributed with parameters 2 and 1

2
This is the correct distribution if the nuclear family is drawn at random from

the population. The affected sib pair method is based on conditioning on the event,
denoted ASP, that both children are affected. Intuitively, the information that both
sibs are affected makes it more likely that they are genetically similar at the loci that
are responsible for the affection. Thus the conditional distribution given ASP of the
IBD-value at a locus that is linked to the disease should put more probability on
the point 2 and less on the value 0. On the other hand, the conditional distribution
given ASP of the IBD-value at a locus that is unrelated to the affection should
be identical to the (unconditional) binomial distribution with parameters 2 and 1

2 .
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Thus we can search for loci involved in the disease by testing whether the conditional
IBD-distribution differs from the unconditional distribution.

In practice we determine the conditional IBD-distribution through ran-
dom sampling from the set of nuclear families with two affected children. Let
N1
u, N

2
u, . . . , N

n
u be the numbers of alleles shared IBD at locus u by the two sibs in a

random sample of n families with two affected children. These variables are a random
sample from a distribution on the numbers {0, 1, 2}, given by a probability vector
z = (z0, z1, z2) belonging to the unit simplex S2 = {(z0, z1, z2): zj ≥ 0,

∑

j zj = 1}.
If the locus u is unlinked to the affection, then this distribution should not be dif-
ferent from the distribution found in a random sample from all nuclear families. We
therefore test the null hypothesis

H0: z = (1
4 ,

1
2 ,

1
4 ).

If the null hypothesis is rejected we conclude that the locus is linked to the disease.
The alternative hypothesis could specify that the parameter is in the unit simplex
S2, but not equal to (1

4 ,
1
2 ,

1
4 ). However, under reasonable conditions it can be shown

that under ASP the parameter zu is always contained in the subset H2 = {z ∈
S2: 2z0 ≤ z1 ≤ 1

2}, known as Holmans’ triangle, in correspondence with our intuition
that z0 should decrease and z2 increase under ASP. See Figure 5.1 and Section 5.5.
Restricting the parameter set to a smaller set should make the construction of more
powerful tests feasible. Moreoever, even if the conditions for Holmans’ triangle may
not always be satisfied, it is reasonable to use a test that is powerful in particular
for alternatives in the triangle.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
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0

Figure 5.1. Holmans’ triangle is the small, shaded triangle. Shown are the probabilities z1 and z2 on
the horizontal and vertical axis. The null hypothesis H0: (z1, z2) = (1/4, 1/2) is the point at the upper
right corner of Holmans’ triangle. The large triangle is the unit simplex.

The likelihood for one family can be written as

z 7→ Pz
(
N i
u = j

)
= z

1j=0

0 z
1j=1

1 z
1j=2

2 .
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It follows that the likelihood ratio statistic based on observing the random variables
N1
u, N

2
u, . . . , N

n
u is

Λu = sup
z

∏n
i=1z

1
Ni

u=0

0 z
1

Ni
u=1

1 z
1

Ni
u=2

2
∏n
i=1(1/4)

1
Ni

u=0(1/2)
1

Ni
u=1(1/4)

1
Ni

u=2
= sup

z
(4z0)

Mu,0(2z1)
Mu,1(4z2)

Mu,2 ,

where Mu = (Mu,0,Mu,1,Mu,2) counts the number of families in which the sibs
have 0, 1 or 2 alleles IBD:

Mu,j = #{1 ≤ i ≤ n:N i
u = j}, j = 0, 1, 2.

The supremum can be computed over the unit simplex S2 or over Holmans’ trian-
gle H2. The first possibility has the benefit of simplicity, as the maximum of the
likelihood over S2 can be seen to be taken at the point Mu/n, the observed relative
frequencies of the IBD-values. Maximization over Holmans’ triangle is slightly more
complicated. If the unrestricted maximum likelihood estimate falls into the triangle,
then the maximum value is the same as before; otherwise this must be “projected”
into the triangle.

Using the full two-simplex has the further advantage that two times the log like-
lihood ratio statistic tends under the null hypothesis in distribution to a chisquare
distribution with two degrees of freedom, as n → ∞. Thus for large n a test of
approximate size α is obtained by rejecting the null hypothesis if this statistic ex-
ceeds the upper α-quantile of this chisquare distribution. Because the null hypoth-
esis (1

4 ,
1
2 ,

1
4 ) is at a corner of Holmans’ triangle, the limit distribution of the log

likelihood ratio statistic for the restricted alternative hypothesis is not chisquare,
but a mixture of chisquare distributions with 0, 1, and 2 degrees of freedom. See
Section 14.2. This limit distribution can still be used to determine critical values.

There are many alternatives for the likelihood ratio statistic, the most popular
and simplest one being the “NPL-statistic”. Under the null hypothesis the variables
N i
u are binomially distributed with parameters 2 and 1/2 and hence possess mean

and variance equal to 1, whereas under the alternative their mean is bigger than
1. The variable

√
2(N i

u − 1) is therefore standardized at mean zero and variance
1 under the null hypothesis and is expected to be positive under the alternative.
bigger. The nonparametric linkage statistic or NPL-statistic is defined as the scaled
sum of these variables,

(5.1) Tu =
1√
n

n∑

i=1

√
2(N i

u − 1) =

√

2

n

(
Mu,2 −Mu,0

)
.

The null hypothesis is rejected for large values of this statistic. By the Central
Limit Theorem this statistic is under the null hypothesis asymptotically standard
normally distributed, so that a critical value can be obtained from the normal
probability table.
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5.1.1 Incomplete IBD-Information

In practice we usually do not (completely) observe the IBD-values N i
u and hence it

is necessary to extend the tests to situations with incomplete IBD-information. If
X denotes the observed marker information for all individuals, then it is natural to
adapt the likelihood ratio and NPL-statistics to

sup
z

E0

(

(4z0)
Mu,0 (2z1)

Mu,1 (4z2)
Mu,2 |X

)

and E0(Tu|X).

The subscript 0 indicates a conditional expectation under the null hypothesis.
Assuming that X = (X1, . . . , Xn) is a vector consisting of independent infor-

mation X i for family i and writing the likelihood ratio again as a product over the
families, we can rewrite the adapted likeliood ratio statistic as

sup
z

E0

( n∏

i=1

(4z0)
1

Ni
u=0(2z1)

1
Ni

u=1(4z2)
1

Ni
u=2 |X

)

= sup
z

n∏

i=1

E0

(

4z01Ni
u=0 + 2z11Ni

u=1 + 4z21Ni
u=2|X i

)

= sup
z

n∏

i=1

(

4z0πu(0|X i) + 2z1πu(1|X i) + 4z2πu(2|X i)
)

,

where πu(j|X i) = P0

(
N i
u = j|X i

)
, for j = 0, 1, 2. We can again take the supremum

over the full unit simplex or Holmans’ triangle. The limit distributions are still
chisquare or a mixture of chisquare distributions. See Section 14.2.

Under the same assumption on X the adapted NPL-statistic is obtained by
replacing the variable N i

u by its conditional expectation E0

(
N i
u|Xi

)
= πu(1|X i) +

2πu(2|X i), giving

1√
n

n∑

i=1

√
2
(
πu(1|X i) + 2πu(2|X i) − 1

)
.

The projection on the observed data keeps the mean value, but decreases variance,
Hence it would be natural to replace the critical value by a smaller value. Because
the projected statistic is still a sum of independent variables, in practice one may
divide the statistic in the preceding display by the sample standard deviation of the
terms of the sum and use a standard normal approximation.

The deviation from 1 of the variances of the individual terms
√

2
(
πu(1|X i) +

2πu(2|X i)− 1
)

in the sum is a measure of the informativeness of the observed data
X on the IBD-status at the locus u.

For computing the conditional probabilities πu(j|X i) we can employ the hidden
Markov structure discussed in Section 3.6. The IBD-values at the locus of interest
can be expressed in the inheritance vectors (P 1

u ,M
1
u, P

2
u ,M

2
u)
T . Together with the

inheritance vectors at the marker loci, these form the hidden Markov chain under-
lying the segregation process, and the observed marker data are the outputs of the
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chain. The smoothing algorithm for hidden Markov models yields the conditional
distributions of the hidden states given the outputs.

5.2 Multiple Testing

We can apply a test for linkage of a given locus for every given locus u separately.
However, in practice it is applied simultaneously for a large set of loci, typically
through a plot of the graph of the test statistic against the loci (see Figure 5.2). If
the graph shows a sufficiently high peak at a certain locus, then this indicates that
this locus is involved in the affection.

Figure 5.2. Plot of the NPL-statistic (vertical axis) versus locus (horizontal axis in Kosambi map
function) for a study on schizophrenia based on 16 markers on chromosome 16p. (Source: Kruglyak at al.
(1996). Parametric and nonparametric linkage analysis: a unified multipoint approach. Am. J. Human
Genetics58, 1347–1363.)

The question arises how high a mountain or peak should be to decide that the
deviation from the null hypothesis at the given locus is significant. Writing the test
statistic at locus u as Tu, we can measure this by studying the statistic

sup
u∈U

Tu,

where the supremum is taken over the set U of all disease susceptibility loci that are
tested, possibly a whole chromosome. Finding a peak higher than some threshold c
in the graph of u 7→ Tu is the same as this supremum statistic exceeding c. Thus a
critical value c could be chosen to satisfy, for a given α,

P0

(

sup
u∈U

Tu ≥ c
)

≤ α.
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Of course, we have

sup
u∈U

P0

(
Tu ≥ c

)
≤ P0

(

sup
u∈U

Tu ≥ c
)

≤ (#U) P0

(
Tu ≥ c

)
.

The first inequality shows that the critical value should be bigger than the critical
value for every given locus separately. The second inequality suggests the Bonferroni
threshold equal to c such that P0

(
Tu ≥ c

)
≤ α/#U for every u ∈ U .

Unfortunately, the Bonferroni threshold is very conservative if many loci are
tested. Because IBD-values at two loci are identical unless there has been a recom-
bination between the loci, IBD-values at nearby loci are highly correlated. This
typically translates into strong positive dependence between the test statistics Tu
and into overlapping events {Tu ≥ c}. The second inequality in the preceding dis-
play is therefore very pessimistic. Using the Bonferroni threshold would result in
a conservative test: the level of the test will be much smaller than intended. As a
result the test may easily fail to detect truly significant loci.

5.2 Example (Nuclear Families). To investigate this further consider the NPL-
test statistic for nuclear families in the case of full IBD-information, given in (5.1).
This was standardized to be approximately standard normally distributed under
the null hypothesis for every fixed u. By similar arguments, now invoking the multi-
variate central limit theorem, it can be seen that the variables Tui for a given finite
set of loci u1, . . . , uk are asymptotically jointly multivariate-normally distributed.
The covariances can be computed as

cov0

(
Tn,u1 , Tn,u2

)
= 2 cov0

(
Nu1 , Nu2

)
= 4 cov0

(
NP,u1 , NP,u2

)

= 2θ2u1,u2
+ 2

(
1 − θu1,u2

)2 − 1 = 1 − 4θu1,u2(1 − θu1,u2).

In the second last step we have used that ENP,u1NP,u2 = P (NP,u1 = 1 = NP,u2),
a probability that is expressed in the recombination fraction θu1,u2 between the
loci u1 and u2 in Table 4.2. If the NPL-statistic is based on not too few families,
we can thus act as if the stochastic process

(
Tn,u:u ∈ U

)
is a Gaussian process

with mean zero and covariance function as in the preceding display. A threshold
c such that P0

(
supu Tn,u ≥ c

)
= α can now be determined by simulation of the

multivariate normal distribution, or (numerical) approximations to the distribution
of the supremum of a Gaussian process.

Under the Haldane map function θu1,u2 = 1
2 (1 − e−2|u1−u2|) and hence 1 −

θu1,u2 = 1
2 (1 + e−2|u1−u2|). In this case the preceding display can be seen to imply

cov0

(
Tn,u1 , Tn,u2

)
= e−4|u1−u2|.

Together with the zero mean E0Tu = 0, this shows that the limiting Gaussian
process (Tu:u ∈ U) is stationary. It is known as an Ornstein-Uhlenbeck process, and
its properties are well studied in the probability literature. For instance, it can be
shown that, as c→ ∞,

P
(

sup
0≤u≤L

Tu > c
)

� 4L(2π)−1/2ce−c
2/2.
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This simple approximation is accurate only for very large c, but can be improved
by adding in additional terms. See Section 14.11.

* 5.3 General Pedigrees

There are many extensions of the nonparametric linkage test to more general pedi-
grees than nuclear families. They all compare allele sharing at a locus among affected
nonfounders in a pedigree to sharing among randomly chosen nonfounders.

Let V 1
u , . . . , V

2n
u be the labels of the nonfounder alleles at locus u if the founder

alleles are numbered 1, 2, . . . , 2f . Suppose the invididuals labelled 1, 2, . . . , na are
affected. Two statistics that measure an increase in allele sharing are:

∑ ∑

1≤i<j≤2na

1V i
u=V j

u
,

∑

w1∈{V 1
u ,V

2
u }

∑

w2∈{V 3
u ,V

4
u }

· · ·
∑

wna∈{V 2na−1
u ,V 2na

u }

2f
∏

j=1

[
#(i ∈ {1, . . . , na}:wi = j)

]
!.

The first statistic is simply the total number of pairs of alleles of affected non-
founders that are IBD. The second, more complicated statistic is motivated as fol-
lows. Choose one allele from the pair of alleles of every affected nonfounder, giving
labels w1, . . . , wna ; these labels are numbers in {1, 2, . . . , 2f}, with the number j
occurring #(i ∈ {1, . . . , na}:wi = j) times; compute the number of permutations
of the labels w1, . . . , wna that keep this sequence unchanged (this is the product
of factorials in the display); add these numbers of permutations over all choices
of one allele. The intuition is that if many alleles are shared IBD, then the la-
bels w1, . . . , wna will consist of a small number of different founder alleles, and the
number of permutations leaving this vector unchanged will be large.

Given information on a random sample of pedigrees we can define an overall
statistic by adding the statistics for the individual pedigrees, possibly weighted by
a measure of informativeness of the pedigree. The Central Limit Theorem then
implies that the statistic will be approximately normal.

To compute the distribution of test statistics of this type, it is more convenient
to rewrite them as functions of the inheritance vectors Iu = (P 1

u ,M
1
u, . . . , P

n
u ,M

n
u )

introduced in Section 3.6. Under the null hypothesis of no linkage its coordinates
P 1
u ,M

1
u, . . . , P

n
u ,M

n
u are i.i.d. Bernoulli variables with parameter 1

2 . Thus the mean
and variance of a test statistic of the form T (Iu) can be computed as

E0T (Iu) =
∑

i∈{0,1}2n

1

22n
T (i),

var0 T (Iu) =
∑

i∈{0,1}2n

1

22n
T 2(i) − (E0T )2.
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These quantities are sufficient to obtain an approximate distribution for a (weighted)
sum over pedigrees from the Central Limit Theorem. We can also obtain the limit
joint distribution of the test statistic at multiple loci using

E0T (Iu)T (Iv) =
∑

i∈{0,1}2n

∑

j∈{0,1}2n

1

22n
T (i)T (j)

2n∏

k=1

θ
1ik 6=jk
u,v (1 − θu,v)

1ik=jk .

Here θu,v is the recombination fraction between the loci u and v.
Expressing the statistics in the inheritance vectors makes it also easier to cope

with incomplete IBD-information. An inheritance vector Iu of a pedigree with
n nonfounders takes its values in {0, 1}2n, and hence a test statistic is a map
T : {0, 1}n → R whose values T (i) are measures of compatibility of an observed
value Iu = i with the null hypothesis that the locus is unlinked to the affection. We
rarely observe Iu itself, but must base the test on observed marker information X
for the pedigree. Then it is natural to use instead the test statistic

E0

(
T (Iu)|X

)
=

∑

i∈{0,1}2n

T (i)πu(i|X),

where πu(i|X) = P0(Iu = i|X) gives the conditional distribution of the inheritance
vectors given the observed data under the null distribution. Under appropriate con-
ditions these conditional probabilities can be computed by the smoothing algorithm
for hidden Markov models.

The shape of the conditional distribution πu(·|X) is a measure for the infor-
mativeness of the observed marker data X . Given complete marker information
this distribution is concentrated on a single point in {0, 1}2n, whereas a uniform
distribution on {0, 1}2n corresponds to no information at all. A traditional mea-
sure of “information” in a discrete distribution π on a finite set is the entropy
∑

i π(i) 2log π(i). Applied in the present situation this leads to

∑

i∈{0,1}2n

πu(i|X) 2log πu(i|X).

In the extreme cases of a one-point distribution or the uniform discrete distribution
this reduces to 0 and −2n, respectively, and the number can be seen to be be-
tween these extremes for all other distributions. The measure can be used to decide
whether it is useful to type additional markers in an area.

Formulation of nonparametric linkage in terms of the inheritance vectors also
allows a more abstract process point of view to testing at multiple loci. Under the
null hypothesis that no causal loci are linked to the loci u1, . . . , uk under study, the
chain Iu1 , . . . , Iuk

of inheritance vectors possesses a distribution that is completely
determined by the stochastic model for the chiasmata. We wish to test that the
observed distribution differs from this null distribution. In particular, if the chias-
mata are modelled as a stationary stochastic process, then the process Iu1 , . . . , Iuk

is stationary under the null hypothesis and should have a nonstationarity that is
most prominent near the causal loci otherwise.
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As usual this model is most attractive under the Haldane/Poisson model for
the chiasmata. Under the null hypothesis the process (Iu:u ∈ R) is then a stationary
Markov chain, described in Section 4.3.3. Under the alternative the distribution, as
given in Theorem 4.8, can be described as follows:
(i) The inheritance indicators at the causal loci are distributed according to some

distribution P (Iτ = ·|ASP).
(ii) Given Iτ the remaining inheritance vectors I6=τ =

(
Iu:u /∈ {τ1, . . . , τk}

)
are

distributed according to the conditional law of I6= given Iτ , independent of
ASP.

This gives the image of the process (Iu:u ∈ R) started out of stationarity at the
causal loci, but evolving according to the ordinary transitions. Of course, given
multiple causal loci, the fixed values of Iτ tie the process down at multiple loci and
hence “evolving” has a nonlinear character.

5.4 Power of the NPL Test

The statistical power of linkage tests can be studied given a genetic model for the
affection. As an example we consider the NPL for nuclear families, described in
Section 5.1, under a one-locus and two-locus causal model for the disease.

The NPL-test rejects the null hypothesis that locus u is linked to the disease for
large values of the statistic (5.1). This test statistic has been centered and scaled
so that it has mean zero and variance 1 under the null hypothesis; for n → ∞
the sequence Tn,u tends in distribution to a standard normal distribution. The
power of the test depends, at first order, on the change in the mean value under
the assumption of linkage of the locus u to the disease (relative to the standard
deviation).

The “changed mean” refers to the mean value E(Nu|ASP) of the IBD-
indicators given the phenotype ASP. (We write Nu without the superscript i for a
typical family.) These IBD-indicators can be expressed in the inheritance indicators
Iu = (P 1

u ,M
1
u, P

2
u ,M

2
u)T of the nuclear family as

NP,u = 1P 1
u=P 2

u
, NM,u = 1M1

u=M2
u
, Nu = NP,u +NM,u.

Theorem 4.8 gives an expression for the conditional distribution of the inheritance
process IU at a set of loci U given ASP. Combining this with the preceding display
we see that, for any i, j ∈ {0, 1},

(5.3)

P
(
NP,U = i, NM,U = j|ASP

)

=
∑

y

P (NP,U = i, NM,U = j| Iτ = y)P (Iτ = y|ASP).

Thus the conditional mean E(Nu|ASP) can be specified by a model for the condi-
tional distribution of the inheritance vector Iτ at the causal loci given ASP. The
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conditional probabilities P (NP,U = i, NM,U = j| Iτ ) can be factorized as the product
P (NP,U = i|P 1

τ , P
2
τ )P (NM,U = j|M1

τ ,M
2
τ ) of the paternal and maternal meioses.

For these we adopt the Haldane/Poisson model for the chiasmata process, as usual.

5.4.1 One Linked Causal Locus

In the case that U is linked to only a single causal locus τ , the preceding display can
be simplified. In this situation the conditional probabilities P (NP,U = i|P 1

τ , P
2
τ ) de-

pend on (P 1
τ , P

2
τ ) only through NP,τ . (The four possible configurations for (P 1

τ , P
2
τ )

fall in the two groups {(0, 0), (1, 1)} and {(0, 1), (1, 0)} by value of NP,τ , and by the
symmetry between the two variables P iτ and the symmetry in their transitions from
0 to 1 or 1 to 0 it is irrelevant for the value of NP,u which of the two elements of
the group is the starting configuration.) This and the similar observation for the
maternal indicators, allows to infer from (5.3) that

P
(
NP,U = i, NM,U = j|ASP

)

=
∑

k,l

P (NP,U = i|NP,τ = k)P (NM,U = j|NM,τ = l)P (NP,τ = k,NM,τ = l|ASP).

The conditional distribution of the IBD-indicators given ASP can therefore be
parametrized by the four probabilities zτ (k, l) = P

(
NP,τ = k,NM,τ = l|ASP

)
,

for k, l ∈ {0, 1}. For simplicity we assume that paternal and maternal origins are
irrelevant (i.e. zτ (0, 1) = zτ (1, 0)), which leaves two degrees of freedom in the four
probabilities. A convenient parameterization is given in Table 5.1. It uses the pa-
rameters δ and ε to off-set the probabilities from their null value 1/4.

Given (NP,τ , NM,τ ) the processes (NP,u:u ∈ U
)

and (NM,u:u ∈ U
)

are in-
dependent Poisson switching processes of the type discussed in Lemma 1.14 with
λ = 2. In particular, the transition probability P (NP,u = j|NP,τ = i) is equal to
ψ = 1

2 (1+ e−4|u−τ |) if i = j, and is equal to 1−ψ otherwise. With the parametriza-
tion given in Table 5.1 we find,

E(Nu|ASP) = 2E(NP,u|ASP) = 2E
(
E(NP,u|NP,τ)|ASP

)

= 2(1
2 − 1

2δ)E(NP,u|NP,τ = 0) + 2(1
2 + 1

2δ)E(NP,u|NP,τ = 1)

= 2(1
2 − 1

2δ)(1 − ψ) + 2(1
2 + 1

2δ)ψ = 1 + δ(2ψ − 1) = 1 + δe−4|u−τ |.

As to be expected, the change in the mean value of the test statistic is largest at
the causal locus u = τ , and decreases to the null value 1 exponentially if the genetic
map distance between u and the causal locus increases to infinity. By a similar
argument we find that

var(Nu|ASP) = 2 var(NP,u|ASP) + 2 cov(NP,u, NM,u|ASP)

= 2E(N2
P,u|ASP) + 2E(NP,uNM,u|ASP) − 4E(NP,u|ASP)2

= 2
(

1
2 + 1

2δ(2ψ − 1)
)

+ 2
[
(1
4 − δ + ε)(1 − ψ)2

+ 2(1
4 + 1

2δ − ε)ψ(1 − ψ) + (1
4 + ε)ψ2

]
− 4

(
1
2 + 1

2δ(2ψ − 1)
)2

= 1
2 − (δ + δ2 − 2ε)(2ψ − 1)2 = 1

2 − (δ + δ2 − 2ε)e−8|u−τ |.
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For small δ and ε this is close to the null value 1/2.
We conclude that under the alternative the mean and variance of the NPL-

statistic (5.1) are
√

2nδe−4|u−τ | and 1−2(δ+δ2−2ε)e−8|u−τ |, respectively. If δ > 0,
then the test statistic tends in distribution to infinity as n → ∞, whence the null
hypothesis is rejected with probability tending to one. The normal approximation
to the power of the test is

Pδ,ε(Tn,u ≥ c) ≈ 1 − Φ
( c−

√
2n δe−4|u−τ |

√

1 − 2(δ + δ2 − 2ε)e−8|u−τ |

)

.

For sequences of alternatives δ = δn such that
√
nδn tends to a finite limit, this ap-

proximation tends to a limit also. For sequences of alternatives with
√
nδn → ∞ the

normal approximation tends to 1 as does the power, but the normal approximation
is not very accurate for such “large deviations” and would better be replaced by a
different one.

NP,τ/NM,τ 0 1
0 1

4 − δ + ε 1
4 + 1

2δ − ε 1
2 − 1

2δ
1 1

4 + 1
2δ − ε 1

4 + ε 1
2 + 1

2δ
1
2 − 1

2δ
1
2 + 1

2δ

Table 5.1. Parametrization of the probabilities zτ (i, j) = P (NP,τ = i, NM,τ = j|ASP). The
parameter 1 + δ is equal to the expected value E(NP,τ +NM,τ |ASP).

The NPL-test is typically performed for multiple putative loci u simultaneously,
and rejects for some locus if supu Tn,u exceeds some level. Obviously, the rejection
probabilities Pδ,ε

(
supu Tn,u ≥ c

)
also tend to 1 as n→ ∞ at every fixed alternative

with δ > 0. To gain more insight we derive the joint limit distribution of the
process (Tn,u:u ∈ U) under alternatives as given in Table 5.1 with δ = h/

√
n and

ε = εn → 0. (Under the assumption that zτ (0, 0) ≤ zτ (0, 1) the convergence of ε
is implied by the convergence of δ = δn.) By the Central Limit Theorem and the
preceding calculations of mean and variance the sequence Tn,u tends for every u
to a normal distribution with mean

√
2he−4|u−τ | and variance 1. The joint limit

distributions follow by the multivariate Central Limit Theorem, where we need to
calculate cov(Nu, Nv|ASP). It is slightly easier to compute

E
(
(Nu −Nv)

2|ASP
)

= 1 − e−4|u−v| + (ε− 2δ)
(
e−4|u−τ | − e−4|v−τ |)2

.

As δ and ε tend to zero this converges to 1−e−4|u−τ |, which is equal to E(Tu−Tv)2
for the Ornstein-Uhlenbeck process found in Example 5.2. We conclude that the
sequence of processes (Tn,u:u ∈ u) tends under the alternatives δn = h/

√
n and

εn → 0 in distribution to a Gaussian process (Tu:u ∈ U) with

ETu =
√

2he−4|u−τ |, and ETuTv = e−4|u−v|.

This process is the sum of an Ornstein-Uhlenbeck process and the drift process
(
√

2he−4|u−τ |:u ∈ U).
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5.4 EXERCISE. Verify the formula for E
(
(Nu − Nv)

2|ASP
)
. [Hint: It is equal to

2E
(
(NP,u−NP,v)

2|ASP
)
+ 2E

(
(NP,u−NP,v)(NM,u−NM,v)|ASP

)
. The first term

is equal to 2E(NP,u −NP,v)
2 = 1 − e−4|u−v|, because |NP,u −NP,v| is independent

of NP,τ and hence of ASP, the conditional distribution of the process (NP,u:u ∈ U)
given NP,τ = 0 being the same as that of the process (1−NP,u:u ∈ U) given NP,τ =
1. The second term is equal to E

(
E(NP,u−NP,v|NP,τ )E(NM,u−NM,v|NM,τ )|ASP

)
,

where the inner conditional expectations can be evaluated as NP,τ (ψu,τ − ψv,τ ) +
(1 −NP,τ )(ψv,τ − ψu,τ ) and the analogous expression with P replaced by M .]

5.4.2 Two Linked Loci

5.4.3 Scan Statistics

* 5.5 Holmans’ Triangle

In this section we prove that the distribution of IBD-sharing of two sibs in a nuclear
ASP-family is given by a point in Holmans’ triangle, under reasonable conditions.
We imagine that we sample an arbitrary nuclear family and are given the infor-
mation that both sibs are affected. The (conditional) distribution of the number of
alleles Nu shared IBD by the two sibs is then given by the vector of three numbers
zu =

(
zu(0), zu(1), zu(2)

)
defined by

(5.5) zu(j) = P
(
Nu = j|ASP

)
, j = 0, 1, 2.

We seek conditions under which the vector zu is contained in Holmans’ triangle.

5.6 EXERCISE. Let hu,j = P (ASP|Nu = j). Show that 2zu(0) ≤ zu(1) ≤ 1
2 if and

only if hu,0 ≤ hu,1 ≤ P (ASP ).

1 2 3 4

V 1 V 2 V 3 V 4

Figure 5.3. The alleles of the parents are labelled arbitrarily 1, 2, 3, 4. The children’s alleles are
denoted V 1, V 2, V 3, V 4, defined to be the label of the founder gene that is its origin.
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We assume that the affection of the two sibs is caused by the genes at k un-
linked loci. Furthermore, we assume that given their genomes the affection status
of two sibs in a nuclear family is dependent only through a variable C that is in-
dependent of the genomes. More precisely, writing A1 and A2 for the events that
sib 1 and sib 2 in a randomly chosen nuclear family are affected we assume that
the conditional probability that both sibs are affected given their complete genomes
G1 = (G1

P , G
1
M ), G2 = (G2

P , G
2
M ) and C can be factorized as

P (ASP|G1, G2, C) = P (A1|G1
P,1, G

1
M,1, . . . , G

1
P,k, G

1
M,k, C)

× P (A2|G2
P,1, G

2
M,1, . . . , G

2
P,k, G

2
M,k, C).

The variable C may be interpreted as representing a common environment. We
also assume that the penetrances P (Ai|GP,1, GM,1, . . . , GP,k, GM,k, C), giving the
probability of affection of an individual given his genes and common environment,
depend symmetrically on the gene pairs (GP,j , GM,j) at every of the k causal loci
(j = 1, 2 . . . , k).

The validity of Holmans’ triangle can be proved under various conditions. The
simplest is to assume Hardy-Weinberg and linkage equilibrium.

5.7 Lemma. Under the stated assumptions and combined Hardy Weinberg and
linkage equilibrium the vector zu defined in (5.5) satisfies 2zu(0) ≤ zu(1) ≤ 1

2 .

Proof. Assume first that u is one of the loci causing the affection. Define, for
i, j ∈ {0, 1},

zu(i, j) = P
(
NP,u = i, NM,u = j|ASP

)
.

We shall prove the inequalities

(5.8)

zu(0, 0) ≤ zu(0, 1),

zu(0, 0) ≤ zu(1, 0),

zu(0, 1) + zu(1, 0) ≤ zu(0, 0) + zu(1, 1).

The inequality 2zu(0) ≤ zu(1) then follows by taking the sum of the first two
inequalities in the display, whereas the inequality zu(1) ≤ 1

2 follows by deducting
the inequality zu(1) ≤ zu(0) + zu(2) = 1 − zu(1) from the third.

We label the four founder alleles (arbitrarily) by 1, 2, 3, 4, and define the vector
Vu = (V 1

u , V
2
u , V

3
u , V

4
u )T as the labels of the two alleles at locus u of the first sib

(V 1
u , V

2
u ) and of the second sib (V 3

u , V
4
u ), respectively. The IBD-indicators areNP,u =

1V 1
u =V 3

u
and NM,u = 1V 2

u =V 4
u
. There are 16 possible configurations for the vector

Vu, listed in Table 5.2 together with the values of the induced IBD-indicators. The
values fall in four groups of four, which we denote by C0,0, C0,1, C1,0 and C1,1.

Let τ1, . . . , τk be the causal loci and let V be the (4 × k)-matrix with columns
Vτ1 , . . . , Vτk

,. Furthermore, let G the (4× k)-matrix with columns the the four alle-
les of the father and mother at locus τj . As always these matrices are independent,
because segregation is independent of founder genotypes, and the rows of V are
independent as the four meioses between the two parents and their children are
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assumed to be independent. In the present situation, all elements of V are stochas-
tically independent in view of the additional assumption that the k causal loci are
unlinked, and all elements of G are independent by the equilibrium assumptions.
By Bayes’ formula, for any v,

P (V = v|ASP) =
P (ASP|V = v)P (V = v)

P (ASP)
.

The probabilities zu(i, j) are the sums of the left side over the sets of v such that
the column vu in v corresponding to locus u (assumed to be one of the τj) belongs
to Ci,j .

The probability P (V = v) is equal to (2−4)k, independent of v, because the
causal loci are assumed to be unlinked. To establish the inequalities in (5.8) if
suffices to compare expressions of the type

∑

v:vu∈C
P

(
ASP|V = v

)
.

For instance, we prove the first inequality by showing that this expression is smaller
for C = C0,0 than for C = C0,1, and for the third inequality we compare the
expression for C = C0,1 ∪ C1,0 and C = C0,0 ∪ C1,1.

The vector V completely describes how the founder alleles G segregate to the
two sibs, and hence given G the event V = v completely determines the genes of the
two sibs. In fact, given V = v the first sib has alleles Gv1j ,j , Gv2j ,j at locus τj , and
the second sib Gv3j ,j , Gv4j ,j. Combining this with the assumption, we can write, for
every fixed v,

P (ASP|V = v,G,C) = P
(
A1|Gv11,1, Gv21,1, . . . , Gv1k,k, Gv2k,k, C

)

× P
(
A2|Gv31,1, Gv41,1, . . . , Gv1k,k, Gv3k,k, C

)
.

The expected value of the right side with respect to (G,C) is the probability
P

(
ASP|V = v

)
, for every fixed v.

For simplicity of notation assume that the locus u of interest is the first locus
τ1, and denote the second to last columns (vij)j>1 of v by w. For given w abbreviate

fij = P
(
A1|Gi1, Gj1, Gv12,2, Gv22,2 . . . , Gv1k,k, Gv2k,k, C

)
,

gij = P
(
A2|Gi1, Gj1, Gv32,2, Gv42,2 . . . , Gv3k,k, Gv4k,k, C

)
.

Then we find
∑

v:vu∈C0,0

P
(
ASP|V = v

)
=

∑

w

E(f13g24 + f23g14 + f14g23 + f24g13),

∑

v:vu∈C0,1

P
(
ASP|V = v

)
=

∑

w

E(f13g23 + f14g24 + f23g13 + f24g14),

∑

v:vu∈C1,0

P
(
ASP|V = v

)
=

∑

w

E(f13g14 + f14g13 + f23g24 + f24g23),

∑

v:vu∈C1,1

P
(
ASP|V = v

)
=

∑

w

E(f13g13 + f23g23 + f14g14 + f24g24),
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where the expectation is over the (hidden) variables G and C, and the sums on
the right side are over the (hidden) indices vij with j > 1. The inequalities in the
lemma are comparisons of these four sums.

The third sum minus the first sum is proportional to zu(1, 0)−zu(0, 0) and can
be written in the form

(5.9)
∑

w

E(f13 − f23)(g14 − g24) +
∑

w

E(f14 − f24)(g13 − g23).

Both terms in this sum are nonnegative, as can be seen as follows. in case of the first
sum. The variables G3,1 and G4,1 occur in the first and second term of the product
(f13 − f23)(g14 − g24), respectively, and not in the other term. Because all variables
Gij are independent we may compute the expectations relative to these variables
first, for fixed values of the variables G1,1 and G2,1 and the (hidden) variables Gi,j
with j > 1. If there is only one locus (k = 1), then fij = gij and computing the
expectation relative to G31 and G41 collapses the expression to the expectation of
a square, which is nonnegative. If there is more than one locus involved, then the
conditional expectations

E
(
f13 − f23|G1,1, G2,1, Gi,j , j > 1

)

E
(
g14 − g24|G1,1, G2,1, Gi,j , j > 1

)

are different, as the functions fij and gij may depend on different variables at the
loci τ2, . . . , τk. However, we can perform the same reduction by integrating out
variables that occur in only one term of the product. The resulting expression is a
square, and hence has nonnegative expectation.

The proof of the first inequality in (5.8) is the same, after permuting indices.
To prove the third inequality we subtract the sum of the second and third sums
from the sum of the first and fourth sums to obtain

(5.10)
∑

w

E(f13 + f24 − f14 − f23)(g13 + g24 − g14 − g23).

Reasoning as before this can be reduced to the expectation of a square, which is
nonnegative.

This concludes the proof if u is one of the disease loci. For a general locus u
we decompose the probabilities of interest relative to the disease loci τ1, . . . , τk as

zu(j) =
∑

j1

· · ·
∑

jk

P
(
Nu = j|Nτ1 = j1, . . . , Nτk

= jk,ASP
)

× P
(
Nτ1 = j1, . . . , Nτk

= jk|ASP
)
.

Here the event ASP in the first conditional probability on the right can be removed,
as the phenotypic information ASP is not informative on the segregation at locus
u given the segregation information about the disease locations τ1, . . . , τk. (Indeed,
given the IBD-indicators at the disease loci the IBD-indicators at the locus of inter-
est u are determined by crossovers between u and the disease loci. The genotypes at
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the disease loci are not informative about the crossover process.) Also because the
disease loci are unlinked, the locus u can be linked to at most one of the k disease
loci τ1, . . . , τk, so that all except one IBD-indicator, say Nτ1 , can be removed in the
first probability. We can next sum out the IBD-indicators at τ2, . . . , τk, obtaining
the equation





zu(0)
zu(1)
zu(2)



 = A





zτ1(0)
zτ1(1)
zτ1(2)



 ,

for A the (3 × 3)-matrix of probabilities Aj,j1 = P
(
Nu = j|Nτ1 = j1

)
. This matrix

can be derived from Table 4.3, where ψ = θ2 + (1 − θ)2. By the first part of the
proof the vector on the far right (or rather the vector of its first two coordinates) is
contained in Holmans’ triangle. It can thus be written as the convex combination
of the three extreme points of the triangle. Thus we can write the right side in the
form, for some element (λ0, λ1, λ2) of the unit simplex in R3,

A



λ0





0
1
2
1
2



 + λ1





1
4
1
2
1
4



 + λ2





0
0
1









= λ0A





0
1
2
1
2



 + λ1A





1
4
1
2
1
4



 + λ2A





0
0
1



 .

From the fact that 1
2 ≤ ψ ≤ 1 we can infer that the three vectors on the far right

are contained in Holmans’ triangle. The same is then true for their convex hull.

Inspection of the preceding proof shows that Hardy-Weinberg and linkage equi-
librium are used to ensure that the expectations (5.9)-(5.10) are nonnegative. Non-
negativity is also reasonable without equilibrium assumptions. For instance, in the
case of an affection caused by a single locus it suffices that there exists an ordering
of the alleles such that the map

(5.11) g 7→ P (A|GP = g,GM , C)

is nondecreasing. In order words, the alleles can be ordered in their severity for the
affection.

In the case of multiple loci similar, but more complicated assumptions can be
made.
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V T NP NM N

1324 0 0 0
2314 0 0 0
1423 0 0 0
2413 0 0 0

1323 0 1 1
1424 0 1 1
2313 0 1 1
2414 0 1 1

1314 1 0 1
1413 1 0 1
2324 1 0 1
2423 1 0 1

1313 1 1 2
2323 1 1 2
1414 1 1 2
2424 1 1 2

Table 5.2. Possible values of the inheritance vector V at a single locus for a nuclear family together
with the induced IBD-values.



6
Genetic Variance

In this chapter we study decomposition of (co)variances of quantitative traits, phe-
notypes that are quantitative variables. This is of interest in its own respect, and is
also the basis for regression models that explain covariation of quantitative traits
through genetic factors. The latter models are used in Chapter 8 to discover quan-
titative trait loci.

Most quantitative traits with a genetic component depend also on environmen-
tal influences. Genetic and environmental effects are often modelled as independent
random variables, and often it is also assumed that the two influences contribute
additively. A quantitative trait X can then be written as a function

X = f(G) + E,

of genes G and environment E. For a randomly chosen person from the population
the variables G and E are usually assumed independent.

In this chapter we focus on the dependence of a trait on genetic factors only,
and hence consider functions X = f(G). We consider the distribution of the trait
X for a person drawn at random from a population, or the joint distribution for a
pair of persons belonging to a given pedigree.

Throughout the chapter we assume that the population is in combined Hardy-
Weinberg and linkage equilibrium.

6.1 Variance

Consider a trait X that depends on the genes at k loci in the form

X = f(GP,1, . . . , GP,k, GM,1, . . . , GM,k) = f(GP , GM ).

Here (GP,i, GM,i) is the ordered genotype at the ith locus, and GP = GP,1 · · ·GP,k
and GM = GM,1 · · ·GM,k are the paternal and maternal haplotypes. For simplicity,
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we assume that the paternal or maternal origin of the alleles is irrelevant and that
the unordered gene pairs influence the trait rather than haplotypes. This means
that the function f is invariant under exchanging its ith and (i+ k)th arguments.

As there are only finitely many possible values for the alleles, there are only
finitely many possible trait values. Because the number of values can be large, it
will still be useful to replace X by suitable approximations. The simplest approx-
imation is the population mean. This is the mean value EX of X viewed as the
trait of a randomly chosen individual from the population, and is the best constant
approximation in the sense of minimizing the square expectaton E(X − c)2 over
all constants c. A reasonable approximation that is both simple and does use the
genotypes is an additive variable of the form

∑

i fi(GP,i)+
∑

i fi(GM,i). It is reason-
able to determine suitable functions fi also by minimizing the square expectation of
the residual. This additive approximation does not allow interactions between the
alleles. This can be remedied also considering sums of functions of two alleles, or
three alleles, etc., yielding a sequence of increasingly accurate, but also complicated
approximations.

As we assume that the population is in equilibrium and the person is randomly
drawn from the population, the alleles GP,1, GM,1, GP,2, GM,2, . . . , GP,k, GM,k are
independent random variables. We can therefore apply the standard Hoeffding de-
composition (see Section 14.6) to X viewed as a function of these 2k random vari-
ables to compute the various terms of the approximations. Because the 2k variables
form k natural pairs, it is useful to group the various terms in the decomposition
both by order and by reference to the pairs.

The linear part of the decomposition can be grouped by locus, and takes the
form

k∑

i=1

(
fi(GP,i) + fi(GM,i)

)
,

for the functions fi given by

(6.1) fi(g) = E(X |GP,i = g) − EX.

The same function fi is applied to the paternal and the maternal alleles GP,i and
GM,i, in view of the assumed symmetry between these variables (the distributions
of (X,GP,i, GM,i) and (X,GM,i, GP,i) are the same). The value fi(g) is known as
the breeding value of allele g at locus i, or also the average excess of the allele. The
sum of the breeding values over the loci is the overall breeding value.

The pairs in the quadratic part of the Hoeffding decomposition can be grouped
according to whether they refer to the same locus or to different loci. The quadratic
part can be written as

k∑

i=1

fii(GP,i, GM,i) +
∑ ∑

1≤i<j≤k

(
fij(GP,i, GP,j) + fij(GM,i, GM,j)

)

+
∑ ∑

1≤i6=j≤k
fij(GP,i, GM,j),
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for the functions fii and fij (with i 6= j) given by

fii(g, h) = E(X |GP,i = g,GM,i = h)

− E(X |GP,i = x) − E(X |GM,i = h) + EX,(6.2)

fij(x, y) = E(X |GP,i = g,GM,j = h)

− E(X |GP,i = g) − E(X |GM,j = h) + EX.(6.3)

The terms of the form fii(GP,i, GM,i) correspond to interactions within a locus, and
are called dominance interactions. The other terms correspond to interactions be-
tween loci, and are referred to as epistasis. By the assumed symmetry and equalities
in distribution, only a single function fi,j arises for every pair (i, j).

The higher order interactions can also be partitioned in groups. Third order
interactions could refer to three different loci, or two loci, whereas fourth order
interactions could refer to four, three or two loci, etc. It is not particularly interesting
to give names to all of these, as they are usually neglected.

The variance of the trait can be decomposed as

varX = σ2
A + σ2

D + σ2
AA + · · · ,

where σ2
A is the variance of the linear term, σ2

D the variance of the sum of the
dominance interactions and σ2

AA the variance of the sum of epistatic interactions.
These appear to be usual notations, together with notations such as σ2

AAD, σ2
DD,

σ2
AAA, etc. for higher order interactions. Note that σ2

D and σ2
AA both refer to pairwise

interactions, even though their numbers of subscripts might suggest differently: each
subscript “A” refers to a single allele at a (different) locus, whereas a symbol “D”
refers to the pair of alleles at a locus.

The Hoeffding decompositions are a sequence of progressively more complicated
approximations to the phenotype X , giving best approximations in terms of square
expectation (see Section 14.6). In the present setting the square expectation refers to
the randomness inherent in sampling an individual from the population and hence
can be viewed as a “population mean square error”. Consequently, the terms of the
decomposition depend on the population characteristics, such as the frequencies of
the various alleles in the population. This is clear for the zero-order approximation,
which is just the population mean of the phenotype, but it is sometimes forgotten
for the more complicated higher-order approximations. In particular, the first-order
approximation gives an additive model

EX +

k∑

i=1

(
fi(GP,i) + fi(GM,i)

)

for the phenotype, which is easily misinterpreted as a causal linear model. Here
by “causal” it is meant that if one would constitute an individual with alleles
GP,1, GM,1, . . . , GP,k, GM,k, then the model would correctly give the phenotype of
the individual. Although the formula may give some indication of this phenotype,
this is not a correct usage of the model. The Hoeffding decomposition yields an
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additive model that is optimal on the average in the population. Had the individual
been chosen at random from the given population, then substituting his alleles in
the first-order approximation would make some sense. Better, had many individuals
been chosen at random from the population and their phenotypes been predicted
from substituting their phenotypes in the formula, then this would have made good
sense “on the average”. For any particular individual the formula does not neces-
sarily give a sensible outcome.

6.1.1 Monogenetic, Biallelic Traits

For a monogenic trait, given through a function X = f(GP , GM ) of the ordered
genotype (GP , GM ) at a single locus, the only interaction is the dominance inter-
action. The Hoeffding decomposition takes the form

X = EX + f1(GP ) + f1(GM ) + f11(GP , GM ).

The corresponding variance decomposition is varX = σ2
A+σ2

D, for σ2
A = 2Ef2

1 (GP )
and σ2

D = Ef2
11(GP , GM ).

In the special case of a biallelic gene, with alleles A1 and A2, the trait X can
have only three different values: f(A1, A1), f(A1, A2) = f(A2, A1) and f(A2, A2).
We can define the effect of allele A2 over allele A1 as a = 1

2

(
f(A2, A2)−f(A1, A1)

)
,

and introduce a second parameter k so that

f(A1, A1) = f(A1, A1),

f(A1, A2) = f(A2, A1) = f(A1, A1) + (1 + k)a,

f(A2, A2) = f(A1, A1) + 2a.

We consider the model as strictly additive if k = 0, because in this case each
allele A2 adds an amount a to the trait value relative to the base value for allele
A1. The values k = −1 and k = 1 correspond to the allele A2 being recessive or
dominant, respectively. For instance, in the first case the combinations (A1, A1)
and (A1, A2) yield the same genotype. In general the parameter k is not restricted
to {−1, 0, 1} and may assume noninteger values, with values strictly less than −1
(underdominance) and strictly bigger than 1 (overdominance) being not excluded.

The parameters a and k are called the homozygous effect and the dominance
coefficient, respectively, and permit a useful reparametrization of the relative po-
sitions of the three values f(A1, A1), f(A1, A2) = f(A2, A1) and f(A2, A2). (We
need a third parameter to describe the absolute positions, but this is irrelevant if
we are interested only in variances.) The Hoeffding decomposition can be expressed
in these parameters and the allele frequencies. If A1 and A2 have population fre-
quencies p1 and p2 = 1− p1, respectively, then, under Hardy-Weinberg equilibrium
the frequencies of the unordered genotypes A1A1, A1A2 and A2A2 are p2

1, 2p1p2 and
p2
2, and hence

EX = f(A1, A1) + 2p1p2(1 + k)a+ p2
22a,

E(X |GP = A1) = f(A1, A1) + p2(1 + k)a,

E(X |GP = A2) = f(A1, A1) + p1(1 + k)a+ p22a.
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From this it follows by straightforward algebra (using definitions (6.1)–(6.3) sum-
marized in Table 6.1) that

f1(A1) = −ap2

(
1 + (p1 − p2)k

)
,

f1(A2) = ap1

(
1 + (p1 − p2)k

)
,

f11(A1, A1) = −2ap2
2k,

f11(A1, A2) = f1,1(A1, A2) = 2ap1p2k,

f11(A2, A2) = −2ap2
1k,

The additive variance and dominance variance can be expressed in the new param-
eters as

σ2
A = 2

(
p1f1(A1)

2 + p2f1(A2)
2
)

= 2a2p1p2

(
1 + (p1 − p2)k

)2
,

σ2
D = (2p1p2ak)

2.

The dominance variance σ2
D is zero if the genes act in a strictly additive fashion

(k = 0). Conversely, zero dominance variance implies additivity unless the other
parameters take extreme (uninteresting) values (p1 ∈ {0, 1} or a = 0). To judge the
relative contributions of additive and dominance terms if k 6= 0, we can compute
the quotient of the additive and dominance variances as

σ2
A

σ2
D

=

(
1 + (p1 − p2)k

)2

2p1p2k2
.

This clearly tends to infinity if k → 0, but is also very large if one of the alleles is
rare (p1 ≈ 0 or 1). Thus the relative contributions of additive and dominance terms
is a somewhat complicated function of both the dominance effect and the allele
frequencies. This situation arises because a rare allele does not contribute much to
the population variance and hence a function of the rare allele and another allele
is much like a function of only the other allele, if its effect is measured through the
variation in the population.

We conclude that two possible definitions of dominance, through the magnitude
of the dominance variance σ2

D or through deviation of the parameter k from zero,
do not always agree. Here the parameter k possesses a causal interpretation, as it
directly links phenotype to genotype, whereas the dominance variance σ2

D is relative
to the population.

GP GM freq X E(X − EX |GP ) E(X − EX |GM )
A1 A1 p2

1 f(A1, A1) f1(A1) f1(A1)
A1 A2 p1p2 f(A1, A2) f1(A1) f1(A2)
A2 A1 p2p1 f(A2, A1) f1(A2) f1(A1)
A2 A2 p2

2 f(A2, A2) f1(A2) f1(A2)

Table 6.1. Values of a monogenetic trait X = f(GP , GM ) depending on a biallelic gene with alleles
A1 and A2 with frequencies p1 and p2 in the population.
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If we define S = 1GP =A2 + 1GM=A2 as the number of A2-alleles, then we can
write the additive approximation to X also in the form

EX + f1(GP ) + f1(GM ) = EX + (2 − S)f1(A1) + Sf1(A2)

= EX + 2f1(A1) + a
(
1 + (p1 − p2)k

)
S.

Because, conversely, any linear function of S can be written in the form g(GP ) +
g(GM ) for some function g (see Problem 6.4), the right side of the display inherits
the property of being a best least squares approximation of X from the variable
f1(GP ) + f1(GM ). In other words, it is the least squares linear regression of X
on S. It is somewhat counter-intuitive that for fixed values of a and k, the slope
a
(
1+(p1−p2)k

)
of this linear regression can vary, and can even be both positive and

negative, depending on the allele frequencies. This is again explained by the fact
that the present approximations are population based. If one of the alleles is rare,
then it receives little weight in the regression. Reversion of the slope of the regression
line may then occur in case of underdominance (k < −1) or overdominance (k > 1).

Figure 6.1 illustrates this observaton. In each pair of a left and a right panel
the causal parameter k is the same, but the allele frequencies differ, with p2 equal
to 0.5 in the left panels and equal to 0.9 in the right panels. The causal parameter
varies from top to bottom, taking the values k = 0, 0.5, and 2. The horizontal axis
shows the value of S, which can assume the values 0, 1, 2, but is visualized as a
continuous variable. The three different phenotypes (for S = 0, 1, 2) are visualized
by the vertical heights of three asterisks. In the two top panels the causal effect
is exactly additive (k = 0) and the two regression lines are the same. In the two
middle panels the causal effect is increasing from left to right, but superadditive,
with as a result that the least square fits are not the same. In the third panel there
is a clear causal interaction between the alleles, as the phenotype of heterozygotes
(S = 1) is higher than the phenotypes of both types of homozygotes (S = 0 and
S = 2). The regression lines can of course not reflect this interaction, straight as
they are. However, the slopes of the regression lines in the left and right panels
are also of different signs, the left panel suggesting that A2 alleles increase the
phenotype and the right panel that they decrease the phenotype. The regression
lines are so different, because they minimize the sums squared distances to the
asterisks weighted by the relative frequency of the three values of S. In the right
panels the weights are 0.01, 0.18 and 0.81, respectively.

The implication is that a linear regression of the traits of a random sample
from a population on the number of A2 alleles can be very misleading about the
causal effects of the alleles. If A1 is rare, then the regression will be driven by the
people with alleles A2.

6.4 EXERCISE. Show that any function (GP , GM ) 7→ α + β(1GP =A2 + 1GM=A2)
can be written in the form h(GP ) + h(GM ) for some function h: {A1, A2} → R.
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Figure 6.1. Regression of a monogenetic, biallelic trait (vertical axis) with allelesA1, A2 on the number
of alleles A2, for homozygous effect a = 1 and various values of dominance effect k and frequency of allele
A2. The vertical height of the three dots indicate the causal effect a(1+(p1−p2)k)S; for clarity the dots
are plotted slightly higher than their actual values. The population is assumed to be in Hardy-Weinberg
equilibrium. The slope of the regression line is a(1 + (p1 − p2)k).

* 6.1.2 Bigenetic Traits

Consider a trait that is completely determined by two genes. Write the ordered
genotypes of the individual as

GP,1
GP,2

∣
∣
∣
∣

GM,1

GM,2
.

Suppose that the trait can be expressed as X = f(GP,1, GP,2, GM,1, GM,2) for a
function f that is invariant under permuting its first and third arguments or its
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second and fourth arguments. The Hoeffding composition of X takes the form

X = EX + f1(GP,1) + f1(GM,1) + f2(GP,2) + f2(GM,2)

+ f11(GP,1, GM,1) + f22(GP,2, GM,2)

+ f12(GP,1, GP,2) + f12(GP,1, GM,2) + f12(GM,1, GP,2) + f12(GM,1, GM,2)

+ f112(GP,1, GM,1, GP,2) + f112(GP,1, GM,1, GM,2)

+ f122(GP,1, GP,2, GM,2) + f122(GM,1, GP,2, GM,2)

+ f1122(GP,1, GM,1, GP,2, GM,2).

The two terms in the second line are the dominance terms, whereas the four terms in
the third and fourth lines are the epistasis. If F1, F

1
1 , F

2
1 , F2, F

1
2 , F

2
2 are independent

random variables with F1, F
1
1 , F

2
1 distributed as a random allele at the first locus

in the population and F2, F
1
2 , F

2
2 as a random allele at the second locus in the

population, then

varX = 2Ef2
1 (F1) + 2Ef2

2 (F2)

+ Ef2
11(F

1
1 , F

2
1 ) + Ef2

22(F
1
2 , F

2
2 )

+ 4Ef2
12(F1, F2)

+ 2Ef2
112(F

1
1 , F

2
1 , F2) + 2Ef2

122(F1, F
1
2 , F

2
2 )

+ Ef2
1122(F

1
1 , F

2
1 , F

1
2 , F

2
2 ).

It is customary to abbreviate the variances on the right, as separated by lines, as
σ2
A + σ2

D + σ2
AA + σ2

AD + σ2
DD.

6.2 Covariance

Consider two individuals with traits X1 and X2 who belong to some pedigree. We
assume that the founders of the pedigree are randomly chosen from the population,
and are interested in the covariance between X1 and X2 given their positions in
the pedigree. This will generally be strictly positive because the pedigree implies a
relationship between the individuals’ genes. The IBD-configuration of the alleles of
the two individuals is the key to understanding the dependence.

Assume that the two traits can be written

X1 = f(G1
P,1, . . . , G

1
P,k, G

1
M,1, . . . , G

1
M,k) = f(G1

P , G
1
M ),

X2 = f(G2
P,1, . . . , G

2
P,k, G

2
M,1, . . . , G

2
M,k) = f(G2

P , G
2
M ),

with G1
P , G

1
M , G

2
P , G

2
M four haplotypes of k loci, and f a function that is symmetric

in its ith and (i + k)th arguments. The haplotypes G1
P , G

1
M , G

2
P , G

2
M are random

vectors, whose randomness can be viewed as arising from two sources: the sampling
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(F 1, F 2), (F 3, F 4), . . . , (F 2f−1, F 2f )

segregation

(G1
P , G

1
M ) (G2

P , G
2
M )

Figure 6.2. Schematic representation of segregation.

of the founders, and the process of segregation of the founder alleles to the two
relatives. The structure of the pedigree is assumed given and nonrandom.

If there are f founders and we write the founder haplotypes as F 1, F 2, . . . , F 2f ,
then the two sources of randomness can be pictured as in Figure 6.2. The four
haplotypes at the bottom of the box are recombinations and redistributions of the
2f haplotypes of the founders at the top of the box. We assume that the founders
are chosen independently from a population that is in Hardy-Weinberg and linkage
equilibrium, so that the 2f haplotypes F 1, F 2, . . . , F 2f are i.i.d. random vectors of
length k with independent marginals, 2kf independent alleles in total. As usual,
we also assume that the segregation (inside the box) of the 2fk founder alleles
is stochastically independent of the sampling of the founders. Segregation follows
the branches of the pedigree (whose shape is assumed given) and the randomness
consists of the choices of alleles passed on by the parents in meiosis, including
recombination events.

Given what happens in the box the haplotypes G1
P , G

1
M , G

2
P , G

2
M of the two

individuals of interest can be reconstituted from the founder haplotypes. We shall
think of the four haplotypes as four vectors of length k with the k loci laid out
along the horizontal axis, i.e. as four (1× k)-matrices, which can be joined into the
(4 × k)-matrix

(6.5)

G1
P,1 G1

P,2 . . . G1
P,k

G1
M,1 G1

M,2 . . . G1
M,k

G2
P,1 G2

P,2 . . . G2
P,k

G2
M,1 G2

M,2 . . . G2
M,k

.

Numbering the 2f founders (arbitrarily) by the numbers 1, 2, . . . , 2f , we can define
for every locus i a segregation vector Vi = (V 1

i , V
2
i , V

3
i , V

4
i )T giving the founder

labels (V 1
i , V

2
i ) of the alleles of the first individual and the founder labels (V 3

i , V
4
i )

of the alleles of the second individual at locus i (see Section 4.1). These vectors
can be combined in a (4 × k)-segregation matrix V whose entries correspond to
the entries of the matrix (6.5). This matrix completely describes the stochastic
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process inside the segregation box of Figure 6.2: given V the (4 × k)-matrix of
haplotypes G = (G1

P , G
1
M , G

2
P , G

2
M )T in (6.5) are deterministic functions of the

founder haplotypes F 1, . . . , F 2f . The distribution of the matrixG is best understood
by conditioning on V :

P (G ∈ B) =
∑

v

P (G ∈ B|V = v)P (V = v).

The number of different components P (G ∈ B|V = v) in this finite mixture, and
their weights P (V = v) depend on the pedigree inside the box and the recombination
properties between the loci.

Under the assumptions of Hardy-Weinberg and linkage equilibrium the com-
ponents P (G ∈ B|V = v) have a simple distribution. Given V the (4 × k)-matrix
(6.5) consists of particular founder alleles, where some founder alleles may occur
multiple times. Because the founder alleles are independent and per locus identi-
cally distributed, the origins of the alleles are not important, but only the pattern
of shared descending. Thus given V the joint law of the (4 × k)-matrix (6.5) is the
distribution of a (4 × k)-matrix with:
(i) independent columns.
(ii) the four variables in the jth column are marginally distributed as an arbitrary

allele for locus j in the population.
(iii) two variables in a given column are either identical or independent.
It follows that the distribution of the (4× k)-matrix G can be completely described
by the marginal distribution of the segregation vector V and the patterns of identical
and independent variables in the separate columns as in (iii). For the latter we first
study the case of a single-locus haplotype.

6.2.1 Single-locus Haplotypes

Consider the preceding in more detail for a single locus (k = 1), so that F 1, . . . , F 2f

are i.i.d. univariate variables, and the segregation matrix V is the single vector
(V 1, V 2, V 3, V 4)T . The genotypes of the two individuals can be expressed in the
founder alleles and segregation vectors as

(G1
P , G

1
M ) = (FV

1

, FV
2

) and (G2
P , G

2
M ) = (FV

3

, FV
4

).

The joint distribution of (G1
P , G

1
M , G

2
P , G

2
M ) given V = v is the distribution of the

vector
(F v

1

, F v
2

, F v
3

, F v
4

).

There are (2f)4 possible values v of V , and it suffices to determine the distribution
of the vector in the display for every of them. Actually, as the founder alleles are
i.i.d. random variables, the latter distribution does not depend on the exact val-
ues of v1, . . . , v4, but only on the pattern of equal and unequal v1, . . . , v4. If two
coordinates are equal, we must insert the same founder allele, and otherwise an
independent copy. These patterns correspond to IBD-sharing, and there are only 15
possible IBD-configurations (or identity states) of the four alleles of the two indi-
viduals at a given locus. These are represented in Figure 6.3 by 15 graphs with four
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nodes. The two nodes at the top of a square represent the alleles G1
P , G

1
M of the

first individual and the two nodes at the bottom the alleles G2
P , G

2
M of the second

individual; an edge indicates that the two alleles are IBD.

s1 s2 s3 s4 s5 s6 s7

s8 s9 s10 s11 s12 s13 s14 s15

Figure 6.3. Identity states. Each of the 15 graphs represents an IBD-configuration of the alleles of
two individuals at a given locus. The top two nodes of a graph represent the ordered genotype of the first
individual, and the bottom two nodes the ordered genotype of the second individual. An edge indicates
that the alleles are IBD.

Configurations s8 to s15 require that the pair of alleles of at least one of the
two individuals is IBD (each graph has at least one horizontal edge). This can
happen only if the pedigree is “inbred”, a case that we shall usually exclude from
consideration. Thus the configurations s1 to s7, pictured in the upper row, are the
more interesting ones. We shall refer to pedigrees for which identity states s8 to
s15 cannot occur as pedigrees without inbreeding. The possible distributions of the
vector (F v

1

, F v
2

, F v
3

, F v
4

) for v belonging to one of the noninbred identity states
are listed in 6.2.

cs1 cs2 cs6

cs8 cs10 cs11 cs15

Figure 6.4. Condensed identity states. Each of the 7 graphs represents an IBD-configuration of the
unordered sets of alleles of two individuals at a given locus. The top two nodes of a graph represent the
unordered genotype of the first individual, and the bottom two nodes the unordered genotype of the
second individual. An edge indicates that the alleles are IBD.

For many purposes the parental or maternal origin of the alleles is irrelevant,
so that we can consider unordered gene pairs, and the two individuals under con-
sideration can be swapped as well. The identity states can then be condensed to
the collection shown in Figure 6.4. The condensed states cs1, cs2, and cs6 are fully
described by the IBD-sharing indicator N , which takes the value 0, 1 and 2 for the
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three states. Thus when excluding inbred states and ignoring parental and mater-
nal origin we can describe the IBD-configuration completely by the variable N . The
distributions of the possible vectors of unordered genotypes are given in Table 6.3,
with the corresponding IBD-values given in the first column of the table.

v L(G1
P , G

1
M ;G2

P , G
2
M |V = v)

s1 L(F 1, F 2, F 3, F 4)
s2 L(F 1, F 2, F 1, F 3)
s3 L(F 1, F 2, F 3, F 2)
s4 L(F 1, F 2;F 3, F 1)
s5 L(F 1, F 2;F 2, F 4)
s6 L(F 1, F 2;F 1, F 2)
s7 L(F 1, F 2;F 2, F 1)

Table 6.2. Conditional distribution of the ordered genotypes at a locus of two individuals given
identity states s1 to s7. The variables F 1, F 2, F 3, F 4 are i.i.d. and distributed as a randomly chosen
allele from the population.

N v L
(
{G1

P , G
1
M}, {G2

P , G
2
M}|V = v

)

0 cs1 L
(
{F 1, F 2}, {F 3, F 4}

)

1 cs2 L
(
{F 1, F 2}, {F 1, F 3}

)

2 cs6 L
(
{F 1, F 2}, {F 1, F 2}

)

Table 6.3. Conditional distribution of the unordered genotypes at a locus of two individuals given
condensed states cs1, cs2 and cs7. The variables F 1, F 2, F 3, F 4 are i.i.d. and distributed as a randomly
chosen allele from the population.

6.2.2 Multi-loci Haplotypes

Next consider haplotypes of k loci. Each locus is described by a set of founder alleles
and an segregation vector, both specific to the locus. Because we assume linkage
equilibrium, the founder alleles at different loci are always independent. It follows
that the alleles of the two individuals at different loci are dependent only through
the segregation vectors: the columns of the (4× k) matrix (G1

P , G
1
M , G

2
P , G

2
M )T are

conditionally independent given the segregation matrix V . Because the marginal
distributions of the columns depend only on the identity states, the joint distribution
of the four haplotypes G1

P , G
1
M , G

2
P , G

2
M can be completely described by a (row)

vector of identity states (one for each locus) and the marginal distributions of the
alleles at the loci. Given the k-vector of identity states, the distribution of the
(4 × k)-matrix (G1

P , G
1
M , G

2
P , G

2
M )T is equal to the independent combination of k

columns distributed as the appropriate entry in Table 6.2 for the identity state for
the corresponding locus. The k patterns of identity states are generally stochastically
dependent.
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If the k loci are unlinked, then both the founder alleles (outside the box in
Figure 6.2) corresponding to different loci and the segregation process (inside the
box) are independent across loci. Consequently, in this case the identity states for
the loci are independent and the k columns of the (4 × k)-matrix of haplotypes
G1
P , G

1
M , G

2
P , G

2
M are independent, both conditionally and unconditionally. The un-

conditional distribution of this matrix can now be viewed as a mixture (with weights
equal to the product of probabilities of the identity states), or as being constructed
by joining k independent columns, each created by a single locus segregation pro-
cess, as described in Section 6.2.1.

Because there are 15 possible identity states per locus, there are (15)k

possible configurations (i.e. mixture components) of the joint distribution of
G1
P , G

1
M , G

2
P , G

2
M , too many to be listed. We can reduce the number of possibil-

ities by considering unordered genotypes, but this still leaves many possibilities. In
general it is not possible to describe the distribution by a vector of condensed iden-
tity states, one per locus, because condensing makes no difference between paternal
and maternal origin and hence destroys haplotype information. However, for the
purpose of deriving the covariance of traits that depend symmetrically on the two
alleles at each locus, the haplotype information may be irrelevant and a reduction
to condensed identity states may be possible. This is illustrated in the examples
below.

There may be other simplifying structures as well. For instance, in a nuclear
family (see Figure 5.3) the paternal alleles of the sibs are never IBD with the
maternal alleles; for the cousins in Figure 7.1 there is a similar identification. In
these cases certain values of v are impossible and the joint distribution of the un-
ordered haplotypes {G1

P , G
1
M}, {G2

P , G
2
M} can be completely described by the 3k

conditional joint distributions of the unordered haplotypes given the vector of IBD-
values (N1, . . . , Nk) at the k loci.

1 2 3 4

5 6 2 4 1 4 7 8

4 5 7 4

Figure 6.5. Cousins. Only one allele can be shared IBD.

6.2.3 General Rules

In view of the characterization of the distribution of the haplotypes as a mixture
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over the segregation matrix V , it is natural to compute the covariance cov(X1, X2)
of the traits of the two individuals by conditioning on V . By the general rule on
conditional covariances,

(6.6) cov(X1, X2) = E cov(X1, X2|V ) + cov
(
E(X1|V ),E(X2|V )

)
.

In the present case, in the absence of inbreeding, the covariance on the far right
actually vanishes, as the conditional expectations E(X i|V ) do not depend on V . In
fact, marginally the traits X1 and X2 are independent from the inheritance matrix,
and distributed as the trait of an arbitrary person from the population.

6.7 Lemma. Consider an individual in an arbitrary pedigree whose founders are
drawn at random from a population that is in Hardy-Weinberg and linkage equilib-
rium. Then given V = v for a v such that at no locus the individual’s alleles at that
locus are IBD, the individual’s phenotype X is conditionally distributed as the phe-
notype of a random person from the population. In particular E(X |V = v) = EX .

Proof. The segregation matrix completely determines how the founder alleles seg-
regate to the individual. By Hardy-Weinberg and linkage equilibrium all founder
alleles are independent. Given V = v the individual’s genotype consists of k pairs of
copies of founder alleles. For v such that the alleles at no locus are IBD, these pairs
consist of copies of two different founder alleles and hence are conditionally inde-
pendent and distributed as a random allele for that locus. Given V the genotypes
at different loci are independent, again because they are combinations of copies
of founder alleles at different loci, which are independent. Thus the genotype of
the individual is a set of independent pairs of alleles, each pair consisting of two
independent alleles for that locus, the same as the genotpye of an arbitrary indi-
vidual drawn from the population in Hardy-Weinberg and linkage equilibrium. The
phenotype is a function of this genotype.

6.8 EXERCISE. Prove formula (6.6) for an arbitrary random vector (X1, X2, V ).

In order to compute the conditional covariances cov(X1, X2|V ) of the traits
of the two individuals, we may decompose both variables X1 and X2 into their
Hoeffding decompositions and calculate all cross-covariances between the terms of
the decomposition conditioning on the segregation matrix V . This is not difficult,
but can be tedious given the many different terms. A general rule is that in the ab-
sence of inbreeding cross-covariances between terms that do not depend on identical
numbers of variables at each locus always vanish.

In particular, terms of different orders in the Hoeffding decompositions are
conditionally uncorrelated.

6.9 Lemma. Suppose that Y 1 and Y 2 are terms in the Hoeffding decompositions of
X1 = f(G1

P,1, G
1
M,1, . . . , G

1
P,k, G

1
M,k) and X2 = f(G2

P,1, G
2
M,1, . . . , G

2
P,k, G

2
M,k) that

depend on (j11 , . . . , j
1
k) and (j21 , . . . , j

2
k) variables at the loci 1, . . . , k (where jil ∈

{0, 1, 2} for every l and i). If there is no inbreeding, then (j11 , . . . , j
1
k) 6= (j21 , . . . , j

2
k)

implies that E(Y 1Y 2|V ) = 0.
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Proof. By the assumption of no inbreeding the alleles of a single individual at a
given locus are not IBD. Therefore, given V the jil variables of individual i at locus
l are copies of different founder genes and hence independent random variables. If
j1l < j2l for some locus l, then there must be a (copy of a) founder allele F in Y 2 that
is not an argument of Y 1. We can write Y i as a function gi of ji1+· · ·+jik arguments.
The joint conditional distribution of (Y 1, Y 2) given V is obtained by evaluating the
functions (g1, g2) with as arguments the founder genes determined by V . Because
Y 2 is a term of the Hoeffding decomposition of X2, the expectation of the function
g2 with respect to a single argument relative to the marginal distribution of a
random allele in the population vanishes, for any value of the other arguments. Let
EF denote the expectation with respect to F with the other alleles fixed. Because
F does not appear in Y 1 we have EF (Y 1Y 2|V ) = Y 1EF (Y 2|V ) = Y 10 = 0.

6.2.4 Monogenetic Traits

Consider a trait that is completely determined by a single gene. Write the ordered
genotypes of the two individuals as (G1

P , G
1
M ) and (G2

P , G
2
M ), respectively, and

suppose that the traits can be expressed as X1 = f(G1
P , G

1
M ) and X2 = f(G2

P , G
2
M )

for a given function f that is symmetric in its arguments.
The Hoeffding decompositions of X1 and X2 take the forms:

X1 = EX1 + f1(G
1
P ) + f1(G

1
M ) + f11(G

1
P , G

1
M ),

X2 = EX2 + f1(G
2
P ) + f1(G

2
M ) + f11(G

2
P , G

2
M ).

The functions f1 and f11 are defined in Section 6.1.1. The linear parts f1(G
i
P ) +

f1(G
i
M ) and quadratic parts f11(G

i
P , G

i
M ) are symmetric in their parental and ma-

ternal arguments GiP and GiM . Therefore, it suffices to consider condensed identity
states. The three states that are possible in the absence of inbreeding are given
in Table 6.2, together with the joint distribution of the genotypes, and correspond
to 0, 1 or 2 alleles shared IBD by the two individuals. It follows that, for N the
number of alleles shared IBD and F 1, F 2, F 3, F 4 be i.i.d. variables distributed as a
randomly chosen allele at the locus,

cov(X1, X2|N = 0) = E
(
f1(F

1) + f1(F
2) + f11(F

1, F 2)
)

×
(
f1(F

3) + f1(F
4) + f11(F

3, F 4)
)

= 0,

cov(X1, X2|N = 1) = E
(
f1(F

1) + f1(F
2) + f11(F

1, F 2)
)

×
(
f1(F

1) + f1(F
3) + f11(F

1, F 3)
)

= Ef2
1 (F1),

cov(X1, X2|N = 2) = E
(
f1(F

1) + f1(F
2) + f11(F

1, F 2)
)

×
(
f1(F

1) + f1(F
2) + f11(F

1, F 2)
)

= 2Ef2
1 (F 1) + Ef2

11(F
1, F 2).
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In terms of the additive and dominance variances σ2
A and σ2

D, as defined in Sec-
tion 6.1.1, these three equations can be summarized as

cov(X1, X2|N) = 1
2σ

2
AN + σ2

D1N=2.

Consequently, with Θ = 1
4EN the kinship coefficient and ∆ = P (N = 2) the

fraternity coefficient,
cov(X1, X2) = 2Θσ2

A + ∆σ2
D.

6.10 Example (Sibs). For two sibs in a nuclear family Θ = ∆ = 1
4 , and hence

cov(X1, X2) = 1
2σ

2
A + 1

4σ
2
D.

6.2.5 Additive and Dominance Covariance

Unless k is small the Hoeffding decompositions of the two traits X1 and X2 that
depend on k loci have many terms. A common simplication is to assume that all
terms except the linear term and the quadratic terms involving a single locus van-
ish, leaving only the additive and dominance variance terms. In other words, it is
assumed that

X1 = EX1 +
k∑

j=1

(
fj(G

1
P,j) + fj(G

1
M,j)

)
+

k∑

j=1

fjj(G
1
P,j , G

1
M,j),

X2 = EX2 +

k∑

j=1

(
fj(G

2
P,j) + fj(G

2
M,j)

)
+

k∑

j=1

fjj(G
2
P,j , G

2
M,j).

The variance of the traits can now be decomposed as

varX i = 2

k∑

j=1

Ef2
j (Fj) +

k∑

j=1

Ef2
jj(F

1
j , F

2
j ) =:

k∑

j=1

σ2
A,j +

k∑

j=1

σ2
D,j .

Here Fj , F
1
j , F

2
j are i.i.d. and distributed as arbitrary alleles at locus j in the pop-

ulation.
Given the segregation matrix V the loci are independent and hence all con-

ditional cross covariances between the terms in the decompositions of X1 and X2

except the ones between single loci vanish, yielding

cov(X1, X2|V ) =

k∑

j=1

cov
(
fj(G

1
P,j) + fj(G

1
M,j), fj(G

2
P,j) + fj(G

2
M,j)|V

)

+
k∑

j=1

cov
(
fjj(G

1
P,j , G

1
M,j), fjj(G

2
P,j , G

2
M,j)|V

)
.

The conditional covariances on the right side are constant in V varying over a
vector of condensed identity states. In the absence of inbreeding each such vector is
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completely described by the vector (N1, . . . , Nk) of numbers of alleles shared IBD
at loci 1, . . . , k. Exactly as in Section 6.2.4 we find that

cov(X1, X2|V ) = 1
2

k∑

j=1

σ2
A,jNj +

k∑

j=1

σ2
D,j1Nj=2.

The expected values of 1
4Nj and 1Nj=2 are the kinship and fraternity coefficients.

Because these depend on the structure of the pedigree only, they are the same for
all loci. Writing them as Θ and ∆, we find

cov(X1, X2) = 2Θσ2
A + ∆σ2

D.

6.2.6 Additive, Dominance and Epistatic Covariance

Consider the same situation as in Section 6.2.5, except this time assume that only
the terms of order three and higher in the Hoeffding decomposition vanish, leaving
the epistatic terms next to the linear and dominance terms. In other words, the
traits are given by

X1 = EX1 +

k∑

j=1

(
fj(G

1
P,j) + fj(G

1
M,j)

)
+

k∑

j=1

fjj(G
1
P,j , G

1
M,j),

+
∑∑

i<j

(
fij(G

1
P,i, G

1
P,j) + fij(G

1
M,i, G

1
M,j) + fij(G

1
P,i, G

1
M,j) + fij(G

1
M,i, G

1
P,j)

)
,

X2 = EX2 +

k∑

j=1

(
fj(G

2
P,j) + fj(G

2
M,j)

)
+

k∑

j=1

fjj(G
2
P,j , G

2
M,j)

+
∑∑

i<j

(
fij(G

2
P,i, G

2
P,j) + fij(G

2
M,i, G

2
M,j) + fij(G

2
P,i, G

2
M,j) + fij(G

2
M,i, G

2
P,j)

)
.

The two expansions consist of the (constant) expectation plus three (random) sums.
We assume absence of inbreeding.

In view of Lemma 6.9 the (conditional) covariances between non-corresponding
terms vanish. The covariance contribution of the linear and dominance terms (the
two sums in the first line) is exactly as in Section 6.2.5. It suffices to consider
covariances of the form

cov
(
fij(G

1
P,i, G

1
P,j) + fij(G

1
M,i, G

1
M,j) + fij(G

1
P,i, G

1
M,j) + fij(G

1
M,i, G

1
P,j),

fij(G
2
P,i, G

2
P,j) + fij(G

2
M,i, G

2
M,j) + fij(G

2
P,i, G

2
M,j) + fij(G

2
M,i, G

2
P,j)|V

)
.

The two variables in this covariance are invariant under permutations per locus of
the “P” and “M” symbols. The covariance is therefore invariant in matrices V that
yield the same condensed identity states at loci i and j. It suffices to compute the
covariance conditionally on the joint distribution of the IBD-indicators Ni and Nj
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at the two loci. Some thought shows that the sum over i < j of the preceding display
is equal to

∑ ∑

i<j

(
Ef2

ij(Fi, Fj)
)(

1Ni=Nj=1 + 21Ni=1,Nj=2 + 21Ni=2,Nj=1 + 41Ni=2,Nj=2

)

=
∑ ∑

i<j

(
Ef2

ij(Fi, Fj)
)
NiNj =: 1

4

∑∑

i<j

σ2
AA,ijNiNj .

The distribution of this term depends on the joint distribution of the IBD-indicators.
For the expectation it suffices to know the joint distribution of two indicators, but
the expectations ENiNj depend on the recombination fraction between the loci
(i, j).

We conclude that

cov(X1, X2|V ) = 1
2

k∑

j=1

σ2
A,jNj +

k∑

j=1

σ2
D,j1Nj=2 + 1

4

∑ ∑

i<j

σ2
AA,ijNiNj,

cov(X1, X2) = 2Θσ2
A + ∆σ2

D + 1
4

∑ ∑

i<j

σ2
AA,ijENiNj .

6.2.7 Bigenetic Traits

Consider a trait that is completely determined by two genes. Write the ordered
genotypes of the two individuals as

G1
P,1

G1
P,2

∣
∣
∣
∣

G1
M,1

G1
M,2

,
G2
P,1

G2
P,2

∣
∣
∣
∣

G2
M,1

G2
M,2

.

Suppose that the traits can be expressed as X i = f(GiP,1, G
i
M,1, G

i
P,2, G

i
M,2) for

a function f that is invariant under permuting its first and second arguments or
its third and fourth arguments. The Hoeffding decomposition of a trait of this
type is given in Section 6.1.2, and can be viewed as consisting of a constant term
plus five other terms. We shall assume that the pedigree is not inbred. In view of
Lemma 6.9 the (conditional) covariance between X1 and X2 can be obtained as the
sum of covariances between the five terms. The covariances between the linear and
quadratic terms are exactly as in Section 6.2.6.

The conditional covariance between the third order terms is given by

cov
(
f112(G

1
P,1, G

1
M,1, G

1
P,2) + f112(G

1
P,1, G

1
M,1, G

1
M,2)

+ f122(G
1
P,1, G

1
P,2, G

1
M,2) + f122(G

1
M,1, G

1
P,2, G

1
M,2),

f112(G
2
P,1, G

2
M,1, G

2
P,2) + f112(G

2
P,1, G

2
M,1, G

2
M,2)

+ f122(G
2
P,1, G

2
P,2, G

2
M,2) + f122(G

2
M,1, G

2
P,2, G

2
M,2)|V

)

= 1N1=2(1N2=1 + 21N2=2)Ef
2
112(F

1
1 , F

2
1 , F2)

+ 1N2=2(1N1=1 + 21N1=2)Ef
2
122(F1, F

1
2 , F

2
2 )

= 1N1=2N2Ef
2
112(F

1
1 , F

2
1 , F2) + 1N2=2N1Ef

2
122(F1, F

1
2 , F

2
2 ).
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The variances appearing on the right can be denoted by 1
2σ

2
DA,112 and 1

2σ
2
AD,122.

The conditional covariance contributed by the fourth order term is

cov
(
f1122(G

1
P,1, G

1
M,1, G

1
P,2, G

1
M,2), f1122(G

1
P,1, G

1
M,1, G

1
P,2, G

1
M,2)|V

)

= 1N1=N2=2Ef
2
1122(F

1
1 , F

2
1 , F

1
2 , F

2
2 ).

The variance that appears on the right is denoted by σ2
DD.

Taking all terms together we obtain the decomposition

cov(X1, X2|V ) = 1
2

2∑

j=1

σ2
A,jNj +

2∑

j=1

σ2
D,j1Nj=2 + 1

4σ
2
AAN1N2

+ 1
2σ

2
DA,1121N1=2N2 + 1

2σ
2
AD,1221N2=2N1 + 1N1=N2=2σ

2
DD.

6.11 Example (Sibs). The joint distribution of the IBD-values N1 and N2 of two
sibs in a nuclear family is given in Table 4.3. It follows that ENj = 1, P (Nj = 2) = 1

4 ,
EN1N2 = ψ + 1, E1N1=2N2 = 1

2ψ, E1N1=N2=2 = 1
4ψ

2, so that cov(X1, X2) =
1
2σ

2
A + 1

4σ
2
D + 1

4 (ψ + 1)σ2
AA + 1

4ψσ
2
DA,112 + 1

4ψσ
2
AD,122 + 1

4ψ
2σ2
DD.



7
Heritability

In this chapter we first extend the model for quantitative traits given in Chapter 6.
to include environmental influences. This allows to discuss the extent by which a
trait is genetically or environmentally determined. Such biometrical analysis has
a long and controversial history (the nature-nurture debate), in which statistical
techniques have been used or abused to defend one point of view or the other.
We discuss standard techniques to define and estimate heritability, and and briefly
discuss the philosophical significance of the results.

7.1 Environmental Influences

Consider a trait X of a randomly chosen person from a population. In Chapter 6 it
was assumed that X can be written as a function X = f(G) of the person’s genes
G. For most traits this is not realistic, because the trait will also depend on other
factors, which we loosely refer to as “environmental influences”. The simplist model
to include the environment is the additive model

X = f(G) + F,

for f(G) the genetic factor as before, and F the environmental factor. The additive
structure is special. The common assumption that genes G and environment F are
independent makes the model even more special.

The assumptions of additivity and independence are of a different nature. The
independence of G and E refers to the randomness when sampling a person from
the population. In our context sampling a person is equivalent to sampling a pair
(G,F ). Independence means that sampling a person is equivalent to sampling genes
G and environment F independently and next combining these in a pair (G,F ). The
independence assumption would be violated, for instance, if the population consisted
of two subpopulations with different genes, living in different environments. The
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independence does not preclude causal interactions of genes and environment, for
instance in the sense that being born with certain genes may be disadvantageous
in a certain environment. Causal interactions may come about after the genes G
and environment F have been combined in an individual. On the other hand, the
assumption of additivity has direct causal implications. Once a person’s genes G
and environment F are determined, the trait can be found by adding the influences
f(G) and F . This does exclude interaction.

The two assumptions also interact. The realism of the independence assumption
depends on the population we sample from, but also on the way the trait is supposed
to be formed once the pair (G,F ) is determined. Perhaps, more realistically, genes
and environment should be long vectors (G1, . . . , Gk) and (F1, . . . , Fl), not neces-
sarily independent, and the trait a complicated function f(G1, . . . , Gk, F1, . . . , Fl)
of these vectors. However, we follow the tradition and work with the additive-
independent model only.

When we consider two individuals, with traits X1 and X2, we must deal with
two environmental influences. A common model is to assume that the environments
of the two individuals can be decomposed in a common environmental factor C
and specific environmental factors E1 and E2, and to assume that these factors are
independent and act additively. This leads to the model

(7.1)
X1 = f(G1) + C + E1,

X2 = f(G2) + C + E2,

where (G1, G2), C,E1, E2 are independent, and E1, E2 are identically distributed.
The variables f(Gi) are often abbreviated to Ai, giving X i = Ai + C + Ei, which
is known as the A-C-E model. Independence, as before, refers to the sampling of
the individuals. Sampling a pair of individuals is equivalent to sampling their genes
G1 and G2, a common environment C, and specific environments E1 and E2, all
independently. Again these assumptions are an over-simplication of reality, but we
adopt them anyway.

The specific environmental factors E1 and E2 also play the role of the ubiqui-
tous “error variables” in regression models: they make the models fit (better).

7.2 Heritability

For a trait X with decompositionX = f(G)+F , the fraction genetically determined
variance or heritability is defined as

var f(G)

varX
=

var f(G)

var f(G) + varF
.

In this section we shall show that this number can be estimated from the observed
trait values of relatives, under some assumptions. Rather than putting var f(G) in
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the numerator of the quotient, it is also customary to put one of the approximations
for var f(G) of Chapter 6. For instance, if we use the additive approximation, then
we obtain the “fraction additively determined variance” or additive heritability.

Thus if the “heritability” of a certain trait is 60 %, this just means that the
quotient of genetic over total variance is 0.6. It is difficult not to attach causal mean-
ing to such a figure, but the definition has nothing causal about it. The variances
in the quotient are variances measured in a given population, and are dependent
on this population. For instance, it is not uncommon that the heritability is age-
dependent, and even different for the same cohort of people at different ages. Also
if a population would is genetically very homogeneous, in the extreme case of only
one genetic type, then the heritability will be small, because most variation will be
environmental.

These difficulties of interpretation come on top of the difficulties inherent in
adopting the simplistic additive-independent model.

7.3 Biometrical Analysis

In this section we consider estimating heritability from data. For simplicity we
adopt a genetic model that incorporates additive and dominance effects only, as in
Section 6.2.5. The analysis can easily be extended to genetic models involving more
terms. Furthermore, we assume that environmental factors are added according to
the additive-independent model described in Section 7.1.

Under these assumptions the variance and covariances of the traits X1 and X2

of two relatives can be decomposed as

varX1 = varX2 = σ2
A + σ2

D + σ2
C + σ2

E ,

cov(X1, X2) = 2Θσ2
A + ∆σ2

D + σ2
C .

The moments on the left sides of these equations can be estimated from observations
on a random sample of traits of relatives. The kinship and fraternity coefficients Θ
and ∆ are numbers that can be computed from the type of relationship of the
two relatives. Therefore, the resulting equations may be solved to find moment
estimators for the unknown parameters σ2

A, σ
2
D, σ

2
C , σ

2
E .

Because the moment equations are linear equations in four unknowns, we need
at least four independent equations to identify the parameters. This may be achieved
by sampling relatives of various kinds, leading to different pairs of kinship and
fraternity coefficients Θ and ∆. Here we should be careful that the common specific
environment variances may vary with the different relatives also, and perhaps must
be represented by multiple parameters. Another possibility to reduce the number
of parameters is to assume that the dominance variance is zero. In the opposite
direction, it is also possible to include additional variance terms, for instance the
epistasis, as long as the kinship and fraternity coefficients of the individuals in our
sample of observations are sufficiently varied.
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An alternative for the moment estimators is to use a likelihood based method.
This might be applied to vectors (X1, . . . , Xn) of more than two relatives at a
time and employ their full joint distribution. If the distribution of this vector is
modelled jointly normal, then it suffices to specify variances and covariances, and
the resulting estimates differ from the moment estimators mostly in the “pooling”
of estimates from the various types of relatives. The means and variances of the
variables X1, . . . , Xn are a-priori assumed equal, and therefore the vector X =
(X1, . . . , Xn) is modelled to be Nn(µ1, σ2H) distributed, where the (n×n)-matrix
H has entries

Hi,j = 2Θi,jh
2
A + ∆i,jh

2
D + h2

C .

The coefficients Θi,j and ∆i,j are the kinship and fraternity coefficients of individ-
uals i and j and can be computed from the structure of the pedigree. The unknown
parameters in the model are the common mean value µ, the common variance σ2,
and the relative variances h2

A = σ2
A/σ

2, h2
D = σ2

D/σ
2 and h2

C = σ2
C/σ

2. The pa-
rameter h2

A is the additive heritability and the sum h2
A+h2

D is the heritability. The
maximum likelihood estimator maximizes the likelihood function, or equivalently
minimizes the function (cf. Section 14.4)

(µ, σ2, h2
A, h

2
D, h

2
C) 7→ n log σ2 + log detH +

1

σ2
tr

(

H−1(X − µ1)(X − µ1)T
)

.

When information on a sample of independent pedigrees is available, this expres-
sion is of course summed over the pedigrees. It is shown in Lemma 14.37 that the
maximum likelihood estimator for µ is simply the mean of all observations. The
maximum likelihood estimators of the other parameters do not have explicit forms,
but must be computed by a numerical algorithm.

7.2 Example (Twin design). It is not unreasonable to view monozygotic and
dizygotic twins as comparable in all respects except genetic set-up. In particular,
the environmental variances for monozygotic and dizygotic twin relatives could be
modelled by the same parameter. Because monozygotic twins are genetically identi-
cal, their IBD-indicators are equal to 2 with probability 1, and hence their kinship
and fraternity coefficients are 1/2 and 1. The genetic relationship of dizygotic twins
does not differ from that of ordinary sibs, whence dizygotic twins have kinship and
fraternity coefficients 1/4 and 1/4.

If we observe random samples of both monozygotic and dizygotic twins, then
we may estimate the correlation between their traits by the sample correlation
coefficients. It follows from the preceding that the population correlation coeffients
ρMZ and ρDZ satisfy,

ρMZ = h2
A + h2

D + h2
C .

ρDZ = 1
2h

2
A + 1

4h
2
D + h2

C .

If we assume that the dominance variance σ2
D is 0, then this can be solved to give

the fraction of genetic variance by the charming formula

h2
A = 2(ρMZ − ρDZ).
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This can be estimated by replacing the correlation coefficients on the right by their
estimates. (By definition the sample correlation coefficients are the sample covari-
ance divided by the sample standard deviations. Because the standard deviations
for the traits of the two individuals in a twin pair are assumed the same and also
the same for monozygotic and dizygotic twins, it would be natural to adapt these
estimates by employing a pooled variance estimator instead.)

The common environmental variance can be estimated from the correlations in
a similar manner. The specific environmental variance can next be estimated using
the decomposition of the variance σ2.

* 7.3.1 Categorical Traits

The variance decompositions of a trait obtained in Chapter 6 apply both to quan-
titative traits (which by definition can assume a continuum of possible values) and
traits that can assume only finitely many values. However, for traits than can take
only a few values, the decompositions are often viewed as less appropriate as a start-
ing point for the analysis. It is common to assume that such a categorical trait is the
result of a hidden, unobservable trait, often called a liability. The observed trait, for
instance “diseased or not”, “depression of a certain type or not depressed” would
then correspond to the liability exceeding or not exceeding certain boundaries. The
variance decomposition is applied to the liability.

Let (Y 1, Y 2) be the observed traits of a pair of relatives, assumed to assume
values in a finite set {1, . . . ,m}. Let R = ∪mj=1Ij be a partition of the real line in

intervals Ij and assume that there exist random variables X1 and X2 such that

Y i = j if and only if X i ∈ Ij .

Thus the observed trait Y i is a “discretization” of the liability X i. If the intervals
I1, . . . , Im are in the natural order, then high values of Y i correspond to severe cases
of the affection as measured in liability X i.

The liabilities X i are not observed, but “hidden”, and are also referred to as
latent variables. Assume that these variables can be decomposed as

X1 = f(G1) + C + E1,

X2 = f(G2) + C + E2,

with the usual independence assumptions between genetic and environmental fac-
tors. Then, with Ai = f(Gi) the genetic component, by the independence of E1 and
E2,

P
(
Y 1 = y1, Y

2 = y2|A1, A2, C
)

= P
(
A1 + C + E1 ∈ Iy1 , A

2 + C + E2 ∈ Iy2 |A1, A2, C
)

= PE(Iy1 −A1 − C)PE(Iy2 −A2 − C).
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Here PE(I − x) = P (E + x ∈ I). It follows that the likelihood for observing the
pair (Y 1, Y 2) can be written in the form

∫ ∫

PE(IY 1 − a1 − c)PE(IY 2 − a2 − c) dPA
1,A2

(a1, a2) dPC(c).

The likelihood for observing a random sample of n of these pairs is the product of
the likelihoods for the individual pairs. We can estimate the unknown parameters
(mainly the variances of the variables A1, A2, C,E1, E2) using this likelihood.

Implementing the method of maximum likelihood or a Bayesian method is not
trivial, but can be done.

* 7.4 Regression to the Mean

The relationship between the traits of parents and their children was investigated at
the end of the nineteenth century by Francis Galton. By numerical analysis of data
from a large sample of parent-child pairs he concluded that the traits of children were
closer to the mean of the sample than the parents, whence the concept of regression
to the mean was born, or in Galton’s words “regression towards mediocrity”. In his
statistical analysis Galton was concerned with stature, but “mediocrity” receives a
much more coloured significance if applied to traits as intelligence. Galton himself
had earlier written on the heredity of “genius” and “talent”, and is a founding father
of eugenics, “the science which deals with all influences that improve the inborn
qualities of a race; also with those that develop them to the utmost advantage.”‡

Galton’s explanation of the phenomenon was a purely genetic one and was
based on the idea that a child inherits part of his trait from its parents and the
other part from its earlier ancestors. Regression to the mean would result from the
fact the latter are more numerous and varied and more like random persons from
the population the further they go back in the genealogy. This link of a child to
its ancestors beyond its parents appears difficult to uphold. In fact, regression to
the mean is purely statistical and the result of sampling from a population rather
than causally determined. Imagine that trait values of individuals in a population
are determined by systematic causes (including genes) and random causes. Then if
a random parent is sampled from a population and happens to have a high trait
value, it is likely that the random contribution to his trait is high as well. Because
this is not inherited by the child, on the average the child will have a lower trait
value.

We can obtain insight in this qualitative argument by the formulas for variance
decompositions. If X1 and X2 are the traits of a parent and a child, then in the

‡ Francis Galton, (1904). Eugenics: Its definition, scope, and aims, The American Journal of Soci-
ology 10(1).
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model (7.1) with the genetic factors given by dominance and epistatis terms

varX i = σ2
A + σ2

D +
∑∑

i<j

σ2
AA,ij + σ2

C + σ2
E ,

cov(X1, X2) = 1
2σ

2
A + 1

4

∑ ∑

i<j

σ2
AA,ij + σ2

C .

In the second formula we use that a parent and child share exact one allele IBD, so
that the kinship and fraternity coefficients are Θ = 1/4 and ∆ = 0. The dominance
variance does not appear in the covariance, because the two alleles at one locus
come from different parents, which are assumed to be independently sampled from
the population. The additive variance and epistasis do appear, but with a reduced
coefficient. If h2

B = σ2
B/σ

2 for each of the subscripts B and σ2 the total variance
σ2 = varX i, then the correlation of the two traits is

ρ(X1, X2) = 1
2h

2
A + 1

4

∑ ∑

i<j

h2
AA,ij + h2

C .

This quantity is relevant to the explanation of the child’s trait X2 by the parent’s
trait X1. In particular, the (population) least squares regression line is given by

x2 − µ

σ
= ρ(X1, X2)

x1 − µ

σ
.

The regression to the mean is the phenomenon that the correlation coefficient
ρ(X1, X2) is smaller than 1. The calculations show that the latter is caused by
the absence in the covariance of the specific environmental variance σ2

E (which is
the purely random part), the absence of the dominance variance σ2

D (which is sys-
tematic, but unexplainable using one parent only), but also by the reduction of the
contributions of additive variance and epistasis. Regression to the mean will occur
even for a completely hereditary trait (i.e. σ2

C = σ2
E = 0). It will be stronger if the

dominance variance is large.
The preceding formulas are based on the standard assumptions in Chapter 6,

including equilibrium, random mating, and the additive-independent decomposition
(7.1). In this set-up the means and variances of the population of parents and
children do not differ, and the population as a whole does not regress and does not
shrink to its mean. This is consistent with Galton’s numerical observations, and
made Galton remark that “it is more frequently the case that an exceptional man
is the somewat exceptional son of rather mediocre parents, than the average son of
very exceptional parents”.[

7.5 Prevalence

[ Francis Galton, (1886). Regression Towards Mediocrity in Hereditary Stature. Journal of the An-
thropological Institute 15, 246-263.
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Figure 7.1. Galton’s forecaster for the stature of child based on the statures of its parents, a
graphical display of a regression function. From: Francis Galton, (1886). Regression Towards Mediocrity
in Hereditary Stature. Journal of the Anthropological Institute 15, 246-263.



8
Quantitative Trait Loci

A quantitative trait is a phenotype that can assume a continuum of values, and a
quantitative trait locus (or QTL) is a locus that causally influences the value of a
quantitative trait. A typical quantitative trait is influenced by the genes at many
loci as well as by the environment, which would explain its continuous nature.

In this chapter we study nonparametric linkage methods for finding quantitative
trait loci. The underlying idea is the same as in Chapter 5, which was concerned with
qualitative traits: the inheritance vectors of a pedigree at loci that are not linked
to causal loci are independent of the trait. This principle can be operationalized
in two ways. The first way is to model the conditional distribution of inheritance
vectors (or IBD-values) given the trait, and test whether this really depends on the
trait values. The second method is to model the conditional distribution of the trait
given the inheritance vectors, and test whether this really depends on the latter.
Whereas in Chapter 5 we followed the first route, in the present chapter we use the
second. This is because it appears easier to model the distribution of a continuous
trait given the discrete inheritance vectors than the other way around.

The models involved can be viewed as regression models for traits as dependent
variables given IBD-sharing numbers as independent variables. Because the trait of
a single individual is not dependent on IBD-sharing numbers, it is the dependence
between traits of multiple individuals that must be regressed on the IBD-sharing
numbers.

As dependence can be captured through covariance, the (conditional) covari-
ance decompositions of Chapter 6 come in handy. These must of course be extended
by adding environmental factors next to genetic vectors. We adopt the simplest pos-
sible model for these two influences, the additive model

X = f(G) + F,

where G,F are independent variables, corresponding to genetic make-up and envi-
ronment, respectively. The genetic component of any individual is assumed inde-
pendent of the environmental component of every other individual. Then the traits
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X1 and X2 of two relatives with IBD-status N satisfy

cov(X1, X2|N) = cov
(
f(G1), f(G2)|N

)
+ cov(F 1, F 2).

We use the models obtained in Chapter 6 for the first term on the right.
The environmental covariance cov(F 1, F 2) may be zero or nonzero, depending

on the types of relatives involved. A simple customary model is that the two vari-
ables F i can themselves be decomposed as F i = C + Ei, where the variable C is
common to the two relatives, the variables E1, E2 are identically distributed, and
the three variables C,E1, E2 are independent. The variable C is said to reflect the
common environment, whereas E1, E2 give the specific environment. In this model
the environmental covariance cov(F 1, F 2) = varC is precisely the variance of the
common environmental factor. The variables C,E1, E2 are also assumed indepen-
dent of the genetic factors.

The genetic factor f(G) is often denoted by the letter A (presumably of “addi-
tive”), which leads to the decomposition X = A+ C + E of a trait. This is known
as the A-C-E model.

8.1 Haseman-Elston Regression

A simple method, due to Haseman and Elston, performs linear regression of the
squares (X1 −X2)2 of the differences of the quantitative traits X1 and X2 of two
relatives onto the IBD-counter Nu at a given locus u. The linear regression model
for a single pair of relatives takes the form, wiht e an unobserved “error”,

(8.1) (X1 −X2)2 = α+ βNu + e.

If the coefficient β in this regression equation is significantly different from 0, then
the locus u is implicated in the trait. More precisely, because we expect that a
high value of IBD-sharing will cause the traits of the two relatives to be similar, a
negative value of the regression coefficient β indicates that the locus is linked to the
trait.

In practice we fit the regression model based on a random sample (X1i, X2i, N i)
of data on n pairs of relatives, and test the null hypothesis H0:β = 0, for a large
number of loci. We might use the usual t-test for this problem, based on the least
squares estimator of β, or any other of our favourite testing procedures.

The regression equation can be understood quantitatively from the covariance
decompositions in Chapter 6. If the pedigree to which the two individuals belong
is not inbred and the population is in equilibrium, then the marginal distributions
of X1 and X2 are equal and the two variables are marginally independent of IBD-
status, by Lemma 6.7. In particular, the conditional means and variances of X1 and
X2 given IBD-status are equal to the unconditional means and variances, which are
equal for X1 and X2. It follows that

E
(
(X1 −X2)2|Nu

)
= var(X1 −X2|Nu) = 2 varX1 − 2 cov

(
X1, X2|Nu

)
.
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If a linear regression model for cov
(
X1, X2|Nu

)
onto Nu is reasonable, then the

Haseman-Elston procedure is justified. Because Nu assumes only three values, 0, 1
and 2, a quadratic regression model would certainly fit. A linear model should give
a reasonable approximation. The slope of the regression of cov

(
X1, X2|Nu

)
onto

Nu should be positive, giving a negative slope for regression of (X1 − X2)2 onto
Nu. More precisely, if cov(X1, X2|Nu) = γ + δNu, then the regression model (8.1)
holds with β = −2δ.

In practice the IBD-indicator Nu may not be observed. Then the regression is
carried out on its conditional expectation E(Nu|M) given the observed (marker)
data M instead.

Haseman-Elston regression is attractive for its simplicity, and for the fact that
it requires hardly any assumptions. A drawback is that it reduces the data (X1, X2)
to the differences X1−X2, which may not capture all information about the depen-
dence between X1 and X2 that is contained in their joint distribution. Furthermore,
model assumptions (if they are reasonable) about the distribution of X1 −X2 may
also help to increase the power of detecting QTLs.

8.2 Covariance Analysis

Consider the joint conditional distribution of the trait values (X1, X2) of two rela-
tives given the IBD-status NU at a set U of loci of interest. If the pedigree is not
inbred and the population is in equilibrium, then the marginal conditional distri-
butions of X1 and X2 given NU are equal and free of NU , by Lemma 6.7. Thus a
model of the joint conditional distribution of (X1, X2) given NU should focus on
the dependence structure.

If we assume that the conditional distribution of (X1, X2) given NU is bi-
variate normal, then their complete distribution is fixed by the first and second
order conditional moments. Because the mean vector and variances depend only
on the marginal distributions, these quantities should be modelled independently
of NU . The conditional covariance cov(X1, X2|NU ) is the only part of the model
that captures the dependence. The results obtained in Chapter 6 suggest a wealth
of models.

For instance, we may assume that the trait depends on k causal loci, and can be
completely described by additive and dominance effects only, thus ignoring epistasis
and interactions of three or more alleles. This leads to the formulas

var(X1|N) = var(X2|N) =
k∑

j=1

σ2
A,j +

k∑

j=1

σ2
D,j + σ2

C + σ2
E ,(8.2)

cov(X1, X2|N) = 1
2

k∑

j=1

σ2
A,jNj +

k∑

j=1

σ2
D,j1Nj=2 + σ2

C .(8.3)

Here N = (N1, . . . , Nk) is the vector of IBD-sharing indicators for the k causal loci,
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and σ2
C and σ2

E are the common and specific environment variances.
There are 2 + 2k unknown parameters in this display. These are identifiable

from the distribution of (X1, X2, N), and can, in principle, be estimated from a
sample of observations (X1i, X2i, N i), for instance by using the moment equations

σ2
C = cov(X1, X2|N = 0),

1
2σ

2
A,j + σ2

C = cov(X1, X2|Nj = 1;Nu = 0, u 6= j),

σ2
A,j + σ2

D,j + σ2
C = cov(X1, X2|Nj = 2;Nu = 0, u 6= j).

We can estimate the left sides by replacing the right sides by the appropriate empiri-
cal estimates, and next solve for the parameters on the left sides from top to bottom.
(This method of estimation is only mentioned as a simple proof of identifiability.)

In practice, we do not know the number and locations of the causal loci, and
typically we observe the IBD-status only at marker loci. If it is suspected that the
number of causal loci is high, it may also be hard or impossible to fit a regres-
sion model that conditions on all such loci, as the resulting estimates will have
high uncertainty margins. For instance, the method mentioned in the preceding
paragraph cannot be implemented in practice unless we have a large number of ob-
servations: as the vector N can assume 3k different values, the sets of observations
with (Nj = 1;Nu = 0, u 6= j) will be small or even empty, and the correspond-
ing empirical estimators imprecise. Another difficulty is that it is not a-priori clear
which loci to involve in the regression model. Typically one would like to scan the
genome (or subregions) for loci, rather than test the effects of a few specific loci. If
k is not small (maybe even k = 2 is already to be considered large), then there are
too many sets of k loci to be taken into consideration.

For these reasons we simplify and model the conditional distribution of
(X1, X2) given IBD-status Nu at a single marker locus u. Under the assump-
tion of conditional normality, we only need to model the conditional covariance
of (X1, X2) given Nu. This can be derived from the conditional covariance given
the IBD-indicators N = (N1, . . . , Nk) at the causal loci, as follows. If V is the seg-
regation matrix at the causal loci, then the conditional mean E(Xi|Nu, V ) is equal
to the unconditional mean EX i and hence nonrandom, by Lemma 6.7. Therefore,
by the general conditioning rule for covariances (see Problem 6.8),

cov(X1, X2|Nu) = E
(
cov(X1, X2|Nu,V )|Nu

)
= E

(
cov(X1, X2|V )|Nu

)
,

because (X1, X2) and Nu are conditionally independent given V , by Theorem 4.8.
Using the model that incorporates additive and dominance terms given in (8.3), we
find

cov(X1, X2|Nu) = 1
2

k∑

j=1

σ2
A,jE(Nj|Nu) +

k∑

j=1

σ2
D,jP (Nj = 2|Nu) + σ2

C .

If the locus j is not linked to the locus under investigation u, then Nj and Nu
are independent and the conditional expectations E(Nj |Nu) and P (Nj = 2|Nu)
reduce to four times the kinship coefficient Θ = E 1

4Nj and the fraternity coefficient
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∆ = P (Nj = 2), corresponding to the relationship of the individuals. In particular,
if only one of the causal trait loci j, say j = 1, is linked to the locus of current
interest u, then the preceding display reduces to

cov(X1, X2|Nu)

= 1
2σ

2
A,1E(N1|Nu) + σ2

D,1P (N1 = 2|Nu) + 2Θ

k∑

j=2

σ2
A,j + ∆

k∑

j=2

σ2
D,j + σ2

C

= 1
2σ

2
A,1

(
E(N1|Nu) − 4Θ) + σ2

D,1

(
P (N1 = 2|Nu) − ∆) + 2Θσ2

A + ∆σ2
D + σ2

C .

Here σ2
A and σ2

D are the total additive and dominance variances, respectively, which
are expressed as sums in the right side of (8.2). In the last expression the terms in-
volving Nu are centered at mean zero, by the definitions of Θ and ∆. The six
variances σ2

A, σ
2
D, σA,1, σ

2
D,1, σ

2
C , σ

2
E in the preceding display and (8.2) are unknown

parameters. The kinship and fraternity coefficients Θ and ∆ can be computed from
the positions of the two relatives in the pedigree. Similarly, the conditional expec-
tations E(N1|Nu) and P (N1 = 2|Nu) depend on the structure of the pedigree and
the recombination fraction between the loci 1 and u.

8.4 Example (Sibs). The conditional joint distribution of the IBD-sharing indi-
cator at two loci of sibs in a nuclear family is given in Table 4.3. By some algebra
it can be derived from this table that

E(Nu|Nv) = 1 + (Nu − 1)e−4|u−v|,

P (Nu = 2|Nv) = 1
4 + 1

2 (Nu − 1)e−4|u−v| + 1
2

(
(Nu − 1)2 − 1

2

)
e−8|u−v|.

These formulas should of course be evaluated only for Nu ∈ {0, 1, 2}, and can be
writtern in many different forms. Note that the terms involving Nu at the right side
are centered at mean zero.

8.5 EXERCISE. Show that the second equation in Example 8.4 can also be written
in the form P (Nu = 2|Nv) = 1

4 + 1
2 (Nu − 1)e−4|u−v|(1 − e−4|u−v|) + (1Nu=2 −

1
4 )e−8|u−v|.

As we are mainly interested in the dependence of the covariance on Nu, it is
helpful to lump parameters together. Because Nu takes on only three values, any
function of Nu can be described by three parameters, e.g. in the form α′ + β′(Nu−
4Θ) + γ′(1Nu=2 − ∆). A convenient parameterization is the model

(8.6)

E(X1|Nu) = E(X2|Nu) = µ,

var(X1|Nu) = var(X2|Nu) = σ2,

cov(X1, X2|Nu) = σ2
(
ρ+ β(Nu − 4Θ) + γ(1Nu=2 − ∆)

)
.

Here µ and σ2 are the mean and variance of X1 and X2, both conditional and
unconditional, and ρ = ρ(X1, X2) is their unconditional correlation. This model



8.2: Covariance Analysis 139

has 6 unknown parameters. However, beware that the parameter ρ now incorporates
the kinship and fraternity coefficients and the common environmental variances, so
that it should be taken differently for different types of relatives.

The conventional method of analysis is to proceed by assuming that given Nu
the vector (X1, X2) is bivariate normally distributed with parameters satisfying the
preceding equations. Linkage of a locus u to the disease is investigated by testing
the null hypothesis H0:β = γ = 0 that the parameters in the conditional covariance
involving Nu are zero. Rejection of the null hypothesis indicates linkage of the
locus u to the disease. Because the alternative hypothesis can be taken that these
parameters are negative, we may use a one-sided test.

To perform the test for multiple loci u the score test has the practical advan-
tage that it suffices to compute the maximum likelihood estimator under the null
hypothesis only once, as the null hypothesis is the same for every u. This estimator
and the observed value of Nu are plugged in to a fixed function, involving the scores
for β and γ. In contrast, the likelihood ratio statistic requires computation of the
full maximum likelihood estimator for every locus u.

8.7 Example (Bivariate Normal Distribution). As a concrete example of the
preceding inference, consider the model where a pair of traits (X1, X2) are assumed
to be normal with mean µ = 0, variance σ2 = 1, and with the dominance variance a-
priori assumed to be zero: γ = 0. Thus a typical observation is a triple (X1, X2, N)
from the model described by:
(i) Given N the pair (X1, X2) is bivariate Gaussian with mean zero, variances 1

and covariance ρ(N) = ρ+ β(N − 4Θ). The parameters ρ and β are unknown.
(ii) The variable N is 0, 1 or 2 with EN = 4Θ and varN = σ2

N .
The log likelihood for this model is, up to a constant,

(ρ, β) 7→ − 1
2 log

(
1 − ρ2(N)

)
− 1

2

(X1)2 + (X2)2 − 2ρ(N)X1X2

1 − ρ2(N)
.

The score vector for the parameter (ρ, β) is

(
1

N − 4Θ

) [ ρ(N)

1 − ρ2(N)
+

X1X2

1 − ρ2(N)
−

(
(X1)2 + (X2)2 − 2ρ(N)X1X2

)
ρ(N)

(1 − ρ2(N))2

]

.

We can rewrite the score in the form
(

1
N − 4Θ

)

Sρ,β(X
1, X2, N),

for

Sρ,β(X
1, X2, N) =

(
X1X2 − ρ(N)

)(
1 + ρ2(N)

)
− ρ(N)((X1)2 + (X2)2 − 2)

(1 − ρ2(N))2
.

(This is elementary algebra. Alternatively, we can use that the score has condi-
tional mean zero given N combined with the facts that E(X1X2|N) = ρ(N) and
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E((X1)2|N) = E((X2)2|N) = 1.) The Fisher information matrix in one observation
is equal to

Eρ,β

(
1

N − 4Θ

) (
1

N − 4Θ

)T

S2
ρ,β(X

1
1 , X

2
1 , N)

Under β = 0 we have that ρ(N) = ρ, whence the variables (X1, X2) and N are inde-
pendent and Sρ,0(X

1, X2, N) is a function of (X1, X2) only. Then the information
matrix becomes (

1 0
0 σ2

N

)

τ2

for

τ2 = Eρ,0

( (X1X2 − ρ)(1 + ρ2) − ρ((X1)2 + (X2)2 − 2)

(1 − ρ2)2

)2

.

The (one-sided) score test for H0:β = 0 rejects the null hypothesis for large values
of

1

σN τ̂
√
n

n∑

i=1

(N i − 4Θ)Sρ̂,0(X
1i, X2i, N i).

Here τ̂ is obtained by replacing the expectation in the definition of τ by an av-
erage over the sample, and ρ by its maximum likelihood estimator under the null
hypothesis, which is the solution to the equation

∑n
i=1Sρ,0(X

1i, X2i, N i) = 0, i.e.
the solution to

1

n

n∑

i=1

X1iX2i = ρ+
ρ

1 + ρ2

( 1

n

n∑

i=1

(
(X1i)2 + (X2i)2

)
− 2

)

.

Because the term in brackets on the right is OP (1/
√
n), the maximum likelihood

estimator is asymptotically equivalent to the estimator n−1
∑n
i=1X

1iX2i, which in
turn is asymptotically equivalent to the sample correlation coefficient.

In practice, it is rarely known a-priori that the mean and variance of the ob-
servations are 0 and 1. However, this situation is often simulated by replacing each
observation (X1, X2) by its “z-score” (X1 − µ̂, X2 − µ̂)/σ̂, for µ̂ and σ̂ the mean
and sample standard deviation of all observed traits. The analysis next proceeds as
if these standardized observations are multivariate normal with mean vector 0 and
variance 1. Actually, if the original observation is multivariate normal, then its stan-
dardized version is not. However, some justification for this practice follows from the
fact that the score functions for µ and σ2 in the model (8.6) are orthogonal to the
score functions for β and γ if evaluated at the null hypothesis (see below). This can
be shown to imply that elimination of the parameters µ and σ2 by standardization
leads to the same inference for large numbers of observations.

Warning. The assumptions that the conditional distribution of (X1, X2) given
N is bivariate normal and the conditional distribution of (X1, X2) given Nu are
bivariate normal, are typically mathematically incompatible. For instance, if Nu =
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N1 is the first coordinate of N , then the second conditional distribution can be
derived from the first by the formula

L
(
(X1, X2)|N1

)
=

∑

n2,...,nk

L
(
(X1, X2)|N1, N2 = n2, . . . , Nk = nk

)

× P (N2 = n2, . . . , Nk = nk|N1).

If (X1, X2) given N = n is bivariate normal for every n, then this formula shows
that the distribution of (X1, X2) given N1 is a finite mixture of bivariate normal
distributions. The terms of the mixture have the same mean vectors, but typically
covariance matrices that depend on (n2, . . . , nk). Such a mixture is not bivariate
normal itself. The same argument applies to a general locus u. In practice one does
not worry too much about this inconsistency, because it is thought that the methods
used, although motivated by the normality assumption, are not very dependent
on this assumption. Furthermore, the conditional normality given Nu, used in the
preceding, may be the more natural one if there are many causal loci, as mixtures
over many components might make the distribution more continuous.

8.2.1 General Pedigrees

It is easy to incorporate sets of more than two relatives in the analysis. The trait
vector X = (X1, . . . , Xn) of n relatives is assumed to be conditionally distributed
according to a multivariate normal distribution. The unknown parameters in this
distribution are exactly the means, variances and covariances, and hence are spec-
ified as in the case of bivariate trait vectors. Specifically, given Nu the vector
X = (X1, . . . , Xn) is modelled to be Nn(µ1, σ2Σ)-distributed, where the matrix
Σ has (i, j)th element

(8.8) Σi,j = ρi,j + β(N i,j
u − 4Θi,j) + γ(1Ni,j

u =2 − ∆i,j).

Here N i,j
u is the number of alleles carried IBD by the relatives i and j, and the

unconditional correlation ρi,j and the kinship and fraternity coefficients Θi,j and
∆i,j may be specific to the relationship of the individuals i and j. (For i = j we set
N i,i
u = 2 = 4Θi,i = ∆i.i and ρi,i = 1, so that Σi,j = 1.) The parameter γ is often

taken a-priori equal to zero, expressing an assumption of absence of dominance. If
N i,j
u is not observed, then it is replaced by its conditional expectation given the

data.
For simplicity we shall take the correlations ρi,j for i 6= j to be equal to a single

parameter ρ in the following. To test the null hypothesis H0:β = γ = 0 we could
use the score test. The score functions for the parameters µ and σ2, are given by
(see Section 14.4):

1

σ2
1TΣ−1(X − µ1)

− 1

2σ2
+

1

2σ4
(X − µ1)TΣ−1(X − µ1).
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The score functions for the parameters ρi,j ≡ ρ, β and γ all take the general form

(8.9) − 1

2σ2
tr

(
Σ−1Σ̇

)
+

1

2σ2
(X − µ1)TΣ−1Σ̇Σ−1(X − µ1),

where for the three parameters the matrix Σ̇ must be taken equal to the three
matrices

(
1i6=j

)
,

(
(N i,j

u − 4Θi,j)1i6=j
)
,

(
(1Ni,j

u =2 − ∆i,j)1i6=j
)
,

respectively. To test the null hypothesis H0:β = γ = 0 the parameter (µ, σ2, ρ, β, γ)
is replaced by its maximum likelihood estimator (µ̂0, σ̂

2
0 , ρ̂0, 0, 0) under the null

hypothesis. In particular, the matrix Σ reduces to Σ̂0 =
(
1i=j + ρ̂01i6=j

)
, and is free

of the IBD-indicators N i,j .
The score test for H0:β = γ = 0 measures the deviation of the scores for β

and γ from 0. Because the variables N i,j
u − 4Θi,j and 1Ni,j

u =2 − ∆i,j possess mean
zero and are independent of X under the null hypothesis, the score functions for
β and γ have conditional mean zero given X . (Note that EΣ̇ = 0 for the second
and third form of Σ̇ and (8.9) is linear in Σ̇.) Combined with the fact that the
other score functions are functions of X only, it follows that the score functions
for β and γ are uncorrelated with score functions for µ, σ2 and ρ. Thus the Fisher
information matrix for the parameter (µ, σ2, ρ, β, γ) has block structure for the
partition in the parameters (µ, σ2, ρ) and (β, γ), and hence its inverse is the block
matrix with the inverses of the two blocks. For the score statistic, this means that
the weighting matrix is simply the Fisher information matrix for the parameter
(β, γ). See Example 14.29.

8.2.2 Extensions

The preceding calculations can be extended to the situation that the locus u is linked
to more than one of the causal loci 1, . . . , k. It is also possible to include external
covariate variables (e.g. sex or age) in the regression equation. In particular, the
mean µ may be modelled as a linear regression βTZ on an observable covariate
vector Z.

8.2.3 Unobserved IBD-Status

In practice the IBD-status at the locus u may not be fully observed, in particular
when the genes at the locus have only few alleles and/or the pedigree is small.
This problem is usually overcome by replacing the IBD-variable Nu in the regres-
sion equation by its conditional expectation E(Nu|M) given observed marker data,
computed under the assumption of no linkage. This is analogous to the situation in
Chapter 5.

8.2.4 Multiple Testing

When testing a large set of loci u for linkage the problem of multiple testing arises.
This too is analogous to the situation in Chapter 5.
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8.2.5 Power

As to be expected, the bigger the variances σ2
A,1 or σ2

D,1 contributed by the locus
u = 1, the bigger the parameters β and γ, and the more power to detect that the
null hypothesis is false.

8.2.6 Epistasis

So far we have assumed that the epistatic component in the covariance is zero. In-
cluding epistasis may make the model more realistic and permit to find interactions
between the loci. In theory it is even possible that two loci might not have “main
effects”, but do have a joint effect.

To include epistasis we replace the right side of (8.3) by

cov(X1, X2|N) = 1
2

k∑

j=1

σ2
A,jNj +

k∑

j=1

σ2
D,j1Nj=2 + σ2

C + 1
4

∑ ∑

i<j

σ2
AA,ijNiNj .

We may now follow the arguments leading eventually to the model (8.6) or (8.8).
However, in deriving model (8.6) we already saw that any function of a single
IBD-indicator Nu can be described by three parameters, and all of the three were
accounted for by additive and dominance variances. Thus adding epistasis will not
lead to a different model for the conditional distribution of the trait vector given
Nu.

As is intuitively clear, to find epistasis we must study the conditional law of
the traits given pairs IBD-indicators.??

* 8.3 Copulas

Because quantitative traits are marginally independent of the IBD-values, the anal-
ysis in this chapter focuses on the dependence structure of traits within their joint
distribution given the IBD-values. The formal way of separating marginal and joint
probability distributions is through “copulas”.

Consider an arbitrary random vector (X1, . . . , Xn), and denote its marginal
cumulative distribution functions by F 1, . . . , Fn (i.e. F i(x) = P (X i ≤ x)). The
copula corresponding to the joint distribution of (X1, . . . , Xn) is defined as the
joint distribution of the random vector

(
F 1(X1), . . . , Fn(Xn)

)
. The corresponding

multivariate cumulative distribution function is the function C defined by

C(u1, . . . , un) = P
(
F 1(X1) ≤ u1, . . . , Fn(Xn) ≤ un

)
.

Because each function F i takes values in [0, 1], the copula is a probability distri-
bution on the unit cube [0, 1]n. By the “probability integral transformation” each
of the random variables F i(X i) possesses a uniform distribution on [0, 1], provided
that F i is a continuous function. Thus provided that the distribution of the vector
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(X1, . . . , Xn) possesses no atoms, the corresponding copula is a probability dis-
tribution on the unit cube with uniform marginals. If the cumulative distribution
functions are strictly increasing, then we can invert the preceding display to see
that, for every (x1, . . . , xn) ∈ Rn,

P
(
X1 ≤ x1, . . . , Xn ≤ xn

)
= C

(
F 1(x1), . . . , Fn(xn)

)
.

With some difficulty it can be proved that for any multivariate distribution there
exists a distribution on [0, 1]n with uniform marginals whose cumulative distribu-
tion function C satisfies the display. (If the marginal distribution functions are
continuous, then C is unique.) This fact is known as Sklar’s theorem.

It follows that the joint distribution of the vector (X1, . . . , Xn) can be com-
pletely described by the marginal distribution functions F 1, . . . , Fn and the copula
C. Here the copula contains all information about the dependence between the
coordinates X i, this information being absent from the marginal distributions.

8.10 EXERCISE. Show that we can write any distribution function F in the form
F = C ◦ (Φ, . . . ,Φ), for Φ the standard normal distribution function and C some
distribution function on Rn. [Thus the transformation to uniform marginals in the
definition of a copula is arbitrary. Any nice distribution would do.]

8.11 Example (Gaussian copula). The bivariate normal distribution is specified
by a mean vector µ ∈ R2 and a covariance matrix Σ, which is a positive-definite
(2×2)-matrix. The means and variances are parameters of the marginal distributions
and hence the corresponding copula must be free of them. It follows that the copula
can be described by a single parameter (corresponding one-to-one to the off-diagonal
element of Σ), which we can take to be the correlation.

The normal copula does not permit expression in elementary functions, but
takes the form

Cρ(u
1, u2) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√

1 − ρ2
e−

1
2 (x2−2ρxy+y2)/(1−ρ2) dx dy.

This is just the probability that P
(
Φ(X1) ≤ u1,Φ(X2) ≤ u2

)
for (X1, X2) bivariate

normal with mean zero, variance one and correlation ρ.

In our application we use copulas for the conditional distribution of (X1, X2)
givenN . The usual assumption that this conditional distribution is bivariate normal
is equivalent to the assumptions that the marginal distributions of X1 and X2

(given N) are normal and that the copula corresponding to the joint conditional
distribution (given N) is the normal copula. Both assumptions could be replaced
by other assumptions.

For instance, if the traits are the time of onset of a disease, then normal distri-
butions are not natural. We could substitute standard distributions from survival
analysis for the marginals, and base the copula on a Cox model.



8.4: Frailty Models 145

Rather than distributions of a specific form we could also use semiparametric
or nonparametric models.

* 8.4 Frailty Models

Frailty models have been introduced in survival analysis to model the joint distri-
bution of survival times. They can be applied in genetics by modelling the frailty
as a sum of genetic and environmental factors.

Let (T 1, T 2) be two event times for a related pair of individuals (twins, sibs,
parent-child, etc.). Let (Z1, Z2) be a corresponding pair of latent variables (“frail-
ties”) such that T 1 and T 2 are conditionally independent given (Z1, Z2) with cu-
mulative hazard functions t 7→ Z1Λ(t) and t 7→ Z2Λ(t), respectively, for a given
“baseline hazard function” Λ. In other words, under the assumption that the condi-
tional distribution functions are continuous, the joint conditional survival function
is given by

P (T 1 > t1, T 2 > t2|Z1, Z2) = e−Z
1Λ(t1)e−Z

2Λ(t2).

The unconditional survival function of (T 1, T 2) is the expectation of this expression
with respect to (Z1, Z2).

Thus under the model the conditional hazard functions of T 1 and T 2 are pro-
portional, with the quotient of the frailties as the proportionality constant.

The marginal (i.e. unconditional) survival functions of T 1 and T 2 are given

by t 7→ Ee−Z
1Λ(t) and t 7→ Ee−Z

2Λ(t), respectively. These are identical if Z1 and
Z2 possess the same marginal distribution. We complete the model by choosing a
marginal distribution and a copula for the joint distribution of (Z1, Z2).

An attractive possibility is to choose the marginal distribution infinitely di-
visible. Infinitely divisible distributions correspond one-to-one with Lévy processes:
continuous time processes Y = (Yt: t ≥ 0) with stationary, independent increments
and Y0 = 0. The corresponding infinitely divisible distribution is the distribution
of the variable Y1. From the decomposition Y1 = Yρ + (Y1 − Yρ), it follows that Y1

is for every 0 ≤ ρ ≤ 1 distributed as the sum of two independent random variables
distributed as Yρ and Y1−ρ, respectively. Given independent copies Y and Ỹ we now
define frailty variables

Z1 = Yρ + (Y1 − Yρ) = Y1,

Z2 = Yρ + (Ỹ1 − Ỹρ).

Then Z1 and Z2 possess the same marginal distribution, and have correlation

ρ(Z1, Z2) =
varYρ
varY1

= ρ.

In order to obtain nonnegative frailties the distribution of Y1 must be concentrated
on [0,∞). The corresponding Lévy process then has nonincreasing sample paths,
and is called a subordinator.
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With the frailties as given in the preceding display the unconditional joint
survival function is given by

P (T 1 > t1, T 2 > t2) = Ee−Z
1Λ(t1)e−Z

2Λ(t2)

= Ee−Yρ(Λ(t1)+Λ(t2))Ee−(Y1−Yρ)Λ(t1)Ee−(Ỹ1−Ỹρ)Λ(t2)

= ψ
(
Λ(t1) + Λ(t2)

)ρ
ψ

(
Λ(t1)

)1−ρ
ψ

(
Λ(t2)

)1−ρ
,

where ψ(u) = Ee−uY1 is the Laplace transform of Y1. In the last step we use the

identity Ee−uYt =
(
Ee−Y1

)t
, which follows from the independence and stationarity

of the increments. Setting t2 in this display equal to zero shows that the marginal
conditional survival functions are given by

S(t): = P (T 1 > t) = ψ
(
Λ(t)

)
.

We can write the joint survival function in terms of this function by substituting
Λ = ψ−1 ◦ S in the second last display.

8.12 Example (Gamma frailties). The Gamma distribution with parameters λ
and 1 (so that the mean is λ and the variance 1/λ2) is infinitely divisible. Its Laplace
transform is ψ(u) = (1 + u)λ. The corresponding joint survival function is given by

P (T 1 > t1, T 2 > t2) =
( 1

1 + Λ(t1) + Λ(t2)

)λρ( 1

1 + Λ(t1)

)λ(1−ρ)( 1

1 + Λ(t2)

)λ(1−ρ)
.

The marginal survival functions are

S(t) =
( 1

1 + Λ(t)

)λ

.

Solving Λ(t) from this and substitution in the preceding display shows that

P (T 1 > t1, T 2 > t2) =
( 1

1 + S(t1)−1/λ + S(t2)−1/λ

)λρ

S(t1)1−ρS(t2)1−ρ.

This reveals the copula connecting the marginals of T 1 and T 2 in their joint distribu-
tion. The parameter ρ has the interpretation of correlation between the underlying
frailties, whereas 1/λ2 is the variance of a frailty.

A “correlated frailty model” can now be turned into a model for the conditional
distribution of (T 1, T 2) given IBD-status by assuming that (T 1, T 2) is conditionally
independent of Nu given (Z ,1Z

2), and (Z1, Z2) given Nu possesses (conditional)
correlation

ρ(Z1, Z2|Nu) = ρ+ β(Nu − 4Θ) + γ(1Nu=2 − ∆).
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Association Analysis

Perhaps the simplest method to find genes that cause an affection would be to
compare the full genomes of samples of affected and unaffected individuals. The
loci of causal genes must be among the loci where the two samples are significantly
different. The main drawback of this approach is the size of the genome. Sequencing
the genome of large numbers of individuals is still unfeasible, and analyzing the
resulting large numbers of data would encounter both computational and theoretical
challenges.

Association analysis consists of comparing the genomes of cases and controls
at selected markers rather than at every locus. The name “association” is explained
by the fact that this partial strategy can be successful only if the measured loci are
“correlated” or “associated” to the causal loci for the affection. A population was
defined to be in “linkage equilibrium” if the alleles at different loci on a randomly
chosen haplotype are independent. Because in this situation a marker would never
be informative about any other locus than itself, the opposite, which is called linkage
disequilibrium, is needed for association analysis. More precisely, we need linkage
disequilibrium between the marker and the causal loci.

In Section 2.3 it was seen that, under random mating, any sequence of popula-
tions eventually reaches linkage equilibrium. Furthermore, possible disequilibrium
between two loci separated by recombination fraction θ is reduced by a factor (1−θ)k
in k generations. For this reason the assumption of equilibrium seemed reasonable in
many situations, in particular for loci that are far apart. However, it is not unreason-
able to expect a causal locus for a disease to be in linkage disequilibrium with marker
loci that are tightly linked to it. Imagine that a disease-causing gene was inserted in
the genome of an individual (or a set of individuals) a number of generations in the
past by one or more mutations, and that the current disease-carrying subpopulation
are the offspring of this individual (or set of individuals). The mutation would have
broken linkage equilibrium (if this existed), as the diseased individuals would carry
not only the mutated gene, but also an exact copy of a small segment around the
gene of the DNA of the individual who was first affected. After repeated rounds



148 9: Association Analysis

of random mating, these segments would have become smaller, and the population
would eventually return to linkage equilibrium, because recombination events occur
between the mutated and other loci in a random fashion. The form of the reduction
factor (1 − θ)k shows that the return to equilibrium is very rapid for loci that are
far apart on the genetic map. However, if the mutation originated not too many
generations in the past, then it is likely that loci close to the disease mutation are
(still) in linkage disequilibrium with the disease locus.

This reasoning suggests that cases and controls may indeed differ at marker
loci that are close to causal loci, so that an association study may work. It also
suggests that marker loci at some distance of causal loci will not be associated to
the causal loci. Association studies turn this lack of information in distant markers
into an advantage, by becoming a method for fine-mapping of genes: markers at
some distance of a causal locus will automatically be ignored. A linkage study of
the type discussed in Chapters 3 or 5 would pin down some region of the genome
that is likely to contain a causal gene. Next an association study would reveal the
location within the region at higher precision.

If tightly linked loci are indeed highly correlated in the population, then mea-
suring and comparing the full genome will not only be unpractical, but will also not
add much information above testing only selected loci. In particular, for genome
wide association studies, which search the complete genome for causal genes, it
should be enough to use marker loci in a grid such that every locus has high cor-
relation (e.g. higher than 0.8) with some marker locus. The HapMap project (see
http://www.hapmap.org/) is a large international effort to find such a set of mark-
ers, by studying the variety of haplotypes in the world population, and estimate
linkage disequilibrium between them. It is thought that a set of 600 000 SNPs could
be sufficient to represent the full genome. Experimental chip technology of 2008
permits measurements of up to 100 000 SNPs in one experiment, and association
studies may be carried out on as many as 20 000 cases and controls. Thus many
researchers believe that genome-wide association studies are the most promising
method to find new genes in the near future. However, other researchers are less
optimistic, and claim that large-scale association studies are a waste of effort and
money.

9.1 Association and Linkage Disequilibrium

Two alleles Ai and Bj on two different loci are defined to be associated within a
given population if the frequency hij of the haplotypes AiBj and the frequencies pi
and qj of the alleles Ai and Bj satisfy

hij 6= piqj .

In other words, if we randomly choose one of the two haplotypes from a random
individual from the population, then the alleles at the two loci are not independent.
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Apart from the insistence on two particular alleles, this definition of associ-
ation is the opposite of linkage equilibrium (“dependent” rather than “indepen-
dent”). Thus association is the same as linkage disequilibrium. However, several
authors object to this identification, and would define linkage disequilibrium as “al-
lelic association that has not been broken up by recombination”. In their view not
every association is linkage disequilibrium, and they prefer the term gametic phase
disequilibrium over “association”.

This (confusing) refinement is motivated by the different ways in which as-
sociation may arise, and their consequences for statistical and genetic analysis. If
association arises through a mutation in some ancestor at some locus, which is next
inherited by offspring together with a chromosomal segment containing the other
locus, then this constitutes the linkage disequilibrium of the type we are interested
in. However, association as defined in the first paragraph of this section is simply
statistical correlation and may arise in many other ways. Natural selection may go
against certain combinations of alleles, or statistical fluctuations from generation
to generation may cause deviations, particularly in small populations. Perhaps the
most important cause for association is population substructure (also called ad-
mixture or stratification) that goes against random mating. For instance, suppose
that the population consists of two subpopulations, and that each subpopulation
is in linkage equilibrium (perhaps due to many rounds of random mating within
the subpopulations). Then alleles in the full population will be associated as soon
as the marginal frequencies of alleles in the subpopulations are different. This is
nothing but an instance of the well-known Simpson’s paradox, according to which
two variables may be conditionally independent given a third variable, but not
unconditionally independent.

To quantify this notion, consider two populations such that allele A has fre-
quencies p1 and p2, allele B has frequencies q1 and q2, and haplotype AB has fre-
quencies h1 and h2 in the populations. Let the two populations have relative sizes
λ and 1 − λ. In the union of the two populations allele A, allele B and haplotype
AB have frequencies

p = λp1 + (1 − λ)p2,

q = λq1 + (1 − λ)q2,

h = λh1 + (1 − λ)h2.

9.1 Lemma. For numbers p1, p2, q1, q2, λ in [0, 1], define p, q and h as in the pre-
ceding display. If h1 = p1q1 and h2 = p2q2, then h−pq = λ(1−λ)(p1−p2)(q1− q2).

Proof. It is immediate from the definitions that

h− pq = λh1 + (1 − λ)h2 − (λp1 + (1 − λ)p2)(λq1 + (1 − λ)q2).

Here we insert the equilibrium identities h1 = p1q1 and h2 = p2q2 and obtain the
formula h− pq = λ(1 − λ)(p1 − p2)(q1 − q2) by elementary algebra.



150 9: Association Analysis

The assumptions h1 = p1q1 and h2 = p2q2 of the lemma entail lack of asso-
ciation in the subpopulations, and the difference h − pq measures the association
in the whole population. The lemma shows that that h − pq = 0 if and only if
p1 = p2 or q1 = q2. Therefore, the joint population can be far from linkage equi-
librium if the marginal frequencies are different, even if both subpopulations are in
linkage equilibrium. The variable “subpopulation” is said to act as a confounder for
association.

Rather than to the alleles at two loci, we can apply the lemma also to associ-
ation between a single (marker) locus and the disease. We define h1, h2 and h as
the probability that a random individual in the subpopulations or full population
carries allele A and is diseased, p1, p2, p as the relative frequencies of allele A in
the three populations, and q, q1, q2 as the prevalence of the disease. The lemma
shows that a disease that is unrelated to the allele A in both subpopulations will
be associated to the allele in the full population as soon as both the prevalence of
the disease and the relative frequency of A are different in the two subpopulations.
If the prevalence of the disease is different, then many alleles A may qualify.

The preceding discussion extends to more than two subpopulations. In fact,
with the appropriate interpretations this follows from Lemma 2.7.

9.1.1 Testing for Association

To investigate the existence of association between two loci in a population we
sample n individuals at random and determine their genotypes at the two loci of
interest. Typically we can observe only unordered genotypes. If the two loci possess
possible alleles A1, . . . , Ak and B1, . . . , Bl, respectively, then there are 1

2k(k + 1)
unordered genotypes {Ai, Aj} for the first locus and 1

2 l(l+ 1) unordered genotypes
{Bu, Bv} for the second locus. Each individual can (in principle) be classified for
both loci, yielding data in the form of a

(
1
2k(k + 1) × 1

2 l(l + 1)
)
-table N , with

the coordinate Nijuv counting the total number of individuals in the sample with
unordered genotypes {Ai, Aj} and {Bu, Bv} at the two loci. Table 9.1 illustrates
this for k = l = 2.

{B1, B1} {B1, B2} {B2, B2}
{A1, A1} N1111 N1112 N1122

{A1, A2} N1211 N1212 N1222

{A2, A2} N2211 N2212 N2222

Table 9.1. Two-way classification of a sample for unordered genotypes on two loci with possible
alleles A1, A2 and B1, B2, respectively.

If the n individuals are sampled at random from the population, then the matrix
N is multinomially distributed with parameters n and a

(
1
2k(k + 1) × 1

2 l(l + 1)
)

probability matrix g, which contains the cell relative frequencies of the table in the
population. If we do not make assumptions on the structure of g, then its maximum
likelihood estimator is the matrix N/n of relative frequencies in the sample. We
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consider three ways of restricting the matrix g. Write gijuv for the relative frequency
of cell {Ai, Aj} × {Bu, Bv}.

Under combined Hardy-Weinberg and linkage equilibrium (HW+LE) , the pop-
ulation frequencies g can be expressed in the marginal probabilities (pi) and (qu)
of the alleles Ai and Bu at the two loci, through the formulas, for every i 6= j and
u 6= v,

(9.2)

giiuu = p2
i q

2
u,

giiuv = p2
i 2quqv,

gijuu = 2pipjq
2
u,

gijuv = 2pipj2quqv.

The factors 2 arise because the genotypes in the margins of Table 9.1 (and its
generalization to loci with more than two alleles) are unordered. The marginal
frequencies pi and qu constitute (k− 1) + (l− 1) free parameters, and have as their
maximum likelihood estimates the marginal frequencies of the alleles in the sample.

An assumption of random mating (RM) is often considered reasonable, and
implies that a genotype is constituted of two randomly chosen haplotypes from the
population. If hiu is the frequency of the haplotype AiBu in the population, then
this assumption implies that, for every i 6= j and u 6= v,

(9.3)

giiuu = h2
iu,

giiuv = 2hiuhiv,

gijuu = 2hiuhju,

gijuv = 2hiuhjv + 2hivhju.

The sum in the last line arises, because both (unordered) pairs of haplotypes

(9.4)
{(

Ai
Bu

)

,

(
Aj
Bv

)}

, and
{ (

Ai
Bv

)

,

(
Aj
Bu

)}

give rise to the (unordered) genotypes {Ai, Aj} and {Bu, Bv}. This model is
parametrized by kl haplotype relative frequencies, which are a set of kl − 1 free
parameters.

Third it is possible to assume that the genotypes of the two loci are independent
(LE) without assuming random mating. This assumption can be described directly
in terms of the observed unordered genotypes at the two loci, and comes down to the
assumption of independence of the two margins in Table 9.1 and its generalization
to higher-dimensional tables (see Section 14.1.5). The parameters of this model are
the marginal relative frequencies of the unordered genotypes at the two loci, of
which there are 1

2k(k + 1) − 1 + 1
2 l(l + 1) − 1.

Thus we have a model of dimension 1
2k(k + 1)1

2 l(l + 1) − 1 leaving the matrix
g free, the model RM parametrized by the kl− 1 haplotype frequencies, the model
HW+LE of dimension k−1+ l−1 parametrized by the marginal allele frequencies,
and the model LE of dimension 1

2k(k + 1) + 1
2 l(l + 1) − 2 parametrized by the
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unordered genotype frequencies at the two loci. The models are nested and the
smaller models can be tested in their containing models by the likelihood ratio or
chisquare statistic.
(i) The validity of the submodel HW+LE can be tested within the full model on

1
2k(k + 1)1

2 l(l+ 1) − 1 − (k − 1) − (l − 1) degrees of freedom.
(ii) The assumption (9.3) of random mating RM can be tested within the full model

on 1
2k(k + 1)1

2 l(l+ 1) − kl degrees of freedom.
(iii) The model HW+LE can be tested within the model RM on kl − 1 − (k − 1 +

l − 1) = (k − 1)(l − 1) degrees of freedom.
(iv) The model LE can be tested within the full model on

(
1
2k(k+1)−1

)(
1
2 l(l+1)−1

)

degrees of freedom.
This is all under the assumption that under the null hypothesis none of the frequen-
cies are zero (to protect the level of the test), and with the understanding that the
test has power mostly against alternatives that deviate from the null in a significant
number of cells (as it “spreads” its sensitivity over all cells of the table). Within
the present context the third and fourth tests are the most interesting ones. They
both test for the absence of association (9.2) of the two loci, where the third test
assumes random mating (and will be preferable if that is a correct assumption) and
the fourth has the benefit of being very straightforward.

9.1.2 Estimating Haplotype Frequencies

The maximum likelihood estimator of the haplotype frequencies (hiu) under the
random mating model maximizes the likelihood

(hiu) 7→
(
n

N

)
∏

i,u

h2Niiuu

iu

∏

i,u6=v
(2hiuhiv)

Niiuv

∏

i6=j,u
(2hiuhju)

Nijuu

×
∏

i6=j,u6=v
(2hiuhjv + 2hivhju)

Nijuv .

Because direct computation of the point of maximum is not trivial, it is helpful
to carry out the maximization using the EM-algorithm. We take the “full data”
equal to the frequencies of the unordered pairs of haplotypes, and the observed
data the matrix N , as exemplified for k = l = 2 in Table 9.1. For individuals who
are homozygous at one of the two loci (or both loci) the full data is observable.
For instance, an individual classified as {Ai, Ai} and {Bu, Bv} clearly possesses the
unordered pair of haplotypes

(9.5)
{(

Ai
Bu

)

,

(
Ai
Bv

)}

.

On the other hand, the haplotypes of individuals that are heterozygous at both loci
cannot be resolved from the data. The EM-algorithm can be understood as splitting
the observed numbers Nijuv of pairs of genotypes {Ai, Aj} and {Bu, Bv} with i 6= j
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and u 6= v recursively into N̂iu,jv|1 and N̂iv,ju|1 pairs of haplotypes as given in (9.4)
by the formulas

(9.6)

N̂iu,jv|1 = Nijuv
hiu|0hjv|0

hiu|0hjv|0 + hiv|0hju|0
,

N̂iv,ju|1 = Nijuv
hiv|0hju|0

hiu|0hjv|0 + hiv|0hju|0
.

Here the hiu|0 are the current iterates of the EM-algorithm. Given these reconstruc-
tions of the haplotypes, the EM-algorithm computes new haplotype estimates hiu|1
from the empirical haplotype frequencies, and proceeds to the next iteration.

9.7 EXERCISE. For two biallelic loci there are 9 combinations of unordered geno-
types, as given in Table 9.1. There are 4 different haplotypes and 10 different combi-
nations of two unordered haplotypes. Show that 8 of the cells of Table 9.1 uniquely
define a pair of unordered haplotype and one cell corresponds to two of such pairs.
Which cell?

To consider this in more detail define Yiu,jv to be the number of individuals
in the sample with unordered pair of haplotypes (9.5). We may think of the vector
(Yiu,jv) as arising from counting the number of pairs of haplotypes after first gener-
ating 2n haplotypes, haplotype AiBu appearing with probability hiu, next forming
the n pairs consisting of the first and second, the third and fourth, and so on. The
likelihood for observing the vector (Yiu,jv) is proportional to

(9.8)
∏

i6=j or u6=v
(2hiuhjv)

Yiu,jv

∏

i,u

(h2
iu)

Yiu,iu ∝
∏

i,u

hNiu

iu ,

where Niu is the total number of haplotypes AiBu in the sample of 2n haplotypes.
It follows from this that the maximum likelihood estimator for (hiu) based on ob-
serving (Yiu,jv) is equal to the maximum likelihood estimator based on (Niu), which
is simply the vector of relative frequencies (Niu/2n).

In fact we observe only the numbers of Nijuv of pairs of unordered genotypes.
The preceding discussion shows that

Nijuv =

{
Yiu,jv if i = j or v = u,
Yiu,jv + Yiv,ju if i 6= j and v 6= u.

The E-step of the EM -algorithm computes the conditional expectation given N =
(Nijuv) of the logarithm of the likelihood (9.8),

E0

( ∑

i6=j or u6=v
Yiu,jv log(2hiuhjv) +

∑

i,u

Yiu,iu log(h2
iu)|N

)

,

where the subscript 0 on the expectation indicates to use the current value of the
haplotype frequencies. By the form of the likelihood the computation comes down to
computing the conditional expectations E0(Yiu,jv |N) for every coordinate (iu, jv).
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For the haplotypes that can be uniquely resolved from the genotypes (i = j or
u = v) this conditional expectation is simply E0(Yiu,jv |N) = Nijuv . For the other
haplotypes (i 6= j and u 6= v) the Nijuv pairs must be partitioned into Yiu,jv+Yiv,ju.
Because the two pairs of haplotypes (9.4) occur in the population with probabilities
2hiuhjv and 2hivhju, respectively, we obtain that E0(Yiu,jv |N) is given by N̂iu,jv|1
as given previously.

After thus replacing the unobserved frequencies Yiu,jv by their conditional ex-
pectations, in theM -step we maximize the likelihood with respect to (hiu). As noted
this leads to the empirical estimates based on the total numbers of haplotypes of
the various types among the 2n haplotypes.

9.1.3 Measures of Linkage Disequilibrium

An obvious quantitative measure of linkage disequilibrium between loci with alleles
Ai and Bj with haplotype frequencies (hij) and marginal frequencies (pi) and (qj)
is

(9.9) Dij = hij − piqj .

These quantities are the difference between the “joint” probability of the alleles at
the two loci (the probabilities of the haplotypes AiBj) and the probabilities if the
loci were independent. The measure is illustrated for two biallelic loci in Table 9.2.
In principle there are four measures Dij for this table, but these can be summarized
by just one of them.

9.10 Lemma. For two biallelic loci D11 = D22 = −D12 = −D21.

Proof. Because h22 = 1 − p1 − q1 + h11 it follows that D22 = 1 − p1 − q1 +
h11 − (1 − p1)(1 − q1) = D11. Similarly, because h12 = 1 − h11 − q2 it follows that
D12 = 1 − h11 − (1 − q1) − p1(1 − q1) = −D11. The relationship D12 = D21 follows
by symmetry (exchange 1 and 2 for one of the loci) or by similar reasoning.

B1 B2

A1 h11 h12 p1

A2 h21 h22 p2

q1 q2 1

Table 9.2. Table of haplotype frequencies for two-loci haplotypes, one with with alleles A1 and A2

and the other with alleles B1 and B2.

The range of the numbers Dij is restricted through the marginal allele frequen-
cies. This is shown by the inequalities in the following lemma. Such restrictions seem
undesirable for a measure of dependence. For instance, if one of the alleles Ai or Bj
is rare or very abundant, then Di,j is automatically close to zero, even though the
marginal frequency is not informative on the joint distribution.
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9.11 Lemma. −min
(
piqj , (1 − pi)(1 − qj)

)
≤ Dij ≤ min

(
pi(1 − qj), (1 − pi)qj

)
.

Proof. Consider without loss of generality the alleles A1 and B1. Because we can
lump together the alleles A2, . . . , Ak and B2, . . . , Bl into a single allele, we can
assume also without loss of generality that the loci are biallelic.

The inequalities 0 ≤ h11 ≤ p1 and the definition of D11 immediately imply
that −p1q1 ≤ D11 ≤ p1(1 − q1), which are two of the four inequalities given by the
lemma. From an application of these inequalities to D22 we obtain by symmetry
that −p2q2 ≤ D22 ≤ p2(1 − q2). Because D11 = D22 this gives the remaining two
inequalities of the lemma.

In view of the preceding lemma the numbers

D′
ij =







Dij

piqj ∧ (1 − pi)(1 − qj)
, if Dij ≤ 0,

Dij

pi(1 − qj) ∧ (1 − pi)qj
, if Dij ≥ 0,

are contained in the interval [−1, 1]. Inspection of the proof of the preceding lemma
reveals that the extremes −1 and 1 are attained if a diagonal element in Table 9.2
is zero (D′

ij = −1) or an off-diagonal element is zero (D′
ij = 1).

An alternative standardization of Dij is

(9.12) rij = ∆ij =
Dij

√
pi(1 − pi)qj(1 − qj)

.

This is the correlation coefficient between two indicator variables 1Ai and 1Bj cor-
responding to partitions ∪iAi = ∪jBj of some probability space with P (Ai∩Bj) =
hij . (The probability space can correspond to choosing an haplotype at random and
saying that events Ai and Bj occur if the haplotype is AiBj .)

The classification of a random sample of n haplotypes for two biallelic loci,
as in Table 9.3, divided by n gives a sample version of Table 9.2. The chisquare
statistic for independence in Table 9.3 can be written in the form

2∑

i=1

2∑

j=1

n

(
Nij/n− (Ni·/n)(N.j/n)

)2

(Ni·/n)(N.j/n)
= n

(
N11/n− (N1./n)(N.1/n)

)2

(N1./n)(N2./n)(N.1/n)(N.2/n)
.

The equality is easily derived after noting the fact that the numerators of the four
terms in the double sum are in terms of empirical versions D̂ij of the desequilibrium
measures Dij , which have equal absolute versions, by Lemma 9.10. The right side
is the empirical version of the measure nr2ij , which is thus exhibited to be a testing
statistic for independence. The usefulness of this observation is limited by the fact
that we usually do not completely observe the numbers of haplotypes in Table 9.3.
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B1 B2

A1 N11 N12 N1.

A2 N21 N22 N2.

N.1 N.2 n

Table 9.3. Table of haplotype frequencies for two-loci haplotypes each with two alleles: Nij out of n
haplotypes are AjBj .

9.13 EXERCISE. Show that the inequalities in Lemma 9.11 are sharp. [Hint: as
shown in the proof, in the biallelic case the four inequalities are attained if the
haplotype frequency in the appropriate cell of the four cells in Table 9.2 is zero.]

9.14 EXERCISE. Show that the bounds on Dij given in Lemma 9.11 are tighter
than the bounds that follow from the fact that |∆ij | ≤ 1 (which follows because
∆ij is a correlation coefficient).

9.2 Case-Control Tests

Suppose we measure the genotypes at marker loci for random samples of affected
individuals (cases) and healthy individuals (controls). A case-control test is simply
a two-sample test for the null hypothesis that the markers of cases and controls the
same.

The simplest approach is to consider one marker at a time. Typically we observe
for each individual only the unordered genotypes, without phase information. If the
marker has alleles M1, . . . ,Ml, then the observations can be summarized by vectors
of length l(l + 1)/2 giving the counts of the genotypes {Mi,Mj} in the samples
of cases and controls. Under the random sampling assumption, these vectors are
independent and multinomially distributed with parameters (nA, gA) and (nU , gU ),
respectively, for gA and gU the vectors giving the probabilities that a case or control
has genotype {Mi,Mj}. We perform a test of the null hypothesis that the vectors
gA and gU are equal.

Because many affections are multigenic, it may be fruitful to investigate the
joint (indirect) effects of markers. Then we combine the data in two higher-
dimensional tables, giving a cross classification of the cases and controls on the
various markers. If we observe only unordered genotypes for the individual marker
loci, then we do not observe haplotypes, and base the test on sets of unordered geno-
types. Even for a small set of markers the tables may have many cells, and testing
equality of the probabilities for the tables of cases and controls may be practi-
cally impossible without modelling these probabilities through a lower-dimensional
parameter. Logistic regression (see Section 9.2.3) is often used for this purpose.
Another complication is the very large number of tables that could be formed by
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selecting all subsets of a given number of marker loci. This creates both a practical
computational problem and the theoretical problem of how to correct for multiple
testing. Searching for a suitable set of markers is perhaps best viewed as a problem
of statistical model selection (See Section 9.2.8).

As noted in the introduction of the chapter, linkage disequilibrium between
causal and marker loci is necessary for these approaches to have chance of success.
To gain quantitative insight in this, assume that the disease is caused by the genes
at k loci, and denote the possible haplotypes at these loci byD1, . . . , DR. If we could
observe the haplotypes at the causal loci and directly compare the frequencies of
the genotypes (Dr, Ds) among cases and controls, then we would be comparing two
multinomial vectors with vectors of success probabilities P (Dr,s|A) and P (Dr,s|U),
respectively, for Dr,s the event that an individual has genotype (Dr, Ds), and A
and U the events that an individual is affected (i.e. a case) or unaffected (i.e. a
control). By Bayes’ rule these probability vectors can be expressed in the penetrance
fr,s = P (A|Dr,s) of the disease as

(9.15)

P (Dr,s|A) =
fr,spr,s
P (A)

,

P (Dr,s|U) =
(1 − fr,s)pr,s

P (U)
.

Here pr,s is the relative frequency of genotype (Dr, Ds) in the population, and
P (A) is the prevalence of the disease, which can be expressed in the penetrance and
haplotype frequencies as P (A) =

∑

r

∑

s fr,spr,s. The power to detect the causal
locus depends on the magnitude of the difference of these probabilities.

9.16 EXERCISE. Formula (9.15) suggests that the power of a case-control test de-
pends on the prevalence of the disease. Given that in practice cases and controls are
sampled separately and independently, is this surprising? Explain. [Hint: consider
(9.15) in the special case of full penetrance without phenocopies, i.e. fr,s ∈ {0, 1}
for every (r, s).]

In reality we may base the case-control test on a marker locus that is not
causal for the affection. If we use a marker with possible haplotypes M1, . . . ,Ml,
then the relevant probabilities are not the ones given in the preceding display, but
the probabilities P (Mi,j |A) and P (Mi,j |U), for Mi,j the event that an individual
has marker genotype (Mi,Mj). We interprete the notion of “causal locus” (as usual)
to mean that marker genotype and affection status are conditionally independent
given the causal genotype, i.e. P (Mi,j |Dr,s ∩A) = P (Mi,j |Dr,s). Then the marker
probabilities can be written in the form

(9.17)

P (Mi,j |A) =
∑

r

∑

s

P (Mi,j |Dr,s)P (Dr,s|A) =
∑

r

∑

s

hir,js
pr,s

P (Dr,s|A),

P (Mi,j |U) =
∑

r

∑

s

P (Mi,j |Dr,s)P (Dr,s|U) =
∑

r

∑

s

hir,js
pr,s

P (Dr,s|U).
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Here hir,js is the relative frequency of the genotype (MiDr,MjDs), for MiDr the
haplotype formed by uniting the the marker haplotype Mi with disease haplotype
Dr.

event interpretation probability

A individual is affected P (A)
U individual is unaffected P (U)

Mi,j individual has marker genotype (Mi,Mj) qi,j
Dr,s individual has disease genotype (Dr, Ds) pr,s
Mi individual has paternal marker haplotype Mi qi
Dr individual has paternal disease haplotype Dr pr

Table 9.4. Events.

If the disease and marker loci are not associated, then P (Mi,j |Dr,s) = P (Mi,j)
for all r, s, i, j, and both probabilities can be seen to reduce to the unconditional
probability P (Mi,j). In the other case, we may hope that a difference between the
probability vectors (9.15) is translated into a difference between the corresponding
marker probabilities (9.17). That the latter are mixtures of the first suggests that
the difference is attenuated by going from the causal probabilities (9.15) to the
marker probabilities (9.17). The hope is that this attenuation is small if the marker
and causal loci are close, and increases as the marker loci move away from the causal
loci, so that the null hypothesis of no difference between case and control marker
probabilities is rejected if, and only if, a marker locus is close to a causal locus.

The calculation reveals that the marker probabilities will be different as soon as
the conditional probabilities P (Mi,j |Dr,s) possess a certain pattern. The location of
the marker loci relative to the causal loci is important for this pattern, but so may be
other variables. Spurious association between marker and causal loci, for instance
due to population structure as discussed in Section 9.1, makes the probabilities
P (Mi,j |Dr,s) differ from the unconditional probabilities P (Mi,j), and may create a
similar pattern. In that case the null hypothesis of no difference between the marker
probabilities (9.17) may be correctly rejected without the marker being close to the
causal loci. This is an important drawback of association studies: proper control of
confounding variables may be necessary.

If the marker loci under investigation happen to be associated to only a sub-
set of causal loci, in the sense that the probabilities P (Mi,j |Dr,s) are equal to
P (Mi,j | D̄r̄,s̄) for D̄r̄,s̄ referring to the pair of haplotypes at a subset of causal loci
(i.e. a union of events Dr,s over the subset of (r, s) with r̄ ⊂ r and s̄ ⊂ s fixed),
then (9.17) is valid with Dr,s replaced by D̄r̄,s̄. If we investigate a single marker
locus, then it seems not impossible that only a small set of disease loci is associated.
Note that we are referring to association, i.e. dependence in the population, and
not to linkage. For instance, it cannot be a-priori excluded that a marker locus on
one chromosome is associated to a disease locus on another chromosome.

Summing over j in (9.17) yields the probabilities P (Mi|A) an P (Mi|U) of a
diseased or healthy person having paternal marker haplotype Mi. This is mostly of
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interest if the population is in Hardy-Weinberg equilibrium (at the haplotype level),
so that the distribution of its genotypes can be expressed in the haplotype relative
frequencies. Under the assumption of Hardy-Weinberg,

(9.18)

P (Mi|A) =
∑

r

∑

s

P (Mi|Dr,s)P (Dr,s|A) =
∑

r

hir
pr
P (Dr|A),

P (Mi|U) =
∑

r

∑

s

P (Mi|Dr,s)P (Dr,s|U) =
∑

r

hir
pr
P (Dr|U).

9.2.1 Chisquare Tests

The family of chisquare tests is a standard choice for testing hypotheses on multi-
nomial vectors. In the present situation the cases and controls generate two inde-
pendent multinomial tables, and the null hypothesis is that these tables have equal
cell probabilities. The tables and the chisquare test can be set up in various ways.

For a test based on a single marker we form the multinomials tables as the
counts of unordered marker genotypes {Mi,Mj}. The probability vectors of these
tables could be left completely unspecified, and we could perform the standard
chisquare test for comparing two multinomial tables, discussed in Section 14.1.6.
For a single marker with l alleles, this yields a chisquare test on l(l + 1)/2 − 1
degrees of freedom. An advantage of this approach is that we do not need to make
assumptions, such as Hardy-Weinberg equilibrium. A disadvantage may be that the
number of cells of the multinomial table may be large, and the test may have poor
power and/or the null distribution of the test statistic may be badly approximated
by the chisquare distribution. A well known rule of thumb to protect the level is that
under the null hypothesis the expected frequency of each cell in the table must be at
least five. However, this rule of thumb does not save the power, the problem being
that the chisquare test distributes its power over all possible deviations of the cell
probabilities from the null hypothesis. This is a reasonable strategy if the deviation
from the null hypothesis consists indeed of small deviations in many cells, but bigger
deviations in only a few cells may go undetected. For a multiallelic marker locus it
is not improbable that only a single allelic value is linked to the disease.

An alternative is to model the cell frequencies through a smaller number of
parameters. One possibility is to use the forms for P (Mi,j |A) and P (Mi,j |U) found
in (9.15)-(9.17), but since the penetrance parameters fr,s and/or genotype frequen-
cies are typically not known, this will not reduce the dimension. If the population is
thought to be in Hardy-Weinberg or linkage equilibrium, at least under the null hy-
pothesis, then it makes sense to restrict the cell probabilities to observe the implied
relations. Structural models in terms of main and interaction effects can also be
used within the chisquare context, but are usually implemented within the context
of logistic regression, discussed in Section 9.2.3.

If the population is in Hardy-Weinberg equilibrium at the marker locus, at
least under the null hypothesis, then each individual case or control contributes two
independent marker alleles. Then the total counts of alleles in cases and controls are
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multinomially distributed with sample sizes twice the numbers of cases and controls.
Performing a chisquare test on these haplotype counts (and not the genotypes)
reduces dimension, and gives a more powerful test if the assumption of Hardy-
Weinberg equilibrium is valid. On the other hand, in disequilibrium the total allele
counts would not be multinomial, and, failing a specific alternative model for Hardy-
Weinberg equilibrium, it is better to use the genotype counts.

For tests based on multiple markers we can follow the same strategies. The
simplest approach is to form a multinomial table with as cells the possible combina-
tions of unordered genotypes across the loci. We might leave the corresponding cell
probabilities free, or could restrict them to satisfy various equilibrium assumptions.

Power. The (local) power of the chisquare test for comparing two indepen-
dent multinomial tables can be expressed in a noncentrality parameter (see Sec-
tion 14.1.6). If the multinomial tables have mA and mU replicates and probability
vectors qA and qU , then the square noncentrality parameter for testing H0: q

A = qU

is equal to

(9.19)
mAmU

mA +mU

∥
∥
∥
qA − qU√

q

∥
∥
∥

2

,

where q is the common value of the probabilities qA and qU under the null hy-
pothesis. (This noncentrality parameter refers to the “local” power in the sense of
power for alternatives close to the null hypothesis of no difference between cases
and controls, i.e. qA ≈ qU . It has nothing to do with proximity on the genome.)

In the present situation, if the test were based on the ordered genotypes, the
vectors qA and qU would be taken equal to the vectors with coordinates

qAi,j = P (Mi,j |A), qUi,j = P (Mi,j |U).

The null probability q would be the vector of marker genotype relative frequen-
cies, with coordinates qi,j = P (Mi,j). In the more realistic situation of unobserved
phases these probabilities would be replaced by the corresponding probabilities of
unordered marker genotypes. Alternatively, under Hardy-Weinberg equilibrium a
single marker test would be based on the total allele counts, and the relevant prob-
abilities are the vectors with coordinates

qAi = P (Mi|A), qUi = P (Mi|U).

In this case the null probabilities are the marker haplotype frequencies qi, and the
sample sizes mA and mU would be twice the numbers of cases and controls. We
abuse notation by using the same symbol for genotypic and haplotypic relative
frequencies. The context or the subscript (double or single) will make clear which
of the two is involved.

In (9.17) and (9.18) we have seen that the probability vectors qA and qU can
differ only if the marker loci are associated to a disease locus. It can be expected
that the difference is larger if the association is stronger. It is instructive to make
this precise by comparing the power of the test based on the markers to the power
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that would have been obtained had the test been based on the causal loci. In the
latter case, for the test based on genotypes, the relevant probability vectors would
be pA and pU with coordinates

pAr,s = P (Dr,s|A), pUr,s = P (Dr,s|U).

For the test based on haplotypes the relevant probability vectors pA and pU would
be given by (again with abuse of notation)

pAr = P (Dr|A), pUr = P (Dr|U).

Equations (9.17) and (9.18) give the relationships between the marker probabilities
and causal probabilities. They can be written in the matrix forms

(9.20)
(qAi,j − qUi,j√

q
i,j

)

=

(
hir,js√
qi,j

√
pr,s

)(pAr,s − pUr,s√
pr,s

)

,

for the test based on genotypes, and for the haplotypic test

(9.21)
(qAi − qUi√

q
i

)

=

(
hir√
qi
√
pr

)(pAr − pUr√
p
r

)

.

The square noncentrality parameters of the tests based on the marker and causal
loci are proportional to the square norms of the vectors on the left and the far right.
As shown in (9.19) the proportional factors are n2/(n+ n) = n/2 and (2n)2/(2n+
2n) = n if the numbers of cases and controls are both equal to n.] This shows that
the asymptotic relative efficiency of the tests is given by the square noncentrality
parameter. As expected using marker loci is always less efficient.

9.22 Lemma. The vectors (qA− qU )/
√
q and (pA−pU )/

√
p in (9.20) and in (9.21)

satisfy
∥
∥(qA − qU )/

√
q
∥
∥

2 ≤
∥
∥(pA − pU )/

√
p
∥
∥

2
.

Proof. We prove the lemma for the haplotypic case (9.21). The proof for the
genotype-based comparison is similar. For notational convenience let Ω = ∪iMi =
∪rDr be two partitions of a given probability space such that P (Mi ∩ Dr) = hir
for every (i, r), and define a random vector U from the first partition by U =
(
(1M1 − p1)/

√
p1, . . . , (1Mk

− pk)/
√
pk

)T
and similarly define a random vector V

from the second partition.
Because (pA − pU )T 1 = 0, the matrix

(
hir/(

√
qi
√
pr)

)
in (9.21) can be

replaced by the matrix
(
(hir − qipr)/(

√
qi
√
pr)

)
= EUV T . We wish to show

that this matrix has norm smaller than 1. By the Cauchy-Schwarz inequal-
ity (xTEUV T y)2 =

(
E(xTU)(V T y)

)
2 ≤ E(xTU)2E(yTV )2. Now E(xTU)2 =

] The relative efficiency of two family of tests for testing the same simple null hypothesis against
the same simple alternative hypothesis is defined as the quotient n/n′ of the numbers of observations
needed with the two tests to achieve a given level α and power 1−β. In general this depends on the two
hypotheses and on the pair (α, β), but often it does not.
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xTEUUTx, where EUUT = I−√
q
√
qT is a projection matrix and hence E(xTU)2 ≤

‖x‖2. The mean E(yTV )2 satisfies the analogous inequality. We conclude that
xTEUV T y ≤ ‖x‖‖y‖, and hence the norm of the matrix EUV T is bounded by
1.

9.23 Example (Biallelic marker and disease locus). The relative efficiency of
comparing marker and causal loci takes a simple form in the case both loci are
biallelic and the test used is based on the allele counts (under the assumption
of Hardy-Weinberg equilibrium). In this situation the multinomial vectors have
only two classes, and the tests compare two binomial probabilities. As shown in
Example 14.12 the noncentrality parameter (9.19) can be written as 2nA2nU/(2nA+
2nU )(qA1 − qU1 )2/(q1q2). Equation (9.21) shows that

qA1 − qU1√
q1

=
h11√
q1
√
p1

pA1 − pU1√
p1

+
h12√
q1
√
p2

pA2 − pU2√
p2

=
pA1 − pU1√

q1

(h11

p1
− h12

p2

)

.

The asymptotic relative efficiency of the tests on comparing the total count of
marker alleles versus the test based on comparing the causal alleles is therefore
given by the quotient

(qA1 − qU1 )2/(q1q2)

(pA1 − pU1 )2/(p1p2)
=

(h11

p1
− h12

p2

)2 p1p2

q1q2
= r211,

where r11 is the measure of linkage disequilibrium between disease and marker locus
given in (9.12).

Being a correlation, the relative efficiency is smaller than 1: using the marker
instead of the causal locus requires 1/r211 as many observations to achieve the same
power. This calculation appears to be the basis of the believe that in genome-wide
association studies it is sufficient to include enough markers so that any locus has
correlation higher than some cut-off (e.g. 0.8) with one of the marker loci.

Warning. The test based on allele count assumes Hardy-Weinberg equilibrium.
Is this a reasonable assumption also under the alternative that there is difference be-
tween cases and controls? Or should one correct the power for dependence? Maybe
not the local power under the assumption of Hardy-Weinberg under the null hy-
pothesis?

9.24 Example (Additive penetrance).

* 9.2.2 Fisher’s Exact Test

The chisquare tests for multinomial tables derive their name from the approximation
of the distribution of the test statistic under the null hypothesis, valid for large
sample sizes. Among the tests that are not based on approximations, Fisher’s exact
test for the 2 × 2-table (comparing two binomial distributions) is the best known.
The extra effort to implement it may be worth while for not too large sample sizes.
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* 9.2.3 Logistic Regression

The logistic regression model gives the flexibility of modelling the effects of several
loci together in various ways, and is particularly attractive if the number of alleles
or loci is large. It also permits incorporation of additional background variables into
the analysis, for instance covariates such as sex or age, but also variables meant to
control for population structure or other confounding factors.

Although our intended application is the case-control setting, where the num-
bers of cases and controls are fixed in advance, the logistic regression is easiest to
describe in the set-up of a random sample from the full population. The data on
one individual then consists of an indicator Y for case-control status (Y = 1 for a
case and Y = 0 for a control), and information X on the genotype of the individual
and possible covariates. If X is coded as a vector with values in Rk, then the logistic
regression model postulates that, for some vector β ∈ Rk,

P (Y = 1|X) =
1

1 + e−βTX
.

An equivalent formulation of this model is that the log odds ratio satisfies the linear
relationship

log
P (Y = 1|X)

P (Y = 0|X)
= βTX.

We investigate the importance of a coordinate Xj of X by testing whether the jth
coordinate βj of β is zero.

Both the likelihood ratio and the score test are standard for this purpose, with
the second being preferable if computational simplicity counts, as in a genome-wide
analysis, where the test is applied many times, for various (sets of) marker loci. For
Ψ(x) = 1/(1 + e−x) the logistic function, the log likelihood for one individual can
be written

Y log Ψ(βTX) + (1 − Y ) log
(
1 − Ψ(βTX)

)
= Y βTX − log(1 + eβ

TX).

Noting that Ψ′ = Ψ(1 − Ψ), we can compute the score-function and Fisher infor-
mation matrix as

˙̀
β(Y |X) =

(
Y − Ψ(βTX)

)
X,

Iβ = −Eβ ῭
β(Y |X) = EβΨ

′(βTX)XXT .

We assume that the Fisher information matrix is nonsingular. In the case-control
setting the expectation must be understood relative to a vector X equal to the
independent variable of an individual chosen randomly from the collection of cases
and controls weighted by the fractions cases and controls in the total sample.

If β̂0 is the maximum likelihood estimator of β under the null hypothesis and
p̂i,0 = Ψ(β̂T0 X

i), then the score test statistic takes the form

(9.25)

n∑

i=1

(Y i − p̂i,0)(X
i)T

( n∑

i=1

p̂i,0(1 − p̂i,0)X
i(X i)T

)−1 n∑

i=1

(X i)T (Y i − p̂i,0).
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Under the conditions that the null hypothesis is correctly specified and con-
tains the true parameter as a relative inner point this statistic possesses approx-
imately a chisquare distribution, with degrees of freedom equal to k minus the
(local) dimension of the null hypothesis. If the observations were sampled in-
dependently from a population, then this follows from Theorem 14.33. A proof
for the case-control setting can follow the same lines, the essence being that the
score statistic n−1/2

∑n
i=1

˙̀
β(Y

i|X i) is asymptotically Gaussian and the average
n−1

∑n
i=1Ψ

′(βTX)XXT tends to the Fisher information matrix.
The sampling of the individuals according to the case-control design is the

preferred choice in practice, as it will increase the power of the test. This is true
in particular if the number of cases in the population is small, so that a random
sample from the population would typically consist mostly of controls. However,
as indicated in the analysis the difference between the two designs can be ignored.
A closer inspection (see Section 14.5) reveals that the prevalence of the affection
in the population is, of course, not estimable from the case-control design, but the
coefficients βj of nontrivial covariatesXj are identifiable, and the (profile) likelihood
functions for the two models are proportional for these coefficients.

9.26 Example (Full null hypothesis). Suppose that the independent vector X =
(1, X1, . . . , Xk) contains an intercept as its first coordinate, and the null hypothesis
is that the coefficients β1, . . . , βk of the other coordinatesX1, . . . , Xk are zero. Under
the null hypothesis the probability P (Y = 1|X) = Ψ(β0) does not depend onX , and
is a free parameter. Therefore, the maximum likelihood estimator of β = (β0, . . . , βk)

under the null hypothesis is β̂0 = (β̂00, 0, . . . , 0) for Ψ(β̂00) the maximum likelihood

estimator of a binomial proportion: Ψ(β̂00) = Ȳ , for Ȳ the the proportion of cases,
and hence β̄00 = log

(
Ȳ /(1 − Ȳ )

)
.

The score test statistic takes the form

1

Ȳ (1 − Ȳ )
(Y − Ȳ 1)TX(XTX)−1X(Y − Ȳ 1),

for Y the vector with ith coordinate the response Y of the i individual, and X

the matrix with ith row the regression vector (1, X1, . . . , Xk) of the ith individual.
Under the null hypothesis this possesses approximately a chisquare distribution with
k degrees of freedom provided the “design matrix” n−1XTX tends to a nonsingular
matrix and the sequence n−1/2XTY is asymptotically normal.

y/score s1 s2 . . . sk

0 N01 N02 . . . N0k N0·
1 N11 N12 . . . N1k N1·

N·1 N·2 . . . N·k n

Table 9.5. Amitage test for the (2 × k) table. The expected cell frequencies are assumed to satisfy
the linear model EN1j/EN·j = α+ βsj for the scores given in the first column.



9.2: Case-Control Tests 165

9.27 Example (Armitage’s trend test). The Armitage trend test was originally
proposed to investigate a linear trend in the cell frequencies in a (2 × k)-table as
illustrated in Table 9.5. The table could refer to a multinomial vector of order
n =

∑

i,j Nij , to k binomial variables (when the column totals N·j are fixed), or
two multinomial vectors of length k (when the row totals N0· and N1· are fixed, as
in the present case-control setting). The test investigates equality in distribution of
the k column vectors in the situation that it is known that the relative frequencies
in the second row satisfy the model EN1j/EN·j = α + βsj , for known “column
scores” s1, . . . , sk. The test is often applied in the situation that it is only known
that the frequencies are ordered in size, with the scores set equal to 1, . . . , k. The
test statistic is based on the slope coefficient in the linear regression model with
n observations (X i, Y i), one for each individual in the table, with X i equal to the
score of the column of the individual and Y i equal to 0 or 1 corresponding to the
row.

The test can also be understood as the score test in the logistic regression model
with interecept and a one-dimensional independent variable X taking the scores as
its values:

P (Y = 1|X = sj) =
1

1 + e−α−βsj
.

The score test forH0:β = 0 is given in Example 9.26, where we must take the matrix
X equal to the (n× 2)-matrix with ith row the vector (1, X i), for i = 1, . . . , n. The
test statistic can be computed to be

1

Ȳ (1 − Ȳ )

(∑n
i=1(Y

i − Ȳ )X i
)2

∑n
i=1(X

i − X̄)2
=

n2

N0·N1·

(∑k
j=1N1j(sj − s̄)

)2

∑k
j=1N·j(sj − s̄)2

,

where s̄ = x̄ =
∑k
j=1(N·j/n)sj is a weighted mean of the scores. Because the

hypothesis is one-dimensional we may also take the scaled score itself as the test-
statistic, rather than its square length. This is the signed root of the preceding
display.

To apply the logistic model for association testing, the genotypic information on
an individual must be coded in a numerical vector X . There are several possibilities
to set this up:
(i) Genotypic marker mapping. The observed marker data, typically unordered

genotypes at one or more marker loci, are mapped in the regression variables
in a simple, direct manner.

(ii) Haplotypic marker mapping. The regression vector X is defined as a function
of the individual’s two haplotypes spanning several marker loci.

(iii) Causal mapping. The regression vector is defined as a function of the individ-
ual’s two haplotypes spanning the (putative) causal loci.

The third possibility is attractive from a modelling perspective, but it also creates
the greatest technical difficulties, as it requires a model connecting marker loci to
causal loci, the genotypes at the latter being unobserved. If combined with simple
ad-hoc models, the resulting procedures may be identical to the tests resulting from
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possibilities (i) or (ii). If the phenotype depends on the set of alleles at each of
the relevant loci, rather than on their configuration in haplotypes, then strategy
(ii) seems unnecessarily complicated. This assumption of absence of “cis effects” is
commonly made, and seems biologically plausible for distant loci, but not for e.g.
SNPs within a single gene.

Strategies (ii)-(iii) lead to logistic regression models in which the independent
variable X is not observed. The score test can be adapted to this situation by
conditioning the score function on the observed data, before forming the quadratic
form (9.25). In fact, the score function for the model in which the observed data is
a function (O, Y ) of the “full data” (X,Y ) is

Eθ
(
˙̀
β(Y |X)|O, Y

)
= Eθ

(
(Y − Ψ(βTX)

)
X |O, Y

)
.

This is computable from the conditional distribution of X given O. The unknown
parameters θ in this distribution (for instance haplotype frequencies) are typically
estimated separately from the testing procedure. Next the maximum likelihood
estimator of β under the null hypothesis is computed either by setting the sum over
the data of null scores equal to zero, or by the EM-algorithm??

9.28 Example (Full null hypothesis, continued). In Example 9.26 the maximum
likelihood estimator of Ψ(βTX) under the null hypothesis is Ȳ , and does not depend
on X . It is still the maximum likelihood estimator if X is only partially observed,
and therefore the conditioned score function becomes (Y − Ȳ )E(X |O).

9.29 Example (Single marker locus). Unordered genotypic information on a
single biallelic marker locus with alleles A1 and A2 can assume three different values
A1A1, A1A2, A2A2. The usual numerical coding X for these values is the number
of alleles A2 at the locus: X assumes the values 0, 1, 2 for the three genotypes. The
logistic regression model says that

P (Y = 1|X) =
1

1 + e−β0−β1X
.

The parameter β1 models the effect of the locus on the trait, while β0 corresponds to
the prevalence of the disease in the population. The score test for testing H0:β1 = 0
is equivalent to the Armitage trend test in the (2× 3)-table with the three columns
equal to the numbers of controls and cases with 0, 1 and 2 alleles A2, coded by the
score sj = j for j = 0, 1, 2.

The coding of the three genotypes as 0, 1, 2 corresponds to an additive model,
in which each allele A increases the log odds by the constant value β1. This is not
unnatural, but it does imply a choice. For instance, dominant and recessive models
would use the codings 0, 1, 1 and 0, 0, 1, respectively. Because X enters the model
through a linear function, two different codings will produces different outcomes
unless they are linear transformations of each other. For testing H0:β1 = 0 this
does not concern the level, but may influence the power of the test.

If there is no a-priori reason to assume a particular genetic model, then it may
be better to use a an extra parameter instead. One possibility would be to denote
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the number of alleles A2 by X1 and to define a second regressor X2 to be 1 for the
genotype A2A2 and 0 otherwise. The logistic regression model becomes

P (Y = 1|X) =
1

1 + e−β0−β1X1−β2X2
.

The extra parameter β2 can be interpreted as modelling a dominance effect. How-
ever, because there are three different genotypes and three parameters, the model
is equivalent to permitting a different probability P (Y = 1|X = x) for each of
three genotypes x, written in the forms Ψ(β0), Ψ(β0 + β1) and Ψ(β0 + 2β1 + β2),
respectively.

9.30 Example (Two biallelic loci; genotypic modelling). Unordered genotypic
information on a biallelic marker locus, with alleles A1 and A2 on the first locus and
alleles B1 and B2 on the second, can assume nine different values, as illustrated in
Table 9.1. We could define X1 and X2 to be the numbers of alleles A2 at the first
and B2 at the second locus, and consider the logistic regression model

P (Y = 1|X1, X2) =
1

1 + e−β0−β1X1−β2X2−β3X1X2
.

The parameters β1 and β2 are the main effects of the two loci, while β2 is an
interaction effect or in genetic terms an epistasis effect.

Even more so than in the preceding example the numerical coding of the three
genotypes constitutes a particular modelling choice. Not only are the main effects
additive, but also the interaction effect is modelled by X1X2, which can assume the
values 0, 1, 2 and 4. Even linear transformations of the coding values 0, 1, 2 for the
variables X1 and X2 would change the model.

We may set the epistasis parameter a-priori equal to zero, or enlarge the model
with extra parameters, for instance for modelling dominance effects. The given
model has three parameters, while a completely saturated model has nine free pa-
rameters.

9.31 Example (Two loci; haplotypic modelling). For two marker loci with k
and l alleles, respectively, there are kl possible haplotypes. One possible coding is
to define X1, . . . , Xkl as the number of haplotypes (0, 1, or 2) of each type carried by
an individual. Because

∑

j Xj = 2, we then fit a logistic regression model without
intercept.

Because typically the phase is not observed, the variables X1, . . . , Xkl may
not be observed. In fact, the phase can be resolved, except in the case that the
genotypes at both loci are heterozygous (cf. Section 9.1.2). In the latter case we
replace X1, . . . , Xkl by their conditional expectations given the observed genotypes.
This comes down to resolving the pair of heterozygous genotypes {Ai, Aj}, {Bu, Bv}
into the pair of haplotypes (9.4) by the formulas (9.6).

For two biallelic loci the model may be compared to the model in Example 9.30,
which is defined directly in terms of the observed genotypes. With the interaction
term included the latter model has four parameters, just as the present model (with
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k = l = 2). The parameterizations are displayed in Table 9.6. In the biallelic case
there are four different haplotypes, and ten different unordered pairs of haplotypes;
three different unordered genotypes per locus and nine different combinations of un-
ordered genotypes. The models are displayed relative to the latter combinations laid
out in a (3× 3)-table, where the central cell corresponds to two different unordered
pairs of haplotypes.

{B1, B1} {B1, B2} {B2, B2}
{A1, A1} β0 β0 + β2 β0 + 2β2

{A1, A2} β0 + β1 β0 + β1 + β2 + β3 β0 + β1 + 2β2 + 2β3

{A2, A2} β0 + 2β1 β0 + 2β1 + β2 + 2β3 β0 + 2β1 + 2β2 + 4β3

{A1, A1} 2β1 β1 + β2 2β2

{A1, A2} β1 + β3 β1 + β4 or β2 + β3 β2 + β4

{A2, A2} 2β3 β3 + β4 2β4

Table 9.6. Comparison of genotypic (top) and haplotypic (bottom) mapping for two biallelic loci.

9.2.4 Whole Genome Analysis

Testing for association of many marker loci, or of many groups of marker loci,
requires a correction for multiple testing. Unlike in linkage analysis, there do not
appear to be reliable approximations to the joint distributions of test statistics.
While for linkage tests the joint distribution can be derived from stochastic models
for meiosis, in association testing the distribution the distribution depends on the
distribution of haplotypes in the population under study. Much data would be
needed to estimate these highly-dimensional objects. HapMap Project??

For this reason multiple testing corrections are often based on general purpose
methods, such as the Bonferroni correction or randomization.

9.2.5 Population Structure and Confounding

In Lemma 9.1 it was seen that two loci may well be associated in a full population,
even though they are in linkage equilibrium in two subpopulations. Spurious corre-
lation of a marker with a causal locus will generally lead to the mistaken belief that
the genome near the marker is involved in causing the affection.

Besides population structure there may be other factors, generally referred as
confounders, that cause spurious correlations. It is important to try and correct an
association study for such confounding variables.

If the confounding variables were known and low-dimensional, then the most
obvious method would be to perform the analysis separately for every “population”
defined by a common value of the confounders. Separate p-values for the subpopula-
tions could be combined in a single one by standard methods. In reality confounders
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may assume many values and/or may not be observed directly. Then corrections
for confounding usually take some form of regression or mixture modelling.

In genomewide association studies an attractive possibility is to use the SNP-
values themselves to infer hidden population structure. The idea is that subpopu-
lations will be characterized by certain patterns of genomic values, determined by
different allele and haplotype frequencies.

9.2.6 Genomic Control

It seems reasonable to expect that most markers in a genome-wide study are not
linked to a causal locus. In that case, and in the absence of confounding, most of the
test statistics for testing the null hypothesis that a given, single marker is not asso-
ciated to the disease can be considered as realizations of a variable drawn from the
null distribution. A deviation of the empirical distribution of all test statistics from
this null distribution may be taken as a sign of spurious association by confouding.

We may hope that the values of the test statistics attached to the markers that
are linked to causal loci still stand out from the those of the spuriously associated
markers. Then it would work to raise the critical value of the test to eliminate the
spurious markers, or, equivalently, to reduce the value of the test statistics. Genomic
control is the procedure to divide every statistic by the quotient of the median of
all test statistics and the median of the presumed null distribution.

9.2.7 Principal Components

If a population has substructure that is visible from the marker values themselves,
then the principal components of the distribution of the SNPs may reveal them. It
has been suggested to substract the projection on the span of the first few principal
components from the genomic values before performing a case-control test.

Specifically, let G = (Gij) be a matrix of measurements on a set of biallelic
markers, coded numerically, for instance by 0, 1 and 2 for the three possible geno-
types at a single biallelic locus. The matrix has a row for every individual in the case
and control groups and a column for each SNP. We view the columns as a sample
from a distribution in Rn, for n the size of the control group, and we define a1, . . . , al
as the eigenvectors of the empirical covariance matrix of this sample corresponding
to the l largest eigenvalues, scaled to have norm 1. The columns of G, as well as
the 0 − 1 vector y giving the case-control status of the individual can be projected
on the orthocomplement of the linear space spanned by these eigenvectors, giving
a corrected matrix G̃ and phenotypic vector ỹ. Next we regress ỹ on each column
of G̃ and test for significance of the regression coefficient, for instance simply based
on the correlation coefficient.

9.2.8 Model Selection



10
Combined Linkage
and Association Analysis

In this chapter we consider some methods for gene-finding that are often classified
as association methods, but do carry an element of linkage, because they make use
of related individuals. The advantage of these methods over straight association is
that give automatic control of confounding. The disadvantage is that they require
genotyping of more individuals.

10.1 Transmission Disequilibrium Test

Suppose we sample n random individuals from the population of affected individu-
als, and investigate the genotypes of these individuals and their parents at a given
marker locus. If the marker locus has two possible alleles, then each of the 2n par-
ents can be scored in a two-way classification by type of allele transmitted to their
offspring times allele nontransmitted. More precisely, each parent has an unordered
genotype {M1,M1}, {M1,M2} or {M2,M2} at the marker location, and is counted
in one of the four cells in the (2× 2)-table in Table 10.1. For a homozygous parent
transmitted and nontransmitted alleles are identical; these parents are counted in
cells (1, 1) or (2, 2). A heterozygous parent with genotype {M1,M2} is counted in
cell (2, 1) if he or she transmits allele M2 and is counted in cell (1, 2) if he or she
transmits allele M1. This gives a total count of A + B + C + D = 2n parents in
Table 10.1.

Warning. If father, mother and child are all heterozygous {M1,M2}, then the
appropriate cell cannot be resolved for the parents individually (unless parental
origins can be established). However, such a trio does contribute a count of one
in both cell (1, 2) and cell (2, 1). Hence the pair of a father and mother can be
unequivocally assigned. Table 10.2 gives examples of genotypes of trios of parents
and child together with their scoring.

The total counts in the four cells of the table clearly depend both on the
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nontransmitted
M1 M2

transmitted M1 A C
M2 B D

Table 10.1. Transmission Disequilibrium Test. The number C is the number of parents with marker
genotype {M1,M2} who segregate marker allele M1 to their child.

father mother child A B C D
{M1,M1} {M1,M1} {M1,M1} 2 0 0 0
{M1,M1} {M1,M2} {M1,M1} 1 0 1 0
{M1,M1} {M1,M2} {M1,M2} 1 1 0 0
{M1,M2} {M1,M2} {M1,M1} 0 0 2 0
{M1,M2} {M1,M2} {M1,M2} 0 1 1 0

Table 10.2. Examples of scoring parents for the TDT table. A trio of the given type contributes the
counts listed in the columns A,B,C,D in the corresponding cell of the TDT table.

frequencies of the alleles M1 and M2 in the population and the relationship between
the affection and the marker locus. However, if the affection has nothing to do
with the marker locus, then we would expect that heterozygous parents {M1,M2}
transmit M1- and M2-alleles with equal probabilities to their (affected) children. In
other words, we expect that the number of entries in the off-diagonal cells B and C
are of comparable magnitude.

The transmission disequilibrium test (TDT) formalizes this idea by rejecting
the null hypothesis of no linkage if B is large relative to B + C. The test may be
remembered as a test for the null hypothesis that given the total number B + C
of heterozygous parents the number of heterozygous parents who transmit allele
M2 is binomially distributed with parameters B + C and 1

2 . Under this binomial
assumption the conditional mean and variance of B given B+C are (B+C)1

2 and
(B + C)1

2 (1 − 1
2 ), respectively. The TDT rejects the null hypothesis if

B − (B + C)/2
√

(B + C)1
4

=
B − C√
B + C

is small or large relative to the standard normal distribution. Equivalently, if the
square of this expression exceeds the appropriate upper quantile of the chisquare
distribution with one degree of freedom.

The binomial assumption is actually not defendable, as a detailed look at the
distribution of the (2×2)-table will reveal. However, we shall show that the asymp-
totic distribution as n → ∞ of the test statistic is standard normal, identical to
what it would be under the binomial assumption. We start by computing the prob-
abilities that a given parent of an affected child gives a contribution to the cells in
Table 10.1. Assume first that the affection is caused by a single, biallelic locus, and
let D be the linkage disequilibrium between disease and marker loci, as defined in
(9.9) and Lemma 9.10.
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10.1 Lemma. Assume that the affection is caused by a single, biallelic locus and
the marker locus is biallelic with alleles M1 and M2. If the population is in Hardy-
Weinberg equilibrium at the haplotype level, then the probability that a parent of
an affected child has unordered genotype {Mi,Mj} and transmits marker allele Mi

to the child is given in cell (i, j) of Table 10.3 (i, j ∈ {1, 2}).

nontransmitted
M1 M2

transmitted M1 q21 +Bq1D q1q2 +B(q2 − θ)D
M2 q1q2 +B(θ − q1)D q22 −Bq2D

Table 10.3. Probability that an arbitrary parent contributes a count to the TDT table. The parameters
q1 and p1 are the population frequencies of the marker allele M1 and the disease allele D1, θ is the
recombination fraction between marker and disease locus, and B = P (A)−1[p1(f1,1 − f2,1) + p2(f2,1 −
f2,2)] for fr,s the penetrances of disease genotype (Dr , Ds) and P (A) the prevalence of the disease.

In order to find a gene that causes the affection we would like to test the null
hypothesis H0: θ = 1

2 that the marker locus is unlinked to the disease locus. Under
this hypothesis the off-diagonal probabilities in Table 10.3 reduce to the same value

q1q2 +B(1
2 − q1)D = q1q2 +B(q2 − 1

2 )D.

Thus the hypothesis of no linkage implies that the (2×2)-table is symmetric, and it
makes sense to perform a test for equality of the off-diagonal probabilities. This is
exactly what the TDT aims for. Furthermore, the TDT appears justified to use only
the variables B and C from Table 10.1, as the expected values of the the diagonal
elements do not depend on θ.

The two off-diagonal probabilities are also equal if D = 0, irrespective of the
value of the recombination fraction θ. It follows that the TDT can have power
as a test for H0: θ = 1

2 only if D 6= 0. This is often expressed by saying “that
the TDT is a test of linkage (only) if the disease and marker loci are associated”,
and is a mathematical expression of the observation in Chapter 9 that a case-
control approach can be successful only if there is linkage disequilibrium between
the marker and causal locus. It is clear also that if association is present, but very
small (D ≈ 0), then the TDT will have some power to detect linkage, but too little
to give conclusive results with not too large data-sets.

The fact that the TDT is a correct test for H0: θ = 1
2 for any D > 0 indicates

that it can correctly handle “spurious association”, such as caused by population
admixture.†

Table 10.1 gives a two-way classification of 2n individuals, and it is tempting
to view (A,B,C,D) as the realization of a multinomial vector with parameters 2n
and the four probabilities in Table 10.3. This is wrong, because the 2n individuals
are not independently classified: even though the n families can be assumed to form

† Need to remove the Hardy-Weinberg type assumptions of the theorem to make this a valid
argument??
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independent units, the status of the father and mother of an affected child within
a family are not independent in general. This is due to the fact that the trios of
father, mother and child are selected based on the information that the child is
affected. If the marker is associated to the disease, then the information that the
child is affected together with information about the marker allele transmitted by
one parent provides information about the marker allele transmitted by the other
parent. For instance, if the first parent did not transmit the disease allele, then
the second parent probably did, and this is informative about the marker allele
transmitted. Thus we cannot use a multinomial model for Table 10.1. It is also
not true in general that under the null hypothesis of no linkage the variable B is
conditionally binomially distributed given B+C. (In the absence of association the
contributions of the parents within families to the table are indeed independent,
and the conditional distribution of B given B + C is binomial. However, this is of
no use, because given zero association, there is no power to detect linkage, and we
would not want to carry out the TDT in the first place.) However, it is shown in
the following lemma that the normal approximation is nevertheless correct.

A correct approach is to take the n family trios as independent sampling units,
instead of the 2n parents. This is possible by replacing the (2×2)-table by a (4×4)-
table, whose 16 cells register the transmission patterns of the n father-mother pairs:
on each axis we place the four patternsM1M1, M1M2, M2M1 andM2M2, indicating
pairs of a parental and maternal allele, transmitted (one axis) or nontransmitted
(other axis). The statistical model can then be summarized by saying that the (4×4)-
table is multinomial with parameters n and 16 probabilities. These probabilities are
expressed in the parameters of the underlying disease model in Lemma 10.3. The
probabilities in Table 10.3 can be derived from them.

The (4×4)-table gives complete information on the distribution of the observa-
tions underlying the TDT test. We may still decide to base the test on the difference
B−C of the off-diagonal elements in Table 10.1, scaled to an appropriate standard
distribution. The following lemma shows that the scaling of the TDT (badly mo-
tivated previously by the assumption of a binomial distribution) gives the correct
significance level, at least for large n.

10.2 Lemma. Under the assumptions of Lemma 10.1 the sequence of variables
(B−C)/

√
B + C tends to a standard normal distribution under the null hypothesis

H0: θ = 1
2 , as n→ ∞.

Proof. Distributions, expectations or variances in this proof will silently be under-
stood to be conditional on the null hypothesis and on the event A that the sib is
affected.

Let NP and NM be the (2×2)-tables contributed to the TDT-table Table 10.1
by the father and mother of a typical family trio, so that N = NP + NM is the
total contribution of the family trio, and the variable B − C is the sum of the n
variables N12 − N21 contributed by the n families. The key to the lemma is that
the variables NP

12 −NP
21 and NM

12 −NM
21 are uncorrelated under the null hypothesis,

even though dependent in general.
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The variable NP
ij is equal to 1 or 0 according to the occurrence or nonoccurrence

of the event MP
i,j ∩ TPi as described in Table 10.4; the same is true for NM

ij relative

to the event MM
ij ∩TMj . The probabilities of the two events MP

12∩TP1 and MP
12∩TP2

are the off-diagonal elements in the TDT table Table 10.3, and are equal under
the null hypothesis H0: θ = 1

2 . The same is true for the maternal contributions. It
follows that E0(N

P
12 −NP

21|A) = E0(N
M
12 −NM

21 |A) = 0.
The product (NP

12 −NP
21)(N

M
12 −NM

21 ) is equal to 1 if both terms are 1 or both
terms are −1, and it is −1 otherwise. It follows that the covariance of the variables
NP

12 −NP
21 and NM

12 −NM
21 is given by

E0

(
(NP

12 −NP
21)(N

M
12 −NM

21 )|A
)

= P0

(
MP

12 ∩ TP1 ∩MM
12 ∩ TM1 |A) + P0

(
MP

12 ∩ TP2 ∩MM
12 ∩ TM2 |A)

− P0

(
MP

12 ∩ TP1 ∩MM
12 ∩ TM2 |A) − P0

(
MP

12 ∩ TP2 ∩MM
12 ∩ TM1 |A).

The probabilities on the right are given in Lemma 10.3. With the notation pij,r =
(1 − θ)hriqj + θhrjqi, the expression on the right can be written in the form

1

P (A)

∑

r

∑

s

fr,s
[
p12,rp12,s + p21,rp21,s − p12,rp21,s − p21,rp12,s

]
.

Under the null hypothesis H0: θ = 1
2 we have that pij,r = pji,r, and hence the

expression in the display vanishes. This concludes the proof that the contributions
of fathers and mothers to the TDT-table are uncorrelated.

The variable NP has a (2 × 2)-multinomial distribution with parameters 1
and (2 × 2) probability matrix given in Table 10.1. Under the null hypothesis the
off-diagonal elements of the probability matrix are equal, say c. Then

E0(N
P
12|A) = E0(N

P
21|A) = c,

var0(N
P
12 −NP

21|A) = var0(N
P
12|A) + var0(N

P
21|A) − 2 cov0(N

P
12, N

P
21|A)

= 2c(1 − c) − 2(0 − c2) = 2c.

The maternal versions of these variables satisfy the same equalities.
The variable B − C is the sum over families of the variables NP

12 − NP
21 and

NM
12 − NM

21 . The mean of B − C is zero. Because contributions of families are
independent and contributions of fathers and mothers uncorrelated, the variance of
B−C is equal to 2n2c. The independence across families allows to apply the central
limit theorem and yields that the sequence (B − C)/

√
2n2c tends in distribution

to a normal distribution as n → ∞. The independence across families and the law
of large numbers gives that (B + C)/n tends in probability to 4c. Together these
assertions imply the lemma, in view of Slutsky’s lemma.

We can also consider the TDT as a test for the null hypothesis H0:D = 0 of no
association. Because for θ = 1

2 , the off-diagonal probabilities in Table 10.3 are the
same no matter what the value of D, the TDT will have power only if the marker
and disease loci are linked. Under the null hypothesis the vector (A,B,C,D) is
multinomially distributed with probability vector (q21 , q1q2, q1q2, q

2
2).
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event interpretation

A child is affected
MP
ij father has marker genotype {Mi,Mj}

MM
ij mother has marker genotype {Mi,Mj}
TPi father transmits marker allele Mi

TMi mother transmits marker allele Mi

DP
r father transmits disease allele Dr

DM
r mother transmits disease allele Dr

Table 10.4. Events used in the proof of Lemma 10.3.

* 10.1.1 Multiple Alleles

The TDT can be extended to marker and disease loci with more than two possible
alleles. Consider a marker locus with possible allelesM1, . . . ,Mk, and a monogenetic
disease that is caused by a gene with alleles D1, . . . , Dl. Then any parent can be
classified according to a (k×k)-table, contributing a count to cell (i, j) if the parent
possesses unordered genotype {Mi,Mj}, transmits allele Mi and does not transmit
allele Mj to the child. A combination of the transmission data of a father and a
mother can be classified in a (k2 × k2)-table. The probabilities of the latter table
are given in the following lemma. Let hij and qj be the frequencies of haplotype
DiMj and marker allele Mj in the general population, respectively, and let fr,s be
the probability of affection given the (ordered) genotype (Dr, Ds).

10.3 Lemma. Assume that the disease is monogenetic. If the population is in
Hardy-Weinberg equilibrium at the haplotype level, then the conditional proba-
bility given the event A that a father has unordered marker genotype {Mi,Mj} and
transmits allele Mi and the mother has unordered marker genotype {Mu,Mv} and
transmits allele Mu is equal to

(10.4)
1

P (A)

∑

r

∑

s

fr,s
(
(1 − θ)hriqj + θhrjqi

)(
(1 − θ)hsuqv + θhsvqu

)
.

Here P (A) is the prevalence of the disease in the population and fr,s is the pene-
trance of the disease genotype (Dr, Ds).

Proofs. With the notation for events given in Table 10.4 the event of interest is
MP
ij ∩ TPi ∩MM

uv ∩ TMu . The conditional probability of this event can be written

P (MP
ij ∩ TPi ∩MM

uv ∩ TMu |A)

=
∑

r

∑

s

P (MP
ij ∩ TPi ∩DP

r ∩MM
uv ∩ TMu ∩DM

s |A)

=
1

P (A)

∑

r

∑

s

fr,sP (MP
ij ∩ TPi ∩DP

r )P (MM
uv ∩ TMu ∩DM

s ),
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by Bayes’ formula. The probabilities for the paternally and maternally determined
events on the far right are identical. For simplicity of notation we drop the super-
script P or M . The events can be decomposed on the occurrence of a crossover
between the disease and marker locus. In the absence of a crossover the event
Mij ∩Ti∩Dr occurs if the parent has haplotype DrMi on one chromosome, marker
allele Mj on the other chromosome and passes on the marker allele Mi, which has
conditional probability 2hriqj

1
2 . Given a crossover the event Mij ∩Ti ∩Dr occurs if

the parent has haplotype DrMj on one chromosome, marker allele Mi on the other
chromosome and passes on marker allele Mi, which has probability 2hrjqi

1
2 . Thus

P (Mij ∩Ti∩Dr) = (1−θ)hriqj +θhrjqi, and the right side of the preceding display
reduces to formula (10.4). This concludes the proof of Lemma 10.3.

Under Hardy-Weinberg equilibrium the ordered disease genotype (Dr, Ds) has
probability prps and hence P (A) =

∑

r

∑

s fr,sprps.
By marginalizing the haplotype frequencies we have

∑

j hij = pi. Therefore,
marginalization of formula (10.4) over u and v readily yields that

(10.5) P (MP
ij ∩ TPi |A) =

1

P (A)

∑

r

∑

s

fr,s
(
(1 − θ)hriqj + θhrjqi

)
ps.

The left side gives the probabilities described in Table 10.3, if specialized to biallelic
loci and i, j ∈ {1, 2}. To prove Lemma 10.1 we need to show that the right sides
can be written in the form as given in the table.

In the absence of association between marker and disease locus the haplotype
frequencies satisfy hij = piqj and hence (1 − θ)hriqj + θhrjqi = qiqjpr. Given this
factorization for all possible pairs of alleles, the preceding display (10.5) can be seen
to reduce to

1

P (A)

∑

r

∑

s

fr,sqiqjpr ps = qiqj .

We need to express the deviation from this equilibrium value in the parameters D
and θ. By Lemma 9.10,

h11 = p1q1 +D,

h12 = p1q2 −D,

h21 = p2q1 −D,

h22 = p2q2 +D.

Inserting these four representations in (10.5), we can split the resulting expression
in the equilibrium value as in the preceding paragraph and an expression that is a
multiple of D. Straightforward algebra shows that the latter expression reduces to
the values Bq1D, B(q2 − θ)D, B(θ − q1)D and −Bq2D, for the four elements in
Table 10.3, respectively.

Under the assumption that the n families are sampled independently, the data
can be summarized as a (k2 × k2)-table with a multinomial distribution with pa-
rameters n and the k4 probabilities in the preceding lemma. An extended TDT
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should test whether the probabilities of the cells in the table are symmetric across
the diagonal. This can be achieved through a variety of test statistics.

As in the case of biallelic markers it is customary to pool fathers and mothers,
and collaps the data into a (k× k)-table, where cell (i, j) counts how many parents
with unordered genotype {Mi,Mj} transmit allele Mi and do not transmit allele
Mj to their child. A natural extension of the TDT to multiallelic markers is then

∑ ∑

i<j

(Nij −Nji)
2

Nij +Nji
.

By the same method of proof as in Lemma 10.2 the variables Nij−Nji can be shown
to be uncorrelated for different pairs (i, j), and the test statistic can be shown to
be asymptotically chisquare distributed with

(
k
2

)
degrees of freedom under the null

hypothesis of no linkage. Unfortunately, the statistic turns out to have poor overall
power, possibly because it compares all cells individually. Symmetry of the (k× k)-
table implies symmetry of its marginal values Ni· =

∑

j Nij and N·i =
∑

j Nji and
hence an alternative is a quadratic form such as

∑

i

∑

j

(Ni· −N·i)αij(Nj·N·j).

For (αij) (an estimate of) the covariance matrix of the vector (N1·−N·1, . . . , Nk· −
N·k) this statistic ought to have approximately a chisquared distribution with k−1
degrees of freedom under the null hypothesis. (Thus αij = −(Nij +Nji) for i 6= j
and Ni· +N·i − 2Nii otherwise.)

A third possible test statistic can be derived from modelling the probabilities
in the table by significantly fewer parameters than the number of cells.

???? In the preceding it is assumed that the affected children belong to different
families, so that the n trios contain n different pairs of parents. If we sample two
affected individuals from the population and they turn out to have the same parents,
then we can still form two parents-child trios, but the parents will occur twice. The
contributions to the TDT-table of two of such trios are not independent. However,
it appears that the contributions to the TDT statistic are uncorrelated and hence
the variance of the TDT statistic is as if the trios were independent. ????

10.6 EXERCISE. Show that the TDT statistic arises as the chisquare statistic (un-
der the (wrong) assumption that the vector (A,B,C,D) is multinomially distributed
with parameter 2n) for testing the null hypothesis that the off-diagonal probabilities
are equal.
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10.2 Sibship Transmission Disequilibrium Test

The TDT is based on observing a child and its parents, or children and their parents.
The sibship transmission disequilibrium test (S-TDT) is based on observing marker
data on the children only. We select a sample of sibships, each consisting of affected
and unaffected children. For a biallelic marker, we measure the total number of
alleles M1 carried by the affected sibships and compare this to the number of alleles
carried by the unaffected sibships. If the affected sibs carry “more” alleles M1, then
we conclude that the marker locus is linked to the affection.

More precisely, suppose that the ith sibship consists of niA affected and niU
unaffected children, and N i

A of the 2niA marker alleles of the affected children are
allele M1, and N i

U of the 2niU marker alleles of the unaffected children are M1.
Let nA =

∑

i n
i
A and nU =

∑

i n
i
U be the total number of affected and unaffected

children in the sibships, and let NA =
∑

iN
i
A and NU =

∑

iN
i
U be the total

numbers of allelesM1 carried by these two groups. If NA/nA is significantly different
from NU/nU , then this is an indication that the marker locus is associated with the
disease locus, and possibly linked.

To make “significantly different” precise, it would be nice if we could assume
that NA and NU are independent binomial variables with parameters (nA, pA) and
(nU , pU ). We would then test the null hypothesis that H0: pA = pU . However, the
selection of sibships rather than inviduals renders this hypothesis untrue. We can
carry out a permutation test instead.

Because under the null hypothesis marker and affection are unrelated, each
redistribution of affection status within a sibship is equally likely. Given the numbers
niA and niU and the distribution of the marker alleles M1 over the niA+niU sibs in a
sibships, we might reassign the labels “affected” or “unaffected” in a random manner
by choosing niA arbitrary sibs to be affected and the remaining sibs to be unaffected.
We perform this independently across all sibships. Under this reassignment the
variables NA/nA and NU/nU assume new values, which we may assume as random
as long as we say that we randomly reassign the affection lables. Thus we create
probability distributions for these variables, their “permutation distributions”. We
determine a critical value from these permutation distributions.

In practice, we generate as many random reassigments of the affection labels
as computationally feasible. For each reassigment we calculate the corresponding
value of NA/nA. If the value of NA/nA on the real data is among the 5 % most
extreme values, then we reject the null hypothesis.

Of course, there are other possible test statistics. For instance, the “SDT” uses

#
(

i:
N i
A

niA
>
N i
U

niU

)

.
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Coalescents

Any present-day allele has been segregated by a parent in a previous generation. A
single-locus allele (which is not recombined) can be traced back to a single allele
in the previous generation of alleles, and by iteration to an ancestor in all previous
generations of alleles. Two different alleles may have the same parent allele, and if we
trace back in time far enough, then we shall find that any given set of alleles descend
from a single parent allele somewhere in the past. The first such parent is called a
most recent common ancestor or MRCA. The coalescent is a stochastic process for
the tree structure describing the inheritance process. After adding mutation and
recombination it can be used to map the origins of disease genes, or estimate the
age of an allele: the time that it first arose.

In this chapter we consider Kingman’s coalescent, which is model for neutral
alleles, in the sense that it does not take into account evolutionary selection.

11.1 Wright-Fisher Model

Consider a population of N individuals, labelled arbitrarily with the symbols
1, 2, . . . , N . Suppose that individual i has Mi descendants, where the vector
(M1, . . . ,MN) is multinomially distributed with parameters N and (1/N, . . . , 1/N).
Thus the original population is replaced by a new population of N children. We
label the new population with the symbols a1, a2, . . . , aN in a random order.

Note that in this simple model the children are born without mating, a child
has only one parent, and a fortiori a process of recombination of chromosomes is
absent.

From symmetry considerations it is evident that a given child ai has a given
parent j with probability 1/N . (Alternatively, see the first part of the proof of the
following lemma.) A bit reversing reality, it is said that a child chooses its parent at
random from the previous generation. The following lemma shows that the children
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choose their parents independently.

11.1 Lemma. The probability that children ai1 , . . . , aik choose parents j1, . . . , jk
is equal to (1/N)k, for any set of different {i1, . . . , ik} ⊂ {1, . . . , N} and any choice
j1, . . . , jk ∈ {1, . . . , N}.

Proof. The multinomial distribution with parameters N and (p1, . . . , pk) is the dis-
tribution of the numbers of balls in k given boxes if N balls are placed independently
and at random in the k boxes. Therefore, if the N children choose their parents in-
dependently and at random from N given parents, then the number of children of
the N parents is a multinomial vector with parameters N and (1/N, . . . , 1/N). This
proves the lemma without computations.

We can also prove the lemma using the numerical definition of the multinomial
distribution as the starting point. To illustrate the idea of the computation first
consider the case k = 1. Let E be the event that child ai has parent j. If Mj = 0,
then the (conditional) probability of E is zero, since parent j has no children in
that case. Represent the N children born to the N parents by the labels of their
parents. If Mj = m, then parent j has m children and hence these N labels include
m times the symbol j. The event E occurs if the random permutation of the N
symbols referring to the children has a symbol j in the ath position. Thus

P (E) =
N∑

m=1

P (Mj = m)P (E|Mj = m)

=

N∑

m=1

P (Mj = m)
m

N
=

1

N
EMj =

1

N
.

The last equality follows because Mj is binomially distributed with parameters N
and 1/N .

To prove the lemma in the general case, suppose that the parents j1, . . . , jk
consists of ni times parent i (with possibly ni = 0) for i = 1, . . . , N , so that the set
j1, . . . , jk can be ordered as

n1 times
︷ ︸︸ ︷

1, . . . , 1,

n2 times
︷ ︸︸ ︷

2, . . . , 2, . . . . . . ,

nN times
︷ ︸︸ ︷

N, . . . , N .

Without loss of generality we can order the children so that the event E of interest
becomes that the first n1 children have parent 1, the second n2 children have parent
2, etc. If Mi < ni for some i = 1, . . . , N , then the event E has probability zero.
Represent the N children born to the N parents by the labels of their parents. If
Mi = mi with mi ≥ ni for every i, then the event E occurs if the random ordering
of m1 symbols 1, m2 symbols 2, etc. has the symbol 1 in the first n1 places, the
symbol 2 in the second n2 places, etc. Thus, with the multiple sums restricted to
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indices with
∑

jmj = N ,

P (E) =

N∑

m1=n1

· · ·
N∑

mN=nN

P (M = m)P (E|M1 = m1, . . . ,MN = mN )

=

N∑

m1=n1

· · ·
N∑

mN=nN

N !

m1! · · ·mN !

( 1

N

)N

×
∏N
j=1mj(mj − 1) · · · (mj − nj + 1) × (N − ∑

j nj)!

N !

=
N∑

m1=n1

· · ·
N∑

mN=nN

(N − ∑

j nj)!

(m1 − n1)! · · · (mN − nN )!

( 1

N

)N

=
( 1

N

)
∑

j
nj

.

This proves the theorem as
∑

j nj is the number of children involved.

Because the population size is assumed to be constant, each parent is on the
average replaced by one child. The probability that a given parent has no children
is equal to (1 − 1/N)N , and hence for large N on the average the lineages of Ne−1

of the parents die out in a single generation.
We shall study this in more detail by repeating the reproduction process a

number of times, giving generations

1, 2, . . . , N,

a
(1)
1 , a

(1)
2 , . . . , a

(1)
N ,

a
(2)
1 , a

(2)
2 , . . . , a

(2)
N ,

...

Each individual in the kth generation is the child of an individual in the (k − 1)th
generation, which is the child of an individual in the (k−2)th generation, and so on.

Starting with an individual a
(k)
i in the kth generation we can thus form a chain of

child-parent relationships linking a
(k)
i to one of the parents in {1, 2 . . . , N} at time

0. Graphically, these chains can be pictured as the sample paths of N random walks

(one for each individual a
(k)
i ), as in Figure 11.1. The state space of the random walks

(the vertical lines in the figure) is identified with the set of labels {1, 2 . . . , N}, by

placing individual a
(l)
j at location j on the vertical line at time l. (Thus the state

space has no spatial interpretation, unlike with an ordinary random walk.)
Two individuals may have the same parent. For instance, this is the case for

individuals a
(k)
2 and a

(k)
5 in Figure 11.1, and also for individuals a

(k−2)
3 and a

(k−2)
5 .

The random walks containing these individuals then coalesce at the parent, and
remain together from then on. Since the individuals choose their parents indepen-
dently and at random the probability that two individuals choose the same parent,
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a
(k)
5

a
(k)
4

a
(k)
3

a
(k)
2

a
(k)
1

k k-1 k-2 k-3 0

Figure 11.1. Coalescent paths for N = 5.

so that their random walks coalesce in the next step, is 1/N . The probability that
the random walks of two individuals remain separated for at least l generations is
(1 − 1/N)l.

In Figure 11.1 it is suggested that the random walks of all individuals in the
kth generation have coalesced at generation 0. In other words, all individuals in the
kth generation descend from a single ancestor in the 0th generation. This is unlikely
if k is small relative to N , but has probability tending to 1 if k → ∞ and N is fixed.
The latter follows because the probability of no coalescence of two particular walks
is (1 − 1/N)k, so that the probability of noncoalescence of some pair of walks is
certainly not bigger than

(
N

2

)(

1 − 1

N

)k

.

This tends to zero as k → ∞ for fixed N .
Because the transition from a generation to a previous generation is completely

described by the rule that childeren choose their parents independently at random
and the transitions are independent across generations, the process depicted in
Figure 11.1 has a natural extension to the times −1,−2, . . . ,. The preceding para-
graph shows that eventually, if we go far enough to the right, the random walks
will coalesce. The time that this happens is of course a random variable, and this
takes arbitrarily small (negative) values with positive probability. The individual in
which the paths coalesce is called the most recent common ancestor (MRCA) of the
populaton.

If we thus extend time to the right, the indexing of the generations by the
numbers k, k − 1, . . . , 1, 0,−2, . . . is awkward. Hence we replace it by 0, 1, 2, . . .,
as in Figure 11.2. Time then runs from 0 to ∞, in the reverse direction relative
to natural time. We label the starting points of the random walks at time 0 by

1, 2, . . . , N instead of a
(k)
1 , a

(k)
2 , . . . , a

(k)
N .

At a given (reverse) time k some of the N random walks started at time 0 will
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5

4

3

2

1

0 1 2 3 k

Figure 11.2. Coalescent paths.

have coalesced, while others are still separated. This induces a partition

{1, 2, . . . , N} = ∪Nk

i=1X
N
k (i),

where every of the partitioning sets XN
k (i) contains the starting points of random

walks that have coalesced before or at time k. (More formally, we define two random
walks to be equivalent if they have coalesced before or at time k; this partitions
the random walks in a set of equivalence classes; the partitioning sets Xk(i) are
the starting labels of the random walks in these classes.) At time 0 no walks have
coalesced and hence the partition at time zero is ∪Ni=1{i}. Because coalesced random
walks remain together, the sequence of partitions

∪Ni=1{i}, ∪N1

i=1X
N
1 (i), ∪N2

i=1X
N
2 (i), . . . . . .

are successive coarsenings: each set XN
k (i) is the union of one or more sets XN

k−1(j)
of the previous partition. The sequence of partitions forms a stochastic process,
which we denote by

XN
0 , X

N
1 , X

N
2 , . . . .

The state space of this process is the collection of all partitions of the set {1, . . . , N}.
The process is Markovian with stationary transition function, as at each time the
further coarsening is independent of the way the current partition was reached and
is determined by the rule that childeren choose parents independently at random.
The number of partitions KN (“Bellman numbers”) of {1, . . . , N} increases rapidly
with N . The transition matrix PN of the process is a (KN ×KN)-matrix, which is
huge for large N . However, because each transition is a coarsening, most entries of
the matrix PN are zero. The partition of {1, . . . , N} into a single set is an absorbing
state and can be reached from every other state. It follows that the Markov chain
will reach this state eventually with probability 1.
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1|2|3 12|3 1|23 13|2 123
1|2|3 2/9 2/9 2/9 2/9 1/9
12|3 0 2/3 0 0 1/3
1|23 0 0 2/3 0 1/3
13|2 0 0 0 2/3 1/3
123 0 0 0 0 1

Table 11.1. Transition matrix PN of the process XN
0 , X

N
1 , . . . for N = 3.

11.2 EXERCISE. Verify Table 11.1.

Besides that many elements of PN are exactly zero, for large N most nonzero
entries are almost zero. The following calculations show that the most likely “transi-
tion” is to stay in the same state (“no coalescence”), and the second likely transition
is the coalescence of exactly two random walks.

To compute the probability of a “constant transition” from a partition x into
itself denote by #x the number of lineages (i.e. number of sets in the partition).
Then at time k+ 1 the same set of #x lineages exists if all #x individuals who are
the kth generation representatives of the #x lineages choose different parents. Thus

(11.3)

P (XN
k+1 = x|XN

k = x) =
N(N − 1) · · · (N − #x + 1)

N#x

= 1 −
(

#x

2

)
1

N
+O

( 1

N2

)

,

as N → ∞, where #x is the number of partitioning sets in x.
For given partitions x and y of {1, . . . , N}, write x ⇒ y if y can be obtained

from x by uniting two subsets of x, leaving the other partitioning sets untouched.
If XN

k = x, then XN
k+1 = y for some y with x ⇒ y if the two kth generation

representatives of the lineages that are combined in the transition x ⇒ y choose
the same parent, and the other ancestors choose different parents. The probability
of this event is

(11.4) P (XN
k+1 = y|XN

k = x) =
N(N − 1) · · · (N − #x+ 2)

N#x
=

1

N
+O

( 1

N2

)

,

where #x is the number of partitioning sets in x.
For a given partition x there are

(
#x
2

)
partitions y with x ⇒ y. From combining

the preceding two displays it therefore follows readily that the probability of a
transition from x to some y with y 6= x and not x ⇒ y is of the lower order O(1/N2).
Staying put has probability 1−O(1/N), while transitions of the form x ⇒ y account
for most of the remaining O(1/N)-probability. In other words, the diagonal elements
of the transition matrix PN are 1 − O(1/N), there are

(
#x
2

)
elements of the order

O(1/N) in the xth row with the same leading (nonzero) term of order 1/N , and the
remaining elements are zero or O(1/N2).

To study the limiting case as N → ∞, it is inconvenient that the dimension of
the state space of the process XN becomes larger and larger as N → ∞. To avoid
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this we shall consider only the partitions induced on a fixed set of individuals, for
instance those numbered 1, . . . , n for a given n. We then obtain a Markov chain
Xn,N with state space the set of partitions of the set {1, 2, . . . , n}. The full popu-
lation remains a set of N individuals, in the sense that each generation of children
chooses their parents independently at random from a population of N parents.
The difference is that we only follow the random walks that originate at time zero
at one of the points 1, 2, . . . , n. The preceding reasoning applies in the same way to
the processes Xn,N , i.e. equations (11.3) and (11.4) are valid with Xn,N substituted
for XN for any partitions x, y of the the set {1, 2, . . . , n}. (The transition matrix
of Xn,N can also be derived from the transition matrix of XN , but this is a bit
complicated.)

To study the limiting case as N → ∞ for fixed n, we define a continuous time
stochastic process (Y Nt : t ≥ 0) by

Y Nj/N = Xn,N
j , j = 0, 1, 2, . . . ,

and define Y Nt to be constant on the intervals [j/N, (j + 1)/N). Thus the original

process Xn,N
0 , Xn,N

1 , Xn,N
2 , . . . become the skeleton of the process Y N at the times

0, 1/N, 2/N, . . .. The process Y N inherits the Markov property of the process Xn,N

and its state space: the collection of partitions of the set {1, 2, . . . , n}. We shall
show that as N → ∞ the sequence of processes Y N tends to a Markov process with
generator matrix A, given by

(11.5) A(x, y) =







−
(
#x
2

)
, if y = x,

1, if x ⇒ y,
0, otherwise.

11.6 Theorem. The transition matrices Q
(N)
t defined by Q

(N)
t (x, y) = P (Y Ns+t =

y|Y Ns = x) satisfy Q
(N)
t → etA as N → ∞, for any t > 0.

Proof. From the preceding it follows that the transition matrix PN of the process
Xn,N satisfies, as N → ∞

AN : = N(PN − I) → A.

This implies that, for any t > 0,

P
bNtc
N =

(

I +
AN
N

)bNtc
=

bNtc
∑

k=0

(bNtc
k

)(AN
N

)k

→
∞∑

k=0

tkAk

k!
= etA.

The same is true with bNtc replaced by bNtc + 1.
From the definition of Y N it follows that the transitions of Y N in the time

interval (s, s + t] consist of transitions of the process Xn,N at the time points
k + 1, k + 2, . . . , k + l for k, l integers determined by k/N ≤ s < (k + 1)/N ≤
(k+ l)/N ≤ s+t < (k+ l+1)/N . These inequalities imply that Nt−1 < l < Nt+1,
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whence there are bNtc or bNtc + 1 transitions during the interval (s, t], and hence
the transition matrix (

P (Y Nt+s = y|Y Ns = x)
)

is given by P
bNtc
N (x, y) or P

bNtc+1
N (x, y), where P 0

N = I. The result follows.

11.7 EXERCISE. Suppose cN and BN are sequences of numbers and (n × n)-
matrices such that cN → c and BN → B as N → ∞. Show that

∑∞
k=0 cNB

k
N/k! →

ceB for eB defined as the (n× n) matrix eB =
∑∞

k=0 B
k/k!, and where the conver-

gence is coordinatewise or in any matrix norm.

The matrix A is the generator of a Markov process (Yt: t ≥ 0) with state space
the partitions of the set {1, . . . , n} and transition semigroup Pt = etA, i.e.

P (Ys+t = y|Ys = x) = Pt(x, y).

This process is known as Kingman’s coalescent process. The initial variable Y0 is
equal to the partition {1, . . . , n} = ∪ni=1{i} in one-point sets.

From the general theory of Markov processes it follows that the evolution of Y
can also be described as follows. At time 0 there are n lineages forming

(
n
2

)
pairs.

These pairs are competing to create the first coalescing event. “Competing” means
that every of the pairs generates, independently from the other pairs, a standard
exponential random variable. The pair with the smallest variable wins, and the two
lineages coalesce to one. There are now n− 1 lineages, forming

(
n−1

2

)
pairs; history

repeats itself with this reduced set, and independently of the past. This process
continues until there is only one lineage left, which is the absorbing state of the
chain.

If there are still j lineages alive, then there are
(
j
2

)
pairs competing and a

coalescent event occurs at the minimum of
(
j
2

)
independent standard exponential

variables. The distribution of this minimum is exponential with mean 1/
(
j
2

)
. There-

fore, in the beginning, when there are still many lineages, the next coalescent event
arrives quickly, but the mean inter arrival time steadily increases if time goes on.
Figure 11.3 shows some typical realizations of the coalescent process Y , clearly
illustrating that most of the coalescing events occur early.

The time Tj to go from j lineages to j − 1 lineages is an exponential variable
with intensity

(
j
2

)
. Therefore the expectation of the total height of the tree is

E

n∑

j=2

Tj =

n∑

j=2

1
(
j
2

) = 2
(

1 − 1

n

)

.

The expected length of the time it takes the final pair of lineages to combine into
one is equal to ET2 = 1 and hence is almost half the time for the total population
to coalesce, if n is large.

Figure 11.3 gives a misleading picture of the coalescent process in that the
individuals (on the horizontal axis) have been placed so that the random walks
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Figure 11.3. Three realizations of the n-coalescent process for n = 20. The individuals 1, 2, . . . , n
have been placed on the horizontal axis in an order so that their coalescent graph has no intersections.

describing their history do not intersect. Because typically we are not interested
in the ordering of the individuals, nothing important is lost. We could also define
an abstract tree structure by defining two sample paths of the coalescent (i.e. two
sequences of nested partitions of {1, 2, . . . , n}) to be equivalent if there is a per-
mutation σ of the individuals (the set {1, 2, . . . , n}) such that the second sequence
of partitions applied to the individuals {σ(1), . . . , σ(n)} is the same as the first se-
quence. The coalescent process induces a probability measure on the collection of
all equivalence classes for this relation.

The time unit of the coalescent process (the vertical scale in Figure 11.3) is
by construction confounded with population size. In the approximating process
Y N = (Y Nt : t ≥ 0) the successive generations are placed on a grid with mesh width
1/N . Thus one time unit in the coalescent corresponds to N generations.

The coalescent process derived in the preceding theorem concerns a sample of
n individuals from a population of N → ∞ individuals. By construction this n-
coalescent is “contained” in an n+ 1-coalescent, describing the same n individuals
and another individual. Actually, the n-coalescents for all n ∈ N can be constructed
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consistently on a single probability space.‡

11.2 Robustness

Kingman’s coalescent process can be viewed as an approximation to the Wright-
Fisher model, but it also arises from a variety of other finite population models. In
particular, suppose that the numbers M = (M1, . . . ,MN ) of offspring of individuals

1, . . . , N is an exchangeable random vector such that
∑N

i=1Mi = N . If M is not
multinomial, then the rule that “children choose their parents independently at
random” is not valid any more. However, the basic transition probabilities for the
coalescents of the random walks connecting the generations do not change much.

Denote a random permutation of the N children again by a1, . . . , aN .

11.8 Lemma. The probability that k (different) children ai1 , . . . , aik choose k dif-
ferent parents is equal to EM1 · · ·Mk. The probability that children ai1 , ai2 choose
the same parent and children ai3 , . . . aik choose k−2 other, different parents is equal
to (N − k + 1)−1EM1(M1 − 1)M2 · · ·Mk−1.

Proof. If M = m for given m = (m1, . . . ,mN ), then we can represent the N
children by m1 times the symbol 1, m2 times the symbol 2, etc. The event E that
the children ai1 , . . . , aik choose different parents occurs if a random permutation
of these symbols has different symbols at the positions i1, . . . , ik. There are N !
permutations of the N symbols. The k different symbols could be any sequence
(j1, . . . , jk) of indices 1 ≤ j1 6= . . . 6= jk ≤ N such that mji ≥ 1 for every i. For a
given set of indices, and still given M = m, there are mj1 · · ·mjk possible choices
for the indices. This number is correct even if mji = 0 for some i. The remaining
symbols can be ordered in (N − k)! ways. It follows that

P (E|M = m) =
∑

· · ·
∑

1≤j1 6=...6=jk≤N

mj1 · · ·mjk(N − k)!

N !
.

We obtain the probability P (E) by multiplying this by P (M = m) and summing
over all possible values of m. By exchanging the two sums, this can be written as

∑

· · ·
∑

1≤j1 6=...6=jk≤N

(N − k)!

N !
EMj1 · · ·Mjk .

The expectation EMj1 · · ·Mjk is the same for every choice of j1, . . . , jk, by the
exchangeability of M . The display reduces to EM1 · · ·Mk.

With the same notation as before, the event E that the children ai1 , ai2 choose
the same parent and children ai3 , . . . aik choose k − 2 other, different parents oc-
curs if a random permutation of m1 times the symbol 1, m2 times the symbol 2,

‡ See Kingman ??
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etc. has the same symbol at positions i1 and i2 and different symbols at positions
i3, . . . , ik. This involves k− 1 different symbols j1, . . . , jk−1, which we can assign to
positions i1, . . . , ik in the form j1, j1, j2, . . . , jk−1. By the same arguments as before,
the conditional probability of E is therefore

P (E|M = m) =
∑

· · ·
∑

1≤j1 6=...6=jk−1≤N

mj1(mj1 − 1)mj2 · · ·mjk−1
(N − k)!

N !
.

This readily leads to the unconditional probability claimed in the lemma.

11.9 EXERCISE. Show that the probability that different children ai1 , . . . , aik
choose parents j1, . . . , jk is equal to 1/(N)k E

∏N
i=1(Mi)ni , for ni = #(r: jr = i)

and (N)k = N(N − 1) · · · (N − k+ 1) for any natural numbers N and k ≤ N . [The
lemma is the special case that (n1, . . . , nN ) is a vector with coordinates 0 or 1 only,
or with one coordinate 2 and other coordinates 0 or 1.]

The distribution (and in fact even the dimension) of the vector M depends
on N , which we would like to send to infinity. For clarity write MN instead of M .
By exchangeability and the fact that

∑N
i=1M

N
i = N the first marginal moment

satisfies EMN
1 = 1 for every N . Under the condition that the marginal variance

tends to a limit and the third order marginal moments are bounded in N , we can
expand the expectations in the preceding lemma in powers of 1/N .

11.10 Lemma. If varMN
1 → σ2 and E(MN

1 )3 = O(1) as N → ∞, then

EMN
1 · · ·MN

k = 1 −
(
k

2

)
σ2

N
+ o

( 1

N

)

,

1

N − k + 1
EMN

1 (MN
1 − 1)MN

2 · · ·MN
k−1 =

σ2

N
+ o

( 1

N

)

.

Proof. Omitting the superscriptN from the notation, and writingMi = 1+(Mi−1),
we can expand

EM1 · · ·Mk

= 1 + E

k∑

i=1

(Mi − 1) + E
∑ ∑

1≤i<j≤k
(Mi − 1)(Mj − 1) + · · · + E

k∏

i=1

(Mi − 1).

Here the second term on the right vanishes, because EMi = 1 for every i, by
exchangeability. For the first assertion of the lemma it suffices to show that
(i) E(M1 − 1)(M2 − 1) = −σ2/(N − 1).
(ii) E(M1 − 1) · · · (Mk − 1) = o(1/N) for k ≥ 3.
For any k ≥ 2 we can write, by exchangeability,

E(M1 − 1) · · · (Mk − 1) =
1

N − k + 1

N∑

j=k

E(M1 − 1) · · · (Mk−1 − 1)(Mj − 1).
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Because
∑N

j=1Mj = N by assumption, we can replace
∑N

j=k(Mj − 1) by

−∑k−1
j=1 (Mj − 1), and next simplify the resulting expression to, again using ex-

changeability,

− k − 1

N − k + 1
E(M1 − 1)2(M2 − 1) · · · (Mk−1 − 1).

For k = 2 this yields assertion (i). To prove assertion (ii) we repeat the argument,
and rewrite the preceding display as

k − 1

N − k + 1

1

N − k + 2
E(M1 − 1)2(M2 − 1) · · · (Mk−2 − 1)

k−2∑

j=1

(Mj − 1)

=
k − 1

N − k + 1

1

N − k + 2

[

(k − 3)E(M1 − 1)2(M2 − 1)2(M3 − 1) · · · (Mk−2 − 1)

+ E(M1 − 1)3(M2 − 1) · · · (Mk−2 − 1)
]

.

To prove (ii) it suffices to show that the two expectations appearing in the brackets
on the right are of order o(N), for k ≥ 3.

For any integers p, q ≥ 0 and k ≥ 3 we have

E|M1 − 1|p|M2 − 1|q|M3 − 1| · · · |Mk − 1|

=
1

N − k + 1

N∑

j=k

E|M1 − 1|p|M2 − 1|q|M3 − 1| · · · |Mk−1 − 1||Mj − 1|

≤ 2N

N − k + 1
E|M1 − 1|p|M2 − 1|q|M3 − 1| · · · |Mk−1 − 1|,

because
∑N

j=k |Mj − 1| ≤ 2N . By induction we see that the preceding display is
bounded by

2N

N − k + 1
· · · 2N

N − 2
E|M1 − 1|p|M2 − 1|q.

For p = 3 and q = 0 this proves that E(M1 − 1)3(M3 − 1) · · · (Mk − 1) is bounded
in N for k ≥ 3, and hence certainly o(N). For p = 2 and q = 2 we argue further
that

∑

j(Mj − 1)2 =
∑

jM
2
j −N ≤ N(maxjMj − 1) and hence

E(M1 − 1)2(M2 − 1)2 =
1

N − 1
E(M1 − 1)2

N∑

j=2

(Mj − 1)2

≤ N

N − 1
E(M1 − 1)2 max

j
|Mj − 1|

≤ N

N − 1

(
E|M1 − 1|3

)2/3(
E max

j
|Mj − 1|3

)1/3

≤ N

N − 1
E|M1 − 1|3N1/3.



11.3: Varying Population Size 191

In the last step we use that a maximum of nonnegative variables is smaller than
the sum. Again the upper bound is o(N). The proof of (ii) is complete.

For the second assertion of the lemma we expand

EM1(M1 − 1)M2 · · ·Mk = E(M1 − 1)×

×
[

1 +

k∑

i=1

(Mi − 1) +
∑ ∑

1≤i<j≤k
(Mi − 1)(Mj − 1) + · · · +

k∏

i=1

(Mi − 1)
]

.

Because E(M1 − 1) = 0 and E(M1 − 1)2 → σ2, it suffices to show that in addition
to (ii) as given previously, also
(iii) E(M1 − 1)2(M2 − 1) · · · (Mk − 1) = o(1) for k ≥ 2.
This has already been established in the course of the proof of (ii).

Combining the two lemmas we see that again the probability of more than two
children choosing the same parent or two of more sets of children choosing the same
parent are of the lower order O(1/N2). Following the approach of Section 11.1, we
obtain the same continuous time approximation, with the only difference that the
generator A of the limiting Markov process is multiplied by the variance parameter
σ2:

A(x, y) =







−σ2
(
#x
2

)
, if y = x,

σ2, if x ⇒ y,
0, otherwise.

Multiplying the generator with a constant is equivalent to linearly changing the time
scale: the Markov proces with the generator in the display is the process t 7→ Yσ2t

for Y the standard coalescent process. Thus if σ2 > 1 the generations coalesce faster
than for the standard coalescent process. It is said that the effective generation size
is presently equal to N/σ2. Of course, this only makes sense when comparing to the
standard Wright-Fisher model.

In the present model with σ2 > 1 the parents have a more varied number
of offspring, where the variation is mostly due to occasional larger offspring, the
mean offspring number still being 1. This explains that we need to go back fewer
generations to find a common ancestor.

11.3 Varying Population Size

In the Wright-Fisher model the successive populations are assumed to have the same
size. For many applications this is not realistic. In this section we show that evolution
with varying population can also be approximated by Kingman’s coalescent process,
but with a rescaled time. The intuition is that, given a smaller population of possible
parents, children are more likely to choose the same parent, thus leading to more
rapid coalescence. With fluctuating population sizes the time scale for coalescence
would shrink or extend proportionally.
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We describe the evolution in backward time. Suppose that the population at
time k consists of Nk individuals, and that the Nk−1 individuals at time k−1 choose
their parents from the Nk individuals at time k at random and independently of
each other. At time 0 we start N0 random walks, consisting of children choosing
their parents. At each time we define Xk to be the partition of the set {1, 2, . . . , N0}
corresponding to the random walks that have coalesced by that time. If Xk−1 = x,
then there are #x separate walks at time k − 1. The probabilities that these walks
do not coalesce or that exactly one pair of walks coalesces in the time interval
between k− 1 and k can be calculated as before, the only difference being that the
#x children now have a number Nk of parents that varies with k to choose from.
It follows that, for any partitions x and y with x ⇒ y,

P (Xk = x|Xk−1 = x) = 1 −
(

#x

2

)
1

Nk
+O

( 1

N2
k

)

,

P (Xk = y|Xk−1 = x) =
1

Nk
+O

( 1

N2
k

)

.

The remainder terms RN,k = O(1/N2
k ) have the property that N2

kRN,k remains
bounded if Nk → ∞.

To study the limiting situation we focus again on the walks originating from
a fixed finite set of individuals at (backward) time 0, and consider the partitions
induced on this set of walks. We suppose that all population sizes Nk depend on
a parameter N such that Nk → ∞ for every k as N → ∞, and let Xn,N =
(Xn,N

k : k ∈ N) be the corresponding Markov chain on the collection of partitions
of the set {1, . . . , n}. By the preceding paragraph the chain Xn,N possesses the
transition matrix PN,k at (backward) time k (giving the probabilities PN,k(x, y) =

P (Xn,Nk

k = y|Xn,Nk

k−1 = x)) such that Nk(PN,k − I) → A, for A the matrix given in
(11.5). Define a grid of time points

tN0 = 0, tNk =

k∑

i=1

1

Ni
, k ≥ 1,

and define a continuous time stochastic process (Y Nt : t ≥ 0) by

Y NtN
k

= Xn,N
k , k = 0, 1, 2, . . . ,

and define Y Nt to be constant on the intervals [tNk , t
N
k+1).

11.11 Theorem. [ASSUME SOME REGULARITY??] The transition matrices

Q
(N)
t defined by Q

(N)
t (x, y) = P (Y Ns+t = y|Y Ns = x) satisfy Q

(N)
t → etA as N → ∞,

for any t > 0.

Proof. The transitions of the process Y N in the interval (s, s+t] are the transitions
of the process Xn,N at the time points k+ 1, . . . , l such that tNk ≤ s < tNk+1 ≤ tNl ≤
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s+ t < tNl+1. The corresponding transition matrix is

l∏

i=k+1

PN,i =

l∏

i=k+1

(

I +
1

Ni
Ni(PN,i − I)

)

.

The terms in the product are approximately equal to I + N−1
i A. The product is

asymptotically equivalent to (need some regularity??)

l∏

i=k+1

eN
−1
i
A = e(t

N
l −tNk )A.

The right side tends to etA as N → ∞.

Thus again the discrete time process can be approximated by the coalescent
process. In order to obtain the standard coalescent as an approximation it was nec-
essary to place the generations in a nonuniform way on the time axis. For instance,
an exponentially increasing population size corresponds to the scheme Nk−1 = αNk
(with α > 1), yielding Nk = α−kN0 by iteration, and hence the time points

tNk =

k∑

j=1

αj

N0
= C(αk − 1), C =

α

N0(α− 1)
.

Thus the population at backward generation k is represented by YC(αk−1) for
(Yt: t ≥ 0) the standard coalescent. [DOES EXPONENTIAL GROWTH SATISFY
REGULARITY?]

In general, the standard coalescent gives the correct ordering of the coalescing
events, but on an unrealistic time-scale. A process of the form t 7→ Yg(t) for a
g: [0,∞) a monotone transformation and (Yt: t ≥ 0) the standard coalescent is the
correct approximation to the population process in real time.

11.4 Diploid Populations

Human (and in fact most other) procreation is sexual and involves pairs of parents
rather than single haplotypes, as in the Wright-Fisher model. This complicates the
coalescence process, but Kingman’s continuous time process still arises as an ap-
proximation. We consider single locus haplotypes, thus still ignoring recombination
events.

The “individuals” in our successive populations will also still be alleles (hap-
lotypes), not persons or gene pairs. Thus coalescence of two lineages (of alleles)
corresponds to the members of the lineages being IBD with the parent allele in
which they come together. The tree structure we are after has alleles as its nodes,
and is not like a family pedigree, in which persons (allele pairs) are the nodes.
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The new feature is that the haplotypes are organized in three ways: they form
gene pairs, a gene pair may be male or female, and within each gene pair one
haplotype is paternal and one is maternal. Suppose that each generation consists
of N male gene pairs and N female gene pairs, thus 4N alleles in total. A new
generation is formed by

- Pairing the N males and N females at random (“random mating”).
- Each couple has Sj sons and Dj daughters, the vectors (S1, . . . , SN ) and

(D1, . . . , DN ) are independent and possess multinomial distributions with pa-
rameters (N, 1/N, . . . , 1/N) (“Wright-Fisher offspring”).

- Each parent segregates a random allele of his or her pair of alleles to each
offspring, independently across offspring (“Mendelian segregation”).

This scheme produces successive generations of N males (sons) and N females
(daughters), who have 4N alleles in total, 2N of which are paternal (originate from
a male) and 2N are maternal (originate from a female). Each of the 4N alleles in a
generation is a copy of an allele in the preceding generation, and by following this
up in history any allele can be traced back to an allele in the first generation. We
are interested in the coalescence of the paths of the alleles, as before.

11.5 Mutation

Because coalescence happens with probability one if we go far enough back into
the past, all present day alleles are copies of a single founder allele. If there were
no mutations, then all present day individuals would be homozygous and identical.
Mutations divide them in a number of different types.

Mutations of the alleles are usually superimposed on the coalescent tree as an
independent process. In the infinite alleles model every mutation leads to a new
allele, which is then copied exactly to the offspring until a new mutation arises,
which creates a completely new type. (We are now using the word “allele” in its
meaning of a variant of a gene.) Motivation for such a model stems from viewing a
locus as a long sequence of nucleotides and assuming that each mutation concerns
(changes, inserts or deletes) a single nucleotide. In view of the large number of
nucleotides, which can each mutate to three other nucleotides, it is unlikely that
two sequences of mutations would yield the same result or lead back to the original.

In the continuous time approximation mutations are assumed to occur along the
branches of the coalescent tree according to Poisson processes, where each branch
of the coalescent three has its own Poisson process and the Poisson processes along
different branches are assumed independent. Because the Poisson process arises as
the continuous time limit of an events process consisting of independent Bernoulli
numbers of events in disjoint intervals of decreasing length, this approximation cor-
responds to mutations in the discrete-time Wright-Fisher model that occur with
probability of the order O(1/N) in each generation and independently across gen-
erations and offspring.
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We may now study the number of different types of alleles in a given set of n
individuals. The distribution of the number of types turns out to be the same as in
a simple model involving coloured marbles, called Hoppe’s urn model, which we now
describe. At time k an urn contains one black marble and k other marbles of various
colours, where some colours may appears multiple times. At time k = 1 the urn
only contains the black marble. The black marble has weight θ > 0, whereas each
coloured marble has weight one. We choose a marble from the urn with probability
proportional to its weight. If the marble is black, then we put it back in the urn
and add a marble of a colour that was not present yet. If the marble is coloured,
then we put it back in the urn and add a marble of the same colour. The urn now
contains k + 1 marbles, and we repeat the experiment. At time n the urn contains
n coloured marbles, and we may define random variables A1, . . . , An by

Ai = # of colours that appear i times in the urn.

Obviously
∑n

i=1iAi is the total number of marbles in the urn and hence
∑n
i=1iAi =

n. It turns out that the vector (A1, . . . , An) also gives the number of different type
of individuals in the coalescent model with mutation. The simplicity of Hoppe’s urn
model helps to compute the distribution of this vector.

o x

o

x

o x

Figure 11.4. Realization from Hoppe’s urn model. Crosses “x” and circles “o” indicate that the black
marble or a coloured marble is drawn. Drawing starts on the right with the black marble and proceeds
to the left. Each line indicates a marble in the urn, and splitting of a line indicates an additional marble
of that colour. The events are separated by 1 time unit (horizontal axis).

That Hoppe’s model gives the right distribution is best seen from a graphical
display of the realizations from the urn model, as in Figure 11.4. Time is passing
from right to left in the picture, with the cross on the far right indicating the black
marble being drawn at time 0, leading to a first coloured marble in the urn. Circles
and crosses to the left indicate coloured marbles or the black marble being drawn.
Each path represents a coloured marble.
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At first sight the Hoppe graph has nothing in common with the coalescent
graph. One reason is that the time intervals between “events” in Hoppe’s model
are fixed to unity, whereas the intervals in Kingman’s coalescent are exponentially
distributed. This difference influences the horizontal scale, but is irrelevant for the
distribution of the types. A second difference is that the Hoppe graph is discon-
nected, whereas in the coalescent graph each pair of random walks comes together
at some point. This difference expresses the different types of individuals caused
by mutations. In the infinite alleles model two individuals are of the same type if
and only if their random walks coalesce at their MCRA without a mutation event
occurring on either of the two paths to the MCRA. If we slide from left to right
in the coalescent graph, then whenever we meet a mutation event on a given path,
the individuals whose random walks coalesce in this path are of different type than
the other individuals. The coalescent graph could be adapted to show the different
types by removing the paths extending to the right from such a mutation event.
This is called killing of the coalescing random walks after mutation. After killing all
the paths in this way, moving from left to right, backwards in time, the coalescent
graph has the same structure as Hoppe’s graph.

The preceding describes the qualitative relationship between the different types
in the coalescent and Hoppe’s model. Quantitatively these models agree also. If
k walks in the coalescent graph have not been killed, then the next event is a
coalescence of one of the

(
k
2

)
pairs of walks or a mutation on one of the k open

paths. Because the events are inserted according to independent Poisson processes
(
(
k
2

)
with intensity 1 and k with intensity µ), the relative probabilities of the two

types of events (coalescence or mutation) are
(
k
2

)
and kµ, respectively. If there

are k paths open in the (backward) Hoppe graph, then the next time to the left
corresponds to drawing from the urn when it contains k − 1 coloured marbles and
1 black marble. With relative probabilities k− 1 and θ a coloured marble is drawn,
yielding a circle and a coalescence in the graph, or the black marble, yielding a
cross. In both models the coalescing events occur equally likely on each path. The
quotients of the relative probabilities of coalescence or killing in the two models are

(
k
2

)

kµ
=
k − 1

2µ
, and

k − 1

θ
.

Thus the two models correspond if θ = 2µ. It is relatively straightforward to com-
pute a number of probabilities of interest in Hoppe’s model.

Let θ(n) = θ(θ + 1) · · · (θ + n− 1).

11.12 Theorem (Ewens’ sampling formula). Let An,i be the number of types
present i times in the n-coalescent with mutation at rate θ/2 per branch. Then for
any (a1 . . . , an) with

∑n
i=1iai = n,

P (An,1 = a1, . . . , An,n = an) =
n!

θ(n)

n∏

i=1

n
(θ/i)ai

ai!
.
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Proof. Using induction on n, we prove that the number of types present at time n
in Hoppe’s urn model satisfies the equation. For n = 1 necessarily a1 = 1 and the
assertion reduces to P (A1,1 = 1) = 1, which is correct.

Assume that the assertion is correct for given n ≥ 1, and consider the assertion
for n + 1. If we define Ak,i = 0 for i > k, then the vectors (Ak,1, . . . , Ak,n+1) for
k = 1, 2, . . . have the same dimension and form a Markov chain, with two possible
types of transitions at each time step:
(i) The black ball is drawn. At time n this has probability θ/(θ + n) and yields a

transition from (a1, a2, . . . , an, 0) to (a1 + 1, a2, . . . , an, 0).
(ii) A coloured ball is drawn of which i balls are present in the urn. At time n

this has probability i/(θ+ n) and yields a transition from (a1, a2, . . . , an, 0) to
(a1, a2, . . . , ai− 1, ai+1 + 1, . . . , an, 0). There are ai coloured balls that all yield
this same transition, so that the total probability of this transition is equal to
iai/(θ + n).

Let E0 and Ei be the events of the types as in (i) and (ii).
If an+1 = 0, then

P (An+1,1 = a1, . . . , An+1,n+1 = an+1)

= P (E0, An,1 = a1 − 1, An,2 = a2 . . . , An,n = an)

+
n∑

j=1

P (Ej , An,1 = a1, . . . , An,j = aj + 1, An,j+1 = aj+1 − 1, . . . An,n = an) .

In view of the induction hypothesis we can rewrite this as

n!

θ(n)

n∏

j=1

(θ/j)aj

aj !

[ θ

θ + n

a1

θ/1
+

n∑

j=1

j(aj + 1)

θ + n

aj
θ/j

θ/(j + 1)

aj+1

]

.

The identity a1 +
∑n

j=1(j+1)aj+1 = n+1 permits to write this in the desired form.
If an+1 = 1, whence a1 = · · · = an = 0, then only a transition of type (ii) can

have occurred, and we can write the probability of the event of interest as

n

θ + n
P (An,1 = 0, . . . , An,n−1 = 0, An,n = 1)

=
n

θ + n

n!

θ(n)

θ

n
=

(n+ 1)!

θ(n+1)

θ

n+ 1
.

This concludes the proof.

11.13 Theorem. The number of different types Kn in a sample of n individuals
satisfies EKn ∼ θ logn and varKn ∼ θ logn, as n → ∞. Moreover the sequence
(Kn−EKn)/ sd(Kn) converges in distribution to the standard normal distribution.

Proof. The variable Kn is equal to the number of times the black marble was
drawn in the first n draws from Hoppe’s urn. It can be written as Kn =

∑n
i=1∆i
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for ∆i equal to 1 if the ith draw yielded the black marble and 0 otherwise. Because
P (∆i = 1) = θ/(θ + i), it follows that

EKn =

n∑

i=1

E∆i =

n∑

i=1

θ

θ + i
,

varKn =

n∑

i=1

var∆i =

n∑

i=1

θ

θ + i
−

n∑

i=1

( θ

θ + i

)2

.

The inequalities
∫ n

1

θ

θ + x
dx ≤

n∑

i=1

θ

θ + i
≤

∫ n

0

θ

θ + x
dx

yield that

θ
(
log(θ + n) − log(θ + 1)

)

θ logn
≤ EKn

θ logn
≤ θ

(
log(θ + n) − log θ

)

θ logn
.

Here left and right tend to 1 as n → ∞. The second sum in the expression for
varKn is bounded by

∑∞
i=1 θ

2/(θ + i)2 < ∞ and hence is negligible relative to the
first sum, which tends to infinity.

The asymptotic normality is a consequence of the Lindeberg-Feller central limit
theorem.

11.6 Recombination

If we are interested in the ancestry of haplotypes that can undergo recombination
during meiosis, then the basic coalescent model is insufficient, as a multi-locus hap-
lotype can have different parents for the various loci. (Here “parent” is understood
to be a haplotype, or chromosome, not a diploid individual.) A simple way around
this would be to construct a separate coalescent tree for every locus. Due to recom-
bination these trees will not be the same, but they will be related for loci that are
not too distant. In this section it is shown that the trees corresponding to different
loci can be incorporated in a single graph, called the recombination graph. Perhaps
a little bit surprising is that there is a single individual at the root of this graph,
who is an ancestor for the sample at all the loci.

The main structure already arises for haplotypes consisting of two loci. Consider
a population of N individuals, each consisting of two linked loci, referred to as “L”
and “R”, as shown in Figure 11.5. For simplicity we consider the individuals as
haploid and let reproduction be asexual. As before it is easiest to describe the
relation between the population of N two-loci parents and N two-loci offspring
backwards in time:
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L R L R L R . . . L R

L R L R L R . . . L R

children

parents

Figure 11.5. A population of two-loci haploid parents and their children.

- With probability 1−r a child chooses a single parent and copies both loci from
the parent.

- With probability r a child chooses two different parents and copies the “L”-
locus from the first and the ”R”-locus from the second parent.

- The children choose independently of each other.
The parameter r is the recombination fraction between the two loci.

Given this reproduction scheme we follow the ancestry of a fixed number n� N
of two-loci individuals backwards in time, where we keep track of all parents that
provide genetic material, whether they pass on material on a single locus or for
both loci. Thus it is possible that the number of lines increases (if one or more
children recombine the “L” and “R” loci from two parents) as well as decreases (if
two children do not recombine and choose the same parent). Before studying the
resulting partitioning structure we consider the total number of ancestors (lines) as a
process in time. Let AN0 = n and, for j = 1, 2, . . ., let ANj be the number of ancestors
of the genetic material of the n individuals. We shall show that, asymptotically as the
population sizeN tends to infinity and under the assumption that the recombination
fraction r tends to zero, the process AN is a birth-death process that will reach the
state 1 eventually. This shows that if we trace back far enough in the past there is
an individual who is the ancestor of the n individuals for both loci.

We assume that the recombination fraction takes the form r = ρ/(2N) for
a positive constant ρ. The crux is that for N → ∞ only three possible events
contribute significantly to the ancestry process. Given a number of k children in a
given generation, these are the events:
NC All k children choose a different parent without recombination (“no change”).
R Exactly one child chooses two parents and recombines, and the other k − 1

children choose a different parent without recombination (“recombination”).
C Exactly two children choose the same parent, and the other k − 2 children

choose a different parent, all of them without recombination (“coalescence”).
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The first event, which turns out to account for most of the probability, makes no
change to AN , whereas the second and third events cause an increase or decrease
by 1 respectively. This observation leads to the inequalities:

P (ANj+1 = k|ANj = k) ≥ P (NC) =
(

1 − ρ

2N

)kN(N − 1) · · · (N − k + 1)

Nk

= 1 − ρ

2N
−

(
k
2

)

N
+O

( 1

N2

)

,

P (ANj+1 = k + 1|ANj = k) ≥ P (R) =

(
k

1

)(

1 − ρ

2N

)k−1N(N − 1) · · · (N − k)

Nk+1

=
kρ

2N
+O

( 1

N2

)

,(11.14)

P (ANj+1 = k − 1|ANj = k) ≥ P (C) =
(

1 − ρ

2N

)k
(
k

2

)
N(N − 1) · · · (N − k + 2)

Nk

=

(
k
2

)

N
+O

( 1

N2

)

.

The sum of the right sides of this display is equal to 1 − O(1/N2). Because the
transition probabilities on the left sides add to a number not bigger than one,
the inequalities must be equalities up to the order O(1/N2). This show that for
N → ∞ the three types of events account for all relevant transitions, where the “no
change” transition is by far the most likely one. Define a continuous time process
BN = (BNt : t ≥ 0) by

BNj/N = ANj ,

and letting B be continuous on the intervals
[
j/N, (j + 1)/N

)
. Then the sequence

of processes BN tends to a Markov process B = (Bt: t ≥ 0) on the state space
{1, 2, 3, . . . , } with generator given by

C(k, l) =







(
k
2

)
, if l = k − 1,

−kρ
2 −

(
k
2

)
, if k = l,

kρ
2 , if k = l + 1.

11.15 Theorem. The transition matrices Q
(N)
t defined by Q

(N)
t (k, l) = P (BNs+t =

l|BNs = k) satisfy Q
(N)
t → etC as N → ∞, for any t > 0.

The proof is similar to the proof of Theorem 11.6. The limiting process B is
a birth-death process, i.e. a Markov process on the natural numbers whose jumps
are always an increase or a decrease by exactly one. The (total) death rate

(
k
2

)
of

the process if there are k lines “alive” is for large k much bigger than the (total)
birth rate kρ/2. This will cause the process to come down to the state 1 eventually.
At that point the ancestry process has reached a single individual whose two loci
are the ancestor of the two loci of all n individuals. The first such individual is a
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two-loci MRCA of the sample. (The death rate of the process B in state 1 is zero,
while the birth rate is positive; hence the process will bounce back up from there,
but its relevance to the ancestry stops at the MRCA.)

Standard theory on birth-death processes allows to compute the mean time
to reaching the MRCA and the distribution of the maximal number of individuals
until this time. Let

TMRCA = inf{t ≥ 0:Bt = 1}, M = max{Bt: 0 ≤ tεTMRCA}.

Then

EnTMRCA =
2

ρ

∫ 1

0

(1 − vn−1

1 − v

)(
eρ(1−v) − 1

)
dv.

Furthermore

Pn(M ≤ m) =

∑m−1
j=n−1 j!ρ

−j
∑m−1

j=0 j!ρ−j
, m ≥ n.

It can be seen from the latter formula that the maximal number of individuals in
the ancestry process does not exceed the sample size n much.

11.16 EXERCISE. Prove that the distribution of M satisfies the recursion formula
Pn(M ≤ m) = Pn−1(M ≤ m)(n − 1)/(ρ + n − 1) + Pn+1(M ≤ m)ρ/(ρ + n − 1).
Derive the the expression for Pn(M ≤ m) from this.

Figure 11.6. Ancestral recombination graph for a sample of 6 two-loci individuals. Calendar time
flows vertically from top to bottom.
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Now that we have proved that the total number of ancestors (partial or two-loci)
is a birth-death process that decreases to one eventually (in the limit as N → ∞),
we can study the ancestral relationships in more detail. The ancestral recombination
graph visualizes the process; see Figure 11.6 for an example. It is read backwards
in time, starts with n lineages, and undergoes both coalescence and branching.
A coalescence corresponds to (exactly) two children choosing the same parent (the
event C) as before. The new element is the branching of a lineage, which corresponds
to (exactly) one child choosing two parents (the event RC) and copying one locus
from the first and the other locus from the second parent. In the ordered version of
the graph (as in the figure) the lines representing the two parents are drawn with
the left line representing the parent who segregates the left locus and the right line
representing the parent who segregates the right locus.

Corresponding to the graph we can define a Markov process, as follows. Start
with n lineages. At each given time:

- Every lineage that exists at that time generates an exponential variable with
intensity ρ/2.

- Every pair of lineages generates an exponential variable with intensity 1.
- All exponential variables are independent.
- The lineage or pair with the smallest exponential variables wins: if it is a lineage,

then this splits in two; if it is a pair, then this pair coalesces.
- The split or coalescence is inserted in the graph separated from the previous

event by the winning time.
Net the process repeats, independently from the past. Eventually the process will
reduce to one lineage. At that point it stops.

This process is the limit of the ancestral process described in discrete time
before. The factors

(
k
2

)
and k in (11.14) correspond to the number of pairs trying

to coalesce and the number of lines trying to split. We omit the details of the
mathematical limit procedure.

The ancestral recombination graph allows to follow the ancestorship relations
for both loci and hence contains the coalescent trees for both loci. The two trees
are obtained by removing at each branchpoint the paths to the right or the paths
to the left, respectively. The coalescent trees for the two loci corresponding to the
ancestral recombination graph in Figure 11.6 are given in Figure 11.7. Note that
in this case the most recent common ancestors for the two loci, indicated by “M”
in the figures, are different, and are also different from the most recent common
ancestor for the two loci jointly. The latter of course is farther back in the past.

The preceding can be extended to haplotypes of more than two loci. In the
model of discrete generations, a child is then still allowed to choose at most two
parents, but it may divide the set of loci in any way over the two parents, thus
choosing multiple crossover points. However, in the preceding setting where the
probability of recombination was set to converge to zero (r = ρ/N with N → ∞)
it is reasonable to assume that the probability of multiple crossovers is negligible
relative to the probability of a single recombination. Hence in the limit approxima-
tion multiple crossovers do not occur and the left and right edges of a branching
in the ancestral recombination graph can still be understood to refer to a “left”
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M

M

Figure 11.7. The coalescent trees of the left and right locus corresponding to the ancestral recom-
bination graph in Figure 11.6. The bends in the paths are retained from the latter figure, to facilitate
comparison. The MRCAs of the loci are indicated by the symbol “M”.

and “right” arm of the genome, even though the split point between the two arms
can vary. The locations of these split points are typically modelled as being in-
dependently superimposed on the ancestral recombination graph, according to a
given marginal distribution, for instance the uniform distribution on the genome
represented as the interval [0, 1]. The split points are indicated by numbers on the
ancestral recombination graph, as shown in Figure 11.8. Given an annotated graph
of this type, it is possible to recover the coalescent tree for any given locus x by
following at each branching the appropriate route: if the branching is annoted by
the number s, then left if x < s and right if x > s.

Notes

Ewens, Kingman, Moehle, Sagitov
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0.7
0.3

0.1

Figure 11.8. Multiple locus ancestral recombination graph.
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14
Statistics and Probability

This chapter describes subjects from statistics and probability theory that are not
always included in introductory courses, but are relevant to genetics.

14.1 Contingency Tables

A contingency table is a vector, matrix or array of counts of individuals belonging to
certain categories. A contingency table based on a random sample from a population
possesses a multinomial distribution. Such tables arise frequently in genetics, and it
is often desired to test whether the corresponding probability vector takes a special
form. Chisquare tests, which derive their name from the asymptotic approximation
to the distribution of the test statistic, are popular for this purpose. In this section
we discuss the asymptotics of such tests, also giving attention to situations in which
the test statistics are not asymptotically chisquared distributed. For omitted proofs
we refer to Chapter 17 in Van der Vaart (1998).

14.1.1 Quadratic Forms in Normal Vectors

The chisquare distribution with k degrees of freedom is (by definition) the distri-

bution of
∑k

i=1Z
2
i for i.i.d. N(0, 1)-distributed variables Z1, . . . , Zk. The sum of

squares is the squared norm ‖Z‖2 of the standard normal vector Z = (Z1, . . . , Zk).
The following lemma gives a characterization of the distribution of the norm of a
general zero-mean normal vector.

14.1 Lemma. If the vector X is Nk(0,Σ)-distributed, then ‖X‖2 is distributed

as
∑k

i=1λiZ
2
i for i.i.d. N(0, 1)-distributed variables Z1, . . . , Zk and λ1, . . . , λk the

eigenvalues of Σ.

Proof. There exists an orthogonal matrix O such that OΣOT = diag (λi). Then
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the vector OX is Nk
(
0, diag (λi)

)
-distributed, which is the same as the distribution

of the vector (
√
λ1Z1, . . . ,

√
λkZk). Now ‖X‖2 = ‖OX‖2 has the same distribution

as
∑

(
√
λiZi)

2.

The distribution of a quadratic form of the type
∑k

i=1λiZ
2
i is complicated in

general. However, in the case that every λi is either 0 or 1, it reduces to a chisquare
distribution. If this is not naturally the case in an application, then a statistic is
often transformed to achieve this desirable situation. The definition of the Pearson
statistic illustrates this.

14.1.2 Pearson Statistic

Suppose that we observe a vector Xn = (Xn,1, . . . , Xn,k) with the multino-
mial distribution corresponding to n trials and k classes having probabilities
p = (p1, . . . , pk). The Pearson statistic for testing the null hypothesis H0: p = a
is given by

Cn(a) =

k∑

i=1

(Xn,i − nai)
2

nai
.

We shall show that the sequence Cn(a) converges in distribution to a chisquare
distribution if the null hypothesis is true. The practical relevance is, that we can use
the chisquare table to find critical values for the test. The proof shows why Pearson
divided the squares by nai, and did not propose the simpler statistic ‖Xn − na‖2.

14.2 Theorem. If the vectors Xn are multinomially distributed with parameters n
and a = (a1, . . . , ak) > 0, then the sequence Cn(a) converges under a in distribution
to the χ2

k−1-distribution.

Proof. The vector Xn can be thought of as the sum of n independent multinomial
vectors Y1, . . . , Yn with parameters 1 and a = (a1, . . . , ak). Then

EYi = a, CovYi =







a1(1 − a1) −a1a2 · · · −a1ak
−a2a1 a2(1 − a2) · · · −a2ak

...
...

...
−aka1 −aka2 · · · ak(1 − ak)






.

By the multivariate central limit theorem, the sequence n−1/2(Xn − na) converges
in distribution to the Nk(0,CovY1)-distribution. Consequently, with

√
a the vector

with coordinates
√
ai,

(Xn,1 − na1√
na1

, . . . ,
Xn,k − nak√

nak

)

 N(0, I −√
a
√
a
T
).

Since
∑
ai = 1, the matrix I − √

a
√
a
T

has eigenvalue 0, of multiplicity 1 (with
eigenspace spanned by

√
a), and eigenvalue 1, of multiplicity (k−1) (with eigenspace

equal to the orthocomplement of
√
a). An application of the continuous-mapping

theorem and next Lemma 14.1 conclude the proof.
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The number of degrees of freedom in the chisquared approximation for Pear-
son’s statistic is the number of cells of the multinomial vector that have posi-
tive probability. However, the quality of the approximation also depends on the
size of the cell probabilities aj . For instance, if 1001 cells had null probabilities
10−23, . . . , 10−23, 1 − 10−20, then it is clear that for moderate values of n all ex-
cept one cells will be empty, and a huge value of n is necessary to make a χ2

1000-
approximation work. As a rule of thumb, it is often advised to choose the parti-
tioning sets such that each number naj is at least 5. This criterion depends on the
(possibly unknown) null distribution, and is not the same as saying that the number
of observations in each cell must satisfy an absolute lower bound, which could be
very unlikely if the null hypothesis is false. The rule of thumb means to protect the
level.

14.1.3 Estimated Parameters

Chisquared tests are used quite often, but usually to test more complicated hypothe-
ses. If the null hypothesis of interest is composite, then the parameter a is unknown
and cannot be used in the definition of a test statistic. A natural extension is to
replace the parameter by an estimate ân and use the statistic

Cn(ân) =

k∑

i=1

(Xn,i − nân,i)
2

nân,i
.

The estimator ân is constructed to be a good estimator when the null hypothesis is
true. The asymptotic distribution of this modified Pearson statistic is not necessarily
chisquare, but depends on the estimators ân being used. Most often the estimators
will be asymptotically normal, and the statistics

Xn,i − nân,i
√
nân,i

=
Xn,i − nan,i

√
nân,i

−
√
n(ân,i − an,i)

√
ân,i

will be asymptotically normal as well. Then the modified chisquare statistic will be
asymptotically distributed as a quadratic form in a multivariate-normal vector. In
general, the eigenvalues determining this form are not restricted to 0 or 1, and their
values may depend on the unknown parameter. Then the critical value cannot be
taken from a table of the chisquare distribution. There are two popular possibilities
to avoid this problem.

First, the Pearson statistic is a certain quadratic form in the observations that
is motivated by the asymptotic covariance matrix of a multinomial vector. When the
parameter a is estimated, the asymptotic covariance matrix changes in form, and
it would be natural to change the quadratic form in such a way that the resulting
statistic is again chisquare distributed. This idea leads to the Rao-Robson-Nikulin
modification of the Pearson statistic.

Second, we could retain the form of the Pearson statistic, but use special esti-
mators â. In particular, the maximum likelihood estimator based on the multinomial



210 14: Statistics and Probability

vector Xn, or the minimum-chisquare estimator ān defined by, with P0 being the
null hypothesis,

k∑

i=1

(Xn,i − nān,i)
2

nān,i
= inf
p∈P0

k∑

i=1

(Xn,i − npi)
2

npi
.

The right side of this display is the “minimum-chisquare distance” of the observed
frequencies to the null hypothesis, and is an intuitively reasonable test statistic. The
null hypothesis is rejected if the distance of the observed frequency vector Xn/n to
the set P0 is large. A disadvantage is greater computational complexity.

These two modifications, using the minimum-chisquare estimator or the max-
imum likelihood estimator based on Xn, may seem natural, but are artificial in
some applications. For instance, in goodness-of-fit testing, the multinomial vector is
formed by grouping the “raw data”, and it would be more natural to base the esti-
mators on the raw data, rather than on the grouped data. On the other hand, using
the maximum likelihood- or minimum-chisquare estimator based on Xn has the ad-
vantage of a remarkably simple limit theory: if the null hypothesis is “locally linear”,
then the modified Pearson statistic is again asymptotically chisquare distributed,
but with the number of degrees of freedom reduced by the (local) dimension of the
estimated parameter.

This interesting asymptotic result is most easily explained in terms of the
minimum-chisquare statistic, as the loss of degrees of freedom corresponds to a
projection (i.e. a minimum distance) of the limiting normal vector. We shall first
show that the two types of modifications are asymptotically equivalent, and are
asymptotically equivalent to the likelihood ratio statistic as well. The likelihood
ratio statistic for testing the null hypothesis H0: p ∈ P0 is given by

Ln(ân) = inf
p∈P0

Ln(p), Ln(p) = 2

k∑

i=1

Xn,i log
Xn,i

npi
.

14.3 Lemma. Let P0 be a closed subset of the unit simplex, and let ân be the
maximum likelihood estimator of a under the null hypothesis H0: a ∈ P0 (based on
Xn). Then

inf
p∈P0

k∑

i=1

(Xn,i − npi)
2

npi
= Cn(ân) + oP (1) = Ln(ân) + oP (1).

Proof. Let ān be the minimum-chisquare estimator of a under the null hypothe-
sis. Both sequences of estimators ān and ân are

√
n-consistent. For the maximum

likelihood estimator this follows from Corollary 5.53 in Van der Vaart (1998). The
minimum-chisquare estimator satisfies by its definition

k∑

i=1

(Xn,i − nān,i)
2

nān,i
≤

k∑

i=1

(Xn,i − nai)
2

nai
= OP (1).
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This implies that each term in the sum on the left is OP (1), whence n|ān,i− ai|2 =
OP (ān,i) +OP

(
|Xn,i − nai|2/n

)
and hence the

√
n-consistency.

Next, the two-term Taylor expansion log(1 + x) = x − 1
2x

2 + o(x2) yields, for
any

√
n-consistent estimator sequence p̂n,

k∑

i=1

Xn,i log
Xn,i

np̂n,i
= −

k∑

i=1

Xn,i

(np̂n,i
Xn,i

− 1
)

+ 1
2

k∑

i=1

Xn,i

(np̂n,i
Xn,i

− 1
)2

+ oP (1)

= 0 + 1
2

k∑

i=1

(Xn,i − np̂n,i)
2

Xn,i
+ oP (1).

In the last expression we can also replace Xn,i in the denominator by np̂n,i, so
that we find the relation Ln(p̂n) = Cn(p̂n) between the likelihood ratio and the
Pearson statistic, for every

√
n-consistent estimator sequence p̂n. By the definitions

of ān and ân, we conclude that, up to oP (1)-terms, Cn(ān) ≤ Cn(ân) = Ln(ân) ≤
Ln(ān) = Cn(ān). The lemma follows.

Since the minimum-chisquare estimator ān (relative to P̄0) is
√
n-consistent,

the asymptotic distribution of the minimum-chisquare statistic is not changed if we
replace nān,i in its denominator by the true value nai. Next, we can decompose,

Xn,i − npi√
nai

=
Xn,i − nai√

nai
−

√
n(pi − ai)√

ai
.

The first vector on the right converges in distribution to multivariate normal vector
X as in the proof of Theorem 14.2. The (modified) minimum-chisquare statistics are
the distances of these vectors to the sets Hn,0 =

√
n(P0 − a)/

√
a. If these converge

in a suitably way to a limit, then the statistics ought to converge to the minimum
distance of X to this set. This heuristic argument is made precise in the following
theorem, which determines the limit distribution under the assumption that Xn is
multinomial with parameters n and a+ g/

√
n.

Say that a sequence of sets Hn converges to a set H if H is the set of all limits
limhn of converging sequences hn with hn ∈ Hn for every n and, moreover, the
limit h = limi hni of every converging subsequence hni with hni ∈ Hni for every i
is contained in H .

14.4 Theorem. Let P0 be a subset of the unit simplex such that the sequence of
sets

√
n(P0−a) converges to a set H0 (in Rk), and suppose that a > 0. Then, under

a+ g/
√
n,

inf
p∈P0

k∑

i=1

(Xn,i − npi)
2

npi
 

∥
∥
∥X +

g√
a
− 1√

a
H0

∥
∥
∥

2

,

for a vector X with the N(0, I −√
a
√
a
T
)-distribution. Here (1/

√
a)H0 is the set of

vectors (h1/
√
a1, . . . , hk/

√
ak) as h ranges over H0.
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The value g = 0 in this theorem corresponds to the null hypothesis, whereas
g 6= 0 could refer to the power at alternatives a + g/

√
n that are close to the null

hypothesis.
A chisquare limit distribution arises in the case that the limit set H0 is a linear

space. Under the null hypothesis this is an ordinary chisquare distribution, whereas
under alternatives the chisquare distribution is noncentral. Recall that a random
variable

∑k
i=1(Zi + δi)

2 for Z1, . . . , Zk independent standard normal variables and
δ = (δ1, . . . , δk) ∈ Rk an arbitrary vector is said to possess a noncentral chisquare
distribution with k degrees of freedom and noncentrality parameter ‖δ‖.

14.5 Corollary. Let P0 be a subset of the unit simplex such that the sequence
of sets

√
n(P0 − a) converges to a linear subspace of dimension l (of Rk), and let

a > 0. Then both the sequence of minimum-chisquare statistics and the sequence
of modified Pearson statistics Cn(ân) converge in distribution under a + g/

√
n to

the noncentral chisquare distribution with k− 1− l degrees of freedom and noncen-
trality parameter

∥
∥(I −Π)(g/

√
a)

∥
∥, for Π the orthogonal projection onto the space

(1/
√
a)H0.

Proof. The vector X in the preceding theorem is distributed as Z − Π√
aZ for

Π√
a the projection onto the linear space spanned by the vector

√
a and Z a k-

dimensional standard normal vector. Since every element of H0 is the limit of a
multiple of differences of probability vectors, 1Th = 0 for every h ∈ H0. Therefore,
the space (1/

√
a)H0 is orthogonal to the vector

√
a, and ΠΠ√

a = 0 for Π the
projection onto the space (1/

√
a)H0.

The distance ofX to the space (1/
√
a)H0 is equal to the norm ofX−ΠX , which

is distributed as the norm of Z−Π√
aZ−ΠZ. The latter projection is multivariate-

normally distributed with mean zero and covariance matrix the projection matrix
I − Π√

a − Π with k − l − 1 eigenvalues 1. The corollary for g = 0 therefore follows
from Lemma 14.1 or 14.18.

If g 6= 0, then we need to take into account an extra shift g/
√
a. As

〈g/√a,√a〉 =
∑k
i=1gi = 0, it follows that (I−Π√

a)(g/
√
a) = g/

√
a. Hence the limit

variable can be written as the square of
∥
∥(I −Π)(X + g/

√
a)

∥
∥, which is distributed

as
∥
∥(I−Π)(I−Π√

a)(Z+ g/
√
a)

∥
∥. Finally we apply the result of Exercise 14.6 with

P = Π + Π√
a.

14.6 EXERCISE. If Z is a standard normal vector in Rk and P : Rk → Rk an
orthogonal projection onto an l-dimensional linear subspace, then

∥
∥(I−P )(Z+µ)

∥
∥

2

possesses a noncentral chisquare distribution with k − l degrees of freedom and
noncentrality parameter ‖(I − P )µ‖. [Rewrite the statistic as

∑k
i=l+1〈Z + µ, ei〉2

for e1, . . . , ek an orthonormal basis whose first l elements span the range of P .]

14.7 Example (Parametric model). If the null hypothesis is a parametric family
P0 = {pθ: θ ∈ Θ} indexed by a subset Θ of Rl with l ≤ k and the maps θ 7→ pθ
from Θ into the unit simplex are continuously differentiable homeomorphisms of
full rank, then

√
n(P0 − pθ) → ṗθ(R

l) for every θ ∈ Θ̊, where ṗθ is the derivative.
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Because the limit set is a linear space of dimension l, the chisquare statistics
Cn(p̂θ) are asymptotically chisquare distributed with k − l − 1 degrees of freedom.

This conclusion is immediate from Theorem 14.4 and its corollary, provided it
can be shown that the sets

√

(P0 − pθ) converge to the set ṗθ(R
l) as claimed. Now

the points θ + h/
√
n are contained in Θ for every h ∈ Rl and sufficiently large n

and
√
n(pθ+h/

√
n − pθ) → ṗθh by the assumed differentiability of the map θ 7→ pθ.

Furthermore, if a subsequence of
√
n(pθn − pθ) converges to a point h for a given

sequence θn ∈ Θ, then
√
n(θn − θ) converges to η = q′pθ

h for q the inverse map of
θ 7→ pθ; hence

√
n(pθn − pθ) → ṗθη. It follows that the sets

√
n(P0 − pθ) converge

to the range of the derivative ṗθ.

14.1.4 Nested Hypotheses

Rather than testing a null hypothesis P0 within the full unit simplex, one might
be interested in testing it within a proper submodel of the unit simplex. More
generally, we may consider a nested sequence of subsets P0 ⊂ P1 ⊂ · · · ⊂ PJ of the
unit simplex and test Pj as the null model within Pj+1. A natural test statistic is
the difference

Cn(ân,j) − Cn(ân,j+1),

for ân,j the maximum likelihood estimator of the vector of success probabilities
under the assumption that the true parameter belongs to Pj. If the models Pj
are locally linear, then these test statistics are asymptotically distributed as inde-
pendent chisquare variables, and can be viewed as giving a decomposition of the
discrepancy Cn(ân,0) between unit simplex and smallest model into discrepancies
between the models. This is similar to te

14.8 Theorem. If a > 0 is contained in P0 and the sequences of sets
√
n(Pj −

a) converge to linear subspaces Hj ⊂ Rk of dimensions kj , then the sequence of
vectors

(
Cn(ân,0) − Cn(ân,1), . . . , Cn(ân,J−1) − Cn(ân,J), Cn(ân,J),

)
converges in

distribution to a vector of independent chisquare variables, the jth variable having
kj+1 − kj degrees of freedom (where kJ+1 = k).

Proof. By extension of Theorem 14.4 it can be shown that the sequence of
statistics

(
Cn(ân,0), . . . , Cn(ân,J)

)
tends in distribution to the stochastic vector

(
‖X − H0/

√
a‖2, . . . , ‖X − HJ/

√
a‖2

)
, for X = (I − Π√

a)Z and Z a standard
normal vector. As in the proof of Corollary 14.5 we have X − ΠHjX = (I − Πj)Z,
for Πj the orthogonal projection onto the subspace lin

√
a + Hj/

√
a. The result

follows by representing Z as a vector of standard normal variables relative to an
orthonormal basis constructed from successive orthonormal bases of the nested sub-
spaces lin

√
a+H0/

√
a ⊂ · · · ⊂ lin

√
a+HJ/

√
a.



214 14: Statistics and Probability

N11 N12 · · · N1r N1.

N21 N22 · · · N1r N2.

...
...

...
...

Nk1 Nk2 · · · N1r Nk.

N.1 N.2 · · · N.r N

Table 14.1. Classification of a population of N elements according to two categories, Nij elements
having value i on the first category and value j on the second. The borders give the sums over each row
and column, respectively.

14.1.5 Testing Independence

Suppose that each element of a population can be classified according to two char-
acteristics, having k and r levels, respectively. The full information concerning the
classification can be given by a (k × r)-table of the form given in Table 14.1.

Often the full information is not available, but we do know the classification
Xn,ij for a random sample of size n from the population. The matrix Xn,ij , which
can also be written in the form of a (k× r)-table, is multinomially distributed with
parameters n and probabilities pij = Nij/N . The null hypothesis of independence
asserts that the two categories are independent, i.e. H0: pij = aibj for (unknown)
probability vectors ai and bj .

The maximum likelihood estimators for the parameters a and b (under the null

hypothesis) are âi = Xn,i./n and b̂j = Xn,.j/n. With these estimators the modified
Pearson statistic takes the form

Cn(ân ⊗ b̂n) =

k∑

i=1

r∑

j=1

(Xn,ij − nâib̂j)
2

nâib̂j
.

The null hypothesis is a k+r−2-dimensional submanifold of the unit simplex in Rkr.
In a shrinking neighbourhood of a parameter in its interior this manifold looks like
its tangent space, a linear space of dimension k+r−2. Thus, the sequence Cn(ân⊗b̂n)
is asymptotically chisquare distributed with kr − 1 − (k + r − 2) = (k − 1)(r − 1)
degrees of freedom.

14.9 Corollary. If the (k × r) matrices Xn are multinomially distributed with

parameters n and pij = aibj > 0, then the sequence Cn(ân ⊗ b̂n) converges in
distribution to the χ2

(k−1)(r−1)-distribution.

Proof. The map (a1, . . . , ak−1, b1, . . . , br−1) → (a×b) from Rk+r−2 into Rkr is con-
tinuously diffferentiable and of full rank. The true values (a1, . . . , ak−1, b1 . . . , br−1)
are interior to the domain of this map. Thus the sequence of sets

√
n(P0 − a × b)

converges to a (k + r − 2)-dimensional linear subspace of Rkr .
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14.1.6 Comparing Two Tables

Suppose we wish to compare two contingency tables giving the classifications of two
populations, based on two independent random samples from the populations. Given
independent vectors Xm and Yn with multinomial distributions with parameters m
and p = (p1, . . . , pk) and n and q = (q1, . . . , qk), respectively, we wish to test the
null hypothesis H0: p = q that the relative frequencies in the populations are the
same.

This situation is almost the same as testing independence in a (2 × k)-table
(with rows Xm and Yn), the difference being that the counts of the two rows of
this table are fixed to m and n in advance, and not binomial variables as in the
(2 × k)-table.

It is natural to base a test on the difference Xm/m and Yn/n of the maximum
likelihood estimators of p and q. Under the null hypothesis the maximum likelihood
estimator of the common parameter p = q is (Xm + Yn)/(m + n). A natural test
statistic is therefore

(14.10)
k∑

i=1

mn(Xm,i/m− Yn,i/n)2

Xm,i + Yn,i
.

The norming of the terms by the constant mn may look odd at first, but has been
chosen to make the statistic asymptotically chisquare.

Another way to approach the problem would be to consider first the test statis-
tic we would use if the value of p = q under the null hypothesis were known. If this
value is denoted a, then a natural test statistic is

Cm,n(a) =

k∑

i=1

(Xm,i −mai)
2

mai
+

k∑

i=1

(Yn,i − nai)
2

nai
.

This is the sum of two chisquare statistics for testing H0: p = a and H0: q = a using
Xn and Yn, respectively. Because the common value a is not known we replace
it by its maximum likelihood estimator under the null hypothesis, which is â =
(Xm + Yn)/(m+ n). From Theorem 14.2 it follows that the test statistic with the
true value of a is asymptotically chisquare with 2(k − 1) degrees of freedom, under
the null hypothesis. The test statistic Cm,n(â) with the estimated cell frequencies â
turns out to be asymptotically chisquare with k − 1 degrees of freedom, under the
null hypothesis, i.e. k − 1 degrees of freedom are “lost”.

The statistic (14.10) turns out to be algebraically identical to Cm,n(â).

14.11 Theorem. If the vectors Xm and Yn are independent and multinomially
distributed with parameters m and a + g/

√
m+ n and n and a + h/

√
m+ n for

a = (a1, . . . , ak) > 0 and arbitrary (g, h), then the statistic Cm,n(â) converges as
m,n → ∞ such that m/(m + n) → λ ∈ (0, 1) in distribution to the noncentral
χ2
k−1-distribution with noncentrality parameter

∥
∥(g − h)/

√
a
∥
∥
√

λ(1 − λ).
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Proof. First consider the case that g = h = 0. The statistic Cm,n(â) can be written
in the form (14.10). We can decompose

√
m+ n

Xm/m− Yn/n√
a

=

√

m+ n

m

(Xm −ma)√
ma

−
√

m+ n

n

(Yn − na)√
na

.

As shown in the proof of Theorem 14.2 the two random vectors on the right side

converge in distribution to the Nk(0, I −
√
a
√
a
T
)-distribution. If m/(m+ n) → λ

and n/(m + n) → 1 − λ, then in view of the independence of the two vectors, the

whole expression tends in distribution to a Nk
(
0, (λ−1 + (1 − λ)−1)(I − √

a
√
a
T )

-
distribution. Again as in the proof of Theorem 14.2, the square norm of the preceding
display tends to (λ(1 − λ))−1 times a variable with the chisquare distribution with
k−1 degrees of freedom. This square norm is the statistic Cm,n(â) up to the scaling
factor mn/(m + n)2, which compensates for the multiplication by (λ(1 − λ))−1/2,
and replacing a in the denominator by (Xm + Yn)/(m+ n).

If g or h is not zero, then the same arguments show that the left side of the
preceding display converges in distribution to

1
√

λ(1 − λ)
(I − Π√

a)Z +
g − h√

a
,

for a standard normal vector Z and Π√
a the orthogonal projection onto the linear

space spanned by the vector
√
a. Now Π√

a

(
(h−g)/√a

)
= 0, because the coordinates

of both g and h add up to 0. Finally we apply the result of Exercise 14.6.

The theorem with g = h = 0 gives the asymptotic null distribution of the test
statistics, which is ordinary (central) chisquare with k−1 degrees of freedom. More
generally, the theorem shows that the power at alternatives (a + g/

√
m+ n, a +

h/
√
m+ n) is determined by a noncentral chisquare distribution with an equal

number of degrees of freedom but with noncentrality parameter proportional to
∥
∥(g − h)/

√
a
∥
∥. These alternative tend to the point (a, a) in the null hypothesis,

and therefore this parameter refers to a local power of the test. However, the result
may be loosely remembered as that the power at alternatives (a, b) is determined
by square noncentrality parameter

mn

m+ n

∥
∥
∥

a− b
√

(a+ b)/2

∥
∥
∥

2

.

14.12 Example (Comparing two binomials). For k = 2 the test statistic
compares the success probabilities p1 and q1 of two independent binomial vari-
ables Xm,1 and Yn,1, with parameters (m, p1) and (n, q1), respectively. Because
Xm,2/m− Yn,2/n = −(Xm,1/m− Yn,1/n), the numerators of the two terms in the
sum (14.10) are identical. Elementary algebra allows to rewrite the test statistic as

mn

m+ n

(Xm,1/m− Yn,1/n)2

â1(1 − â1)
,
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for â1 = (Xm,1 + Yn,1)/(m+ n) the maximum likelihood estimator of the common
success probability under the null hypothesis.

It is easy to verify directly, from the Central limit theorem, that this statistic
is asymptotically chisquare distributed with one degree of freedom, under the null
hypothesis H0: p1 = q1. Furthermore, for alternatives with p1 − q1 = h/

√
m+ n the

sequence of test statistics is asymptotically noncentrally chisquared distributed with
one degree of freedom and square noncentrality parameter λ(1−λ)h2/

(
a1(1− a1)

)
.

In terms of the original parameters the square noncentrality parameter is mn/(m+
n) (p1−q1)2/(a1a2). These assertions can of course also be obtained from the general
result.

In the case-control setting the noncentrality parameter can be written in attrac-
tive alternative form. Suppose that a population consists of affected and nonaffected
individuals, and Xm,1 and Yn,1 are the numbers individuals that possess a certain
characteristic M in independent random samples of m affected individuals and n
unaffected individuals. Let pM,A, pM,U , pM , pA, pU the fractions of individuals in
the population that have characteristic M and are affected, have characteristic M
and are not affected, have characteristic M , etc., and let pM|A = pM,A/pA and
pM|U = pM,U/pU be the corresponding conditional probabilities. The null hypoth-
esis of interest is H0: pM|A = pM|U , and the corresponding noncentrality parameter
is

mn

m+ n

(pM|A − pM|U )2

pM (1 − pM )
=
r2M,A

pApU
.

In the last expression rM,A is the correlation between the 1M and 1U for M and
U being the event that a randomly chosen individual has characteristic M or is
affected, and the last equality follows after some algebra.

14.13 EXERCISE. Verify the last formula in the preceding example. [Hint: rM,A =

(pM,A−pMpA)/
√

pM (1 − pM )pApU . Write pM|A = rM,A

√

pM (1 − pM )pU/pA+pM
and pM|A = rM,U

√

pM (1 − pM )pA/pU + pM , and note that rM,A = −rM,U .]

14.2 Likelihood Ratio Statistic

Given observed data X(n) with probability density p
(n)
θ indexed by an unknown

parameter θ ranging over a set Θ, the likelihood ratio statistic statistic for testing
the null hypothesis H0: θ ∈ Θ0 versus the alternative H1: θ ∈ Θ − Θ0 is defined as

supθ∈Θ p
(n)
θ (X(n))

supθ∈Θ0
p
(n)
θ (X(n))

=
p
(n)

θ̂
(X(n))

p
(n)

θ̂0
(X(n))

,

for θ̂ and θ̂0 the maximum likelihood estimators under the full model Θ and the
null hypothesis Θ0, respectively. In standard situations (local asymptotic normality,
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open Euclidean parameter spaces) twice the log likelihood ratio statistics are under
the null hypothesis asymptotically distributed as a chisquare variable with degrees
of freedom equal to the difference in dimensions of Θ and Θ0. However, this result
fails if the null parameter is on the boundary of the parameter set, a situation that
is common in statistical genetics. In this section we give an heuristic derivation of
a more general result, in the case of replicated data. Furthermore, we consider the
likelihood ratio statistic based on missing data.

14.2.1 Asymptotics

We consider the situation that the observed data is a random sample X1, . . . , Xn

from a density pθ, so that the likelihood of X(n) = (X1, . . . , Xn) is the product
density

∏n
i=1pθ(X

i). The parameter set Θ is assumed to be a subset Θ ⊂ Rk of
k-dimensional Euclidean space. We consider the distribution of the likelihood ratio
statistic under the “true” parameter ϑ, which is assumed to be contained in Θ0.
Introducing the local parameter spaces Hn =

√
n(Θ − ϑ) and Hn,0 =

√
n(Θ0 − ϑ),

we can write two times the log likelihood ratio statistic in the form

Λn = 2 sup
h∈Hn

log
n∏

i=1

pϑ+h/
√
n

pϑ
(X i) − 2 sup

h∈Hn,0

log
n∏

i=1

pϑ+h/
√
n

pϑ
(X i).

Let ˙̀
θ(x) and ῭

θ(x) be the first two (partial) derivatives of the map θ 7→ log pθ(x).
A Taylor expansion suggests the approximation

log
pϑ+h/

√
n

pϑ
(x) ≈ 1√

n
hT ˙̀

ϑ(x) − 1
2

1

n
hT ῭

ϑ(x)h.

The error in this approximation is o(n−1). This suggests that

(14.14) log
n∏

i=1

pϑ+h/
√
n

pϑ
(Xi) =

1√
n

n∑

i=1

hT ˙̀
ϑ(Xi) − 1

2

1

n

n∑

i=1

hT ῭
ϑ(Xi)h+ · · · ,

where the remainder (the dots) is asymptotically negligible. By the Central Limit
Theorem, the Law of Large Numbers, and the “Bartlett identities” Eθ ˙̀

θ(X1) = 0
and Eθ ῭θ(X1) = −Covθ

(
˙̀
θ(X1)

)
,

∆n,ϑ: =
1√
n

n∑

i=1

˙̀
ϑ(Xi)

ϑ
 N(0, Iϑ),

In,ϑ: = − 1

n

n∑

i=1

῭
ϑ(Xi)

ϑ→ Iϑ: = Covϑ
(
˙̀
ϑ(X1)

)
.

This suggests the approximations

Λn ≈ 2 sup
h∈Hn

(
hT∆n,ϑ − 1

2h
T Iϑh

)
− 2 sup

h∈Hn,0

(
hT∆n,ϑ − 1

2h
T Iϑh

)

=
∥
∥I

−1/2
ϑ ∆n,ϑ − I

1/2
ϑ Hn,0

∥
∥

2 −
∥
∥I

−1/2
ϑ ∆n,ϑ − I

1/2
ϑ Hn

∥
∥

2
.
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Here ‖ · ‖ is the Euclidean distance, and ‖x − H‖ = inf{‖x − h‖:h ∈ H} is the
distance of x to a set H . If the sets Hn,0 and Hn converge to limit sets H0 and H
in an appropriate sense, then this suggests that two times the log likelihood ratio
statistic is asymptotically distributed as

(14.15)
Λ =

∥
∥I

−1/2
ϑ ∆ϑ − I

1/2
ϑ H0

∥
∥

2 −
∥
∥I

−1/2
ϑ ∆ϑ − I

1/2
ϑ H

∥
∥

2
,

=
∥
∥X − I

1/2
ϑ H0

∥
∥

2 −
∥
∥X − I

1/2
ϑ H

∥
∥

2
,

for ∆ϑ a random vector with a normal Nk(0, Iϑ)-distribution, and X = I
−1/2
ϑ ∆ϑ

possessing the Nk(0, I) distribution. Below we study the distribution of the random
variable on the right for a number of examples of hypotheses H and H0.

The following theorem makes the preceding informal derivation rigorous under
mild regularity conditions. It uses the following notion of convergence of sets. Write
Hn → H if H is the set of all limits limhn of converging sequences hn with hn ∈ Hn

for every n and, moreover, the limit h = limi hni of every converging sequence hni

with hni ∈ Hni for every i is contained in H .[

14.16 Theorem. Suppose that the map θ 7→ pθ(x) is continuously differentiable
in a neighbourhood of ϑ for every x with derivative ˙̀

θ(x) such that the map θ 7→
Iθ = Covθ

(
˙̀
θ(Xi)

)
is well defined and continuous, and such that Iϑ is nonsingular.

Furthermore, suppose that for every θ1 and θ2 in a neighbourhood of ϑ and for a
measurable function ˙̀ such that Eϑ ˙̀2(X1) <∞,

∣
∣log pθ1(x) − log pθ2(x)

∣
∣ ≤ ˙̀(x) ‖θ1 − θ2‖.

If the maximum likelihood estimators θ̂n,0 and θ̂n converge under ϑ in probability
to ϑ and the sets Hn,0 and Hn converge to sets H0 and H , then the sequence
of likelihood ratio statistics Λn converges under ϑ + h/

√
n in distribution to the

random variable Λ given in (14.15), for ∆ϑ normally distributed with mean Iϑh
and covariance matrix Iϑ.

14.17 Example. If Θ0 is the single point ϑ, then H0 = {0}. The limit variable is

then Λ = ‖X‖2 −
∥
∥X − I

1/2
ϑ H

∥
∥

2
.

If ϑ is an inner point of Θ, then the set H is the full space Rk and the second
term on the right of (14.15) is zero. If ϑ is also a relative inner point of Θ0, then H0

will be a linear subspace of Rk. The following lemma then shows that the asymptotic
null distribution of the likelihood ratio statistic is chisquare with k − l degrees of
freedom, for l the dimension of H0.

[ For a proof of the theorem see Van der Vaart (1998).
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14.18 Lemma. Let X be a k-dimensional random vector with a standard normal
distribution and let H0 be an l-dimensional linear subspace of Rk. Then ‖X−H0‖2

is chisquare distributed with k − l degrees of freedom.

Proof. Take an orthonormal base of Rk such that the first l elements span H0. By
Pythagoras’ theorem, the squared distance of a vector z to the space H0 equals the
sum of squares

∑

i>l z
2
i of its last k − l coordinates with respect to this basis. A

change of base corresponds to an orthogonal transformation of the coordinates. Since
the standard normal distribution is invariant under orthogonal transformations, the
coordinates of X with respect to any orthonormal base are independent standard
normal variables. Thus ‖X −H0‖2 =

∑

i>lX
2
i is chisquare distributed.

If ϑ is a boundary point of Θ or Θ0, then the limit sets H or H0 will not be
linear spaces, and the limit distribution is typically not chisquare.

14.19 Example (Recombination fraction). A recombination fraction θ between
two loci is known to belong to the interval Θ = [0, 1

2 ]. To test whether a disease
locus is linked to a marker locus we want to the test the null hypothesis H0: θ = 1

2 ,
which is a boundary point of the parameter set. The set Hn =

√
n(Θ − 1

2 ) is equal
to [− 1

2

√
n, 0] and can be seen to converge to the half line H = (−∞, 0]. Under the

assumption that the Fisher information is positive, the set I
1/2
1/2H is the same half

line***.
The asymptotic null distribution of the log likelihood ratio statistic is the dis-

tribution of |X |2 − |X −H |2 for X a standard normal variable. If X > 0, then 0 is
the point in H that is closest to X and hence |X |2−|X−H |2 = 0. If X ≤ 0, then X
is itself the closest point and hence |X |2 − |X −H |2 = X2, which is χ2-distributed
with one degree of freedom. Because the normal distribution is symmetric, these
two possibilities occur with probability 1

2 . We conclude that the limit distribution
of 2 times the log likelihood ratio statistic is a mixture of a point mass at zero and
a chisquare distribution with one degree of freedom.

For α < 1
2 the equation 1

2P (ξ21 ≥ c) + 1
2P (0 ≥ c) = α is equivalent to P (ξ21 ≥

c) = 2α. Hence the upper α-quantile of this mixture distribution is the upper 2α-
quantile of the chisquare distribution with one degree of freedom.

14.20 Example (Half spaces). Suppose that the parameter set Θ is a halfspace
Θ = {(α, β):α ∈ Rk, β ∈ R, β ≥ 0} and the null hypothesis is H0:β = 0, i.e.
Θ0 = {(α, β):α ∈ Rk, β = 0}. Under the assumption that ϑ ∈ Θ0 the limiting
local parameter spaces corresponding to Θ and Θ0 are H = Rk × [0,∞) and H0 =
Rk × {0}.

The image of a half space {x:xTn ≤ 0} under a nonsingular linear transfor-
mation A is {Ax:xTn ≤ 0} = {y: yT (A−1)Tn ≤ 0}, which is again a half space

Therefore, for a strictly positive-definite matrix I
1/2
ϑ the image H1 = I

1/2
ϑ H is

again a halfspace, and its boundary hyperplane is H1
0 = I

1/2
ϑ H0.

By the rotational symmetry of the standard normal distribution, the distribu-
tion of the variables ‖X−H1

0‖2−‖X−H1‖2 does not depend on the orientation of
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the halfspace H1 and space H1
0 . Taking these spaces as H0 and H1, it is therefore

not difficult to see that this variable has the same distribution as in Example 14.19.

14.21 Example (Holmans’ triangle). Holmans’ triangle as shown in Figure 5.1

has as limiting set H a convex cone with apex at 0. The set I
1/2
ϑ H is also a convex

cone, strictly contained in a halfspace.
Indeed, the geometric action of a positive-definite matrix is to rescale (by mul-

tiplication with the eigenvalues) the coordinates relative to the basis of eigenvectors.
The four quadrants spanned by the eigenvalues are left invariant. If the triangle H

is contained in a quadrant, then so is the set I
1/2
ϑ H , whence its boundary lines

make an angle of less than 90 degrees. If the triangle H covers parts of two quad-
rants, then its image still remains within the union of these quadrants and hence
its boundary lines make an angle of less than 180 degrees.

Figure 14.1 gives an example of a limit set I
1/2
ϑ H in two dimensions. The

variable X = I
1/2
ϑ ∆ϑ is standard normally distributed. In this example the limit

distribution is a mixture of chisquare distributions, because

‖X‖2 − ‖X −A‖2 =







‖X‖2, if X ∈ A,
0, if X ∈ C,
‖Π1X‖2, if X ∈ B,
‖Π2X‖2, if X ∈ D,

,

where Π1 and Π2 are the projections onto the lines perpendicular to the boundary
lines of A.

-4 -2 0 2 4

-4
-2

0
2

4

AB

C D
X

Figure 14.1. The area A refers to the set I
1/2

ϑ
H. Indicated is the projection of a point X in area D

onto the set A. The projection of a vector X onto A is equal to X if X ∈ A; it is 0 if X ∈ C and it is
on the boundary of A if X is in B or D.
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* 14.2.2 Asymptotics with Missing Data

Suppose that the random variable (X,Y ) follows a statistical model given by the
density rθ, but we observe only X , so that the marginal density pθ of X provides
the relevant likelihood. The following lemma shows how the likelihood ratio statistic
for observing X can be computed from the likelihood ratio statistic for observing
(X,Y ) by a conditional expectation. Assume that the distribution of (X,Y ) under
θ is absolutely continuous with respect to the distribution under θ0, so that the
likelihood ratio is well defined.

14.22 Lemma. IfX and Y are random variables with joint density rθ and rθ � rθ0 ,
then the marginal density pθ of X satisfies

pθ(X)

pθ0(X)
= Eθ0

( rθ(X,Y )

rθ0(X,Y )
|X

)

.

Proof. We use the equality EE(Z|X)f(X) = EZf(X), which is valid for any
random variables X and Z and every measurable function f . With hθ(X) the con-
ditional expectation in the right side of the lemma and Z = (rθ/rθ0)(X,Y ), this
yields

Eθ0hθ(X)f(X) = Eθ0
rθ(X,Y )

rθ0(X,Y )
f(X)

=

∫
rθ(x, y)

rθ0(x, y)
f(x) rθ0(x, y) dµ(x, y)

=

∫

rθ(x, y)f(x) dµ(x, y) = Eθf(X).

It follows that hθfpθ0 = fpθ almost everywhere under θ0 for any f , which implies
that hθpθ0 = pθ.

Next consider the situation that we would have liked to base a test on the
likelihood ratio statistic for observing Y , but we only observe X . If sθ is the density
of Y under θ, then it seems intuitively reasonable to use the statistic

(14.23) Eθ0

( sθ(Y )

sθ0(Y )
|X

)

.

However, this is not necessarily the likelihood ratio statistic for observing X . The
preceding lemma does not apply, since we do not condition the unobserved variable
on a subset.

To save the situation we can still interpret the preceding display as a likelihood
ratio statistic, by introducing an artificial model for the variable (X,Y ) as follows.
Given the conditional density (x, y) 7→ tθ0(x| y) of X given Y under θ0, make the
working hypothesis that (X,Y ) is distributed according to the density

(x, y) 7→ tθ0(x| y)sθ(y).
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Even though there may be a reasonable model under which the law of X given Y
depends on the parameter θ, we adopt this artificial model, in which the conditional
law is fixed. The likelihood ratio for observing (X,Y ) given the artificial model is

tθ0(X |Y )sθ(Y )

tθ0(X |Y )sθ0(Y )
=

sθ(Y )

sθ0(Y )
.

Thus if we apply the conditioning procedure of the preceding lemma to the artificial
model, we obtain exactly the statistic (14.23).

Using the “true conditional density” tθ, and hence the true likelihood ratio
test based on the observed data X , may yield a more powerful test. However, at
least the statistic (14.23) can be interpreted as a likelihood ratio statistic in some
model, and hence general results for likelihood ratio statistics should apply to it.
In particular, the distribution of (X,Y ) under θ0 is the same in the artificial and
correct model. We conclude that the statistic (14.23) therefore behaves under the
null hypothesis the same as the likelihood ratio statistic based on observing X from
the model in which (X,Y ) is distributed according to (x, y) 7→ tθ0(x| y)sθ(y), i.e.
for X having density x 7→

∫
tθ0(x| y)sθ(y) dν(y). This reduces under θ0 to the true

marginal distribution of X and hence under the null hypothesis the statistic (14.23)
has the distribution as in Theorem 14.16, where the Fisher information matrix must
be computed for the model given by the densities x 7→

∫
tθ0(x| y)sθ(y) dν(y). If H

is a linear space, then the null limit distribution is chisquare.
Theorem 14.16 does not yield the relevant limit distribution under alternatives.

The power of the test statistic (14.23) is the same as the power of the likelihood
ratio statistic based on X having density qθ given by

(14.24) qθ(x) =

∫

tθ0(x| y)sθ(y) dy.

This is not the power of the likelihood ratio statistic based on X , because the model
qθ is misspecified.

The following theorem extends Theorem 14.16 to this situation. Suppose that
the observation X is distributed according to a density pθ, but we use the likelihood
ratio statistic for testing H0: θ ∈ Θ0 based on the assumption that X has density
qθ.

14.25 Theorem. Assume that ϑ ∈ Θ0 with qϑ = pϑ. Suppose that the maps
θ 7→ pθ(x) and θ 7→ qθ(x) are continuously differentiable in a neighbourhood of ϑ for
every x with derivatives ˙̀

θ(x) and κ̇θ(x) such that the maps θ 7→ Iθ = Covθ
(
˙̀
θ(Xi)

)

and θ 7→ Jθ = Covθ
(
κ̇θ(Xi)

)
are well defined and continuous, and such that Jϑ is

nonsingular. Furthermore, suppose that for every θ1 and θ2 in a neighbourhood of
ϑ and for a measurable function κ̇ such that Pϑκ̇

2 <∞,

∣
∣log qθ1(x) − log qθ2(x)

∣
∣ ≤ κ̇(x) ‖θ1 − θ2‖.
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If the maximum likelihood estimators θ̂n,0 and θ̂n for the model {qθ: θ ∈ Θ} are
consistent under ϑ and the sets Hn,0 and Hn converge to sets H0 and H , then the
sequence of likelihood ratio statistics Λn converges under ϑ+ h/

√
n in distribution

to Λ given in (14.15), for ∆ϑ normally distributed with mean Covϑ(κ̇ϑ, ˙̀
ϑ)h and

covariance matrix Jϑ.

In the present case the density qθ takes the form (14.24). The score function
at θ0 for this model is

κ̇θ0 = Eθ0

( ṡθ0(Y )

sθ0(Y )
|X

)

.

The Fisher information Jθ0 is the covariance matrix of this. The covariance appear-
ing in the theorem is

Covϑ(κ̇ϑ, ˙̀
ϑ) = Eθ0

( ṡθ0(Y )

sθ0(Y )

)

˙̀
θ0(X).

14.3 Score Statistic

Implementation of the likelihood ratio test requires the determination of the maxi-
mum likelihood estimator both under the full model and under the null hypothesis.
This can be computationally intensive. The score test is an alternative that requires
less computation and provides approximately the same power when the number
of observations is large. The score test requires the computation of the maximum
likelihood estimator under the null hypothesis, but not under the full model. It
is therefore particularly attractive when the same null hypothesis is tested versus
multiple alternatives. Genome scans in genetics provide an example of this situation.

The score function of a statistical model given by probability densities pθ in-
dexed by a parameter θ ∈ Rk is defined as the gradient ˙̀

θ(x) = ∇θ log pθ(x) of
the log density relative to the parameter. Under regularity conditions it satisfies
Eθ ˙̀

θ(X) = 0, for every parameter θ. Therefore, a large deviation of ˙̀
ϑ(X) from 0

gives an indication that ϑ is not the parameter value that has produced the data
X . The principle of the score test is to reject the null hypothesis H0: θ = ϑ if the
score function ˙̀

ϑ(X) evaluated at the observation is significantly different from 0.
For a composite null hypothesis H0: θ ∈ Θ0 the value ϑ is replaced by its maximum
likelihood estimator θ̂0 under the null hypothesis, and the test is based on ˙̀

θ̂0
(X).

A different intuition is to think of this statistic as arising in an approximation
to the likelihood ratio statistic:

log
pθ̂(X)

pθ̂0(X)
≈ (θ̂ − θ̂0)

T ˙̀
θ̂0

(X).

If the score statistic ˙̀
θ̂0

(X) is significantly different from zero, then this approx-
imation suggests that the likelihood ratio between full and alternative hypothesis
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is large. To make this precise, it is necessary to take also the directions of the es-
timators and the second order term of the expansion into account. However, the
suggestion that the likelihood ratio statistic and score statistic are closely related
is correct, as shown below.

The problem is to quantify “significantly different from 0”. We shall consider
this in the case that X = (X1, . . . , Xn) is a random sample of identically distributed
observations. Then the probability density of X takes the form (x1, . . . , xn) 7→
∏n
i=1pθ(xi), for pθ the density of a single observation, and the score statistic (divided

by
√
n) takes the form

(14.26) Sn =
1√
n

n∑

i=1

˙̀
θ̂0

(Xi),

where ˙̀
θ is the score function for a single observation. To measure whether the score

statistic Sn is close to zero, the score test uses a weighted norm: the null hypothesis
is rejected for large values of the statistic

(14.27)
∥
∥
∥I

−1/2

θ̂0

1√
n

n∑

i=1

˙̀
θ̂0

(Xi)
∥
∥
∥

2

= STn I
−1

θ̂0
Sn.

Here Iθ = Eθ ˙̀
θ(Xi) ˙̀T

θ (Xi) is the Fisher information matrix. In standard situations,
where the null hypothesis is “locally” a linear subspace of dimension k0, this statistic
can be shown to be asymptotically (as n → ∞) chisquare distributed with k − k0

degrees of freedom under the null hypothesis. The critical value of the score test is
then chosen equal to the upper α0-quantile of the this chisquare distribution. We
study the asymptotics of the score statistic in more generality below.

14.28 Example (Simple null hypothesis). If the null hypothesis H0: θ = ϑ is
simple, then the maximum likelihood estimator θ̂0 is the deterministic parameter ϑ,
and the score statistic is the sum of the independent, identically distributed random
variables ˙̀

ϑ(Xi). The asymptotics of the score test follow from the Central Limit
Theorem, which shows that, under the null hypothesis,

1√
n

n∑

i=1

˙̀
ϑ(Xi) Nk(0, Iϑ).

The score test statistic STn I
−1
ϑ Sn is therefore asymptotically chisquare distributed

with k degrees of freedom.

14.29 Example (Partitioned parameter). Consider the situation of a partitioned
parameter θ = (θ1, θ2) and a null hypothesis of the form Θ0 = {(θ1, θ2): θ1 ∈
Rk0 , θ2 = 0}.

The score function can be partitioned as well as ˙̀
θ = ( ˙̀

θ,1, ˙̀
θ,2), for ˙̀

θ,i the
vector of partial derivatives of the log density with respect to the coordinates of
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θi. The maximum likelihood estimator under the null hypothesis has the form θ̂0 =
(θ̂0,1, 0), for θ̂0,1 a solution to the likelihood equation

n∑

i=1

˙̀
θ̂0,1

(Xi) = 0.

This is a system of equations with as many equations as the dimension of θ1 in
θ = (θ1, θ2). The vector

∑n
i=1

˙̀
θ̂0

(Xi) takes the form (0,
∑n
i=1

˙̀
θ̂0,2

(Xi)) and the

score test statistic (14.27) reduces to

(14.30)
1

n

( n∑

i=1

˙̀
θ̂0,2

(Xi)
)T (

I−1

θ̂0

)

2,2

( n∑

i=1

˙̀
θ̂0,2

(Xi)
)

.

Here (I−1

θ̂0
)2,2 is the relevant submatrix of the inverse information matrix I−1

θ̂0
. (Note

that a submatrix (A−1)2,2 of an inverseA−1 is not the inverse of the submatrix A2,2.)
We can interpret the statistic (14.30) as a measure of success for the maximum

likelihood estimator θ̂0 = (θ̂0,1, 0) under the null hypothesis to reduce the score

equation
∑n

i=1
˙̀
θ(Xi) of the full model to zero. Because

∑n
i=1

˙̀
θ̂(Xi) = 0 for the

maximum likelihood estimator θ̂ for the full model, the score statistic can also be
understood as a measure of discrepancy between the maximum likelihood estimators
under the null hypothesis and in the full model.

The score statistic in this example can also be related to the profile likelihood
for the parameter of the interest θ2. This is defined as the maximum of the likelihood
over the “nuisance parameter” θ1, for fixed θ2:

proflik(θ2) = sup
θ1

n∏

i=1

p(θ1,θ2)(Xi).

Assume that for every θ2 the supremum is attained, at the (random) value θ̂1(q2),

and assume that the function θ2 7→ θ̂1(θ2) is differentiable. Then the gradient of the
log profile likelihood exists, and can be computed as

∇θ2 log proflik(θ2) =

n∑

i=1

θ̂′1(θ2) ˙̀
(θ̂1(θ2),θ2),1

(Xi)+

n∑

i=1

˙̀
(θ̂1(θ2),θ2),2

(Xi) =

n∑

i=1

˙̀
(θ̂1(θ2),θ2),2

(Xi),

because
∑n

i=1
˙̀
(θ̂1(θ2),θ2),1

(Xi) vanishes by the definition of θ̂1. If we next evaluate
this at the value θ2 = 0 given by the null hypothesis, we find the score statis-
tic

∑n
i=1

˙̀
θ̂0,2

(Xi), utilized in (14.30). Furthermore, it can also be shown that the
negative second derivative of the profile likelihood

− ∂2

∂θ22
log proflik(θ2)

is a consistent estimator of the inverse of the norming matrix
(
I−1

θ̂0

)

2,2
in (14.30).

Thus after “profiling out” the nuisance parameter θ2, the profile likelihood can be
used as an ordinary likelihood for θ2.



14.3: Score Statistic 227

If the local parameter spaces Hn,0 =
√
n(Θ0 − ϑ) converge to a set H0 that is

not a linear space, then the maximum likelihood estimator under the null hypothe-
sis is not asymptotically normally distributed, and as a consequence neither is the
score statistic (cf. Theorem 14.16). The usual solution is to relax the restrictions
imposed by the null hypothesis so that asymptotically it becomes a linear space, or
equivalently to use the solution to the likelihood equations (under the null hypoth-
esis) rather than the maximum likelihood estimator. In any case to gain insight in
the asymptotic behaviour of the score statistic we can follow similar arguments as
in Section 14.2.

The log likelihood function viewed as a function of the local parameter h =√
n(θ − ϑ) satisfies (cf. (14.14))

(14.31) log
n∏

i=1

pϑ+h/
√
n

pϑ
(Xi) = hT∆n,ϑ − 1

2h
T Iϑh+ · · · ,

where ∆n,θ = n−1/2
∑n
i=1

˙̀
θ(Xi). The maximum likelihood estimator of θ under

the null hypothesis is θ̂0 = ϑ + ĥ0/
√
n for ĥ0 the maximizer of this process over

h ranging over the local parameter space Hn,0 =
√
n(Θ0 − ϑ). The score statistic

(14.26) is the gradient of the log likelihood at θ̂0, which can be expressed in the
local parameter as

Sn =
∂

∂h
log

n∏

i=1

pϑ+h/
√
n

pϑ
(Xi)

∣
∣
∣
h=ĥ0

.

If the remainder (the dots) in the expansion (14.31) of the log likelihood process
can be neglected, this statistic behaves as

∂

∂h

(
hT∆n,ϑ − 1

2h
T Iϑh

)∣
∣
∣
h=ĥ0

= ∆n,ϑ − Iϑĥ0.

In view of Theorem 14.16, if the local parameter spaces Hn,0 tend in a suitable

manner to a limit set H0, then ĥ0 behaves asymptotically as the maximizer of the
process

h 7→ hT∆ϑ − 1
2h

T Iϑh,

where ∆ϑ is the limit of the sequence ∆n,ϑ. Under the parameter ϑ this vector
possesses a normal distribution with mean 0 and covariance matrix Iϑ. This suggests
that the score statistic is asymptotically distributed as

∆ϑ − Iϑ argmax
h∈H0

(hT∆ϑ − 1
2h

T Iϑh)

= I
1/2
ϑ

(

X − I
1/2
ϑ argmin

h∈H0

‖X − I
1/2
ϑ h‖

)

= I
1/2
ϑ

(
X − Π

I
1/2

ϑ
H0
X

)
,

where X = I
−1/2
ϑ ∆ϑ, and ΠAx denotes the point in the set A that is closest to x

(assuming that it exists) in the Euclidean norm. The vector X possesses a stan-
dard normal distribution. The score test statistic is the weighted norm STn I

−1

θ̂0
Sn of
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the score statistic, and should be asymptotically distributed as the corresponding
weighted norm of the right side of the display, where the weighting matrix Iθ̂0 can
of course be replaced by its limit. In other words, the preceding heuristic argument
suggests that, under the null hypothesis

(14.32) STn I
−1

θ̂0
Sn  ‖X − I

1/2
ϑ H0‖2,

where X possesses a standard normal distribution.
If H0 is a linear subspace of Rk of dimension k0 and the Fisher information

matrix is nonsingular, then I
1/2
ϑ H0 is also a k0-dimensional linear subspace. The

variable on the right side of the preceding display then possesses a chisquare dis-
tribution with k − k0 degrees of freedom. In less regular cases the distribution is
nonstandard.

The following theorem makes the preceding rigorous.

14.33 Theorem. Assume that the conditions of Theorem 14.16 holds and in ad-
dition that there exists a measurable function ῭ such that Eϑ ῭2(X1) < ∞ and for
every θ1 and θ2 in a neighbourhood of ϑ

∥
∥ ˙̀
θ1(x) − ˙̀

θ2(x)
∥
∥ ≤ ῭(x) ‖θ1 − θ2‖.

Then under ϑ+h/
√
n the score statistic (14.26) satisfies (14.32) for a vector X with

a Nk(I
1/2
ϑ h, I)-distribution. In particular, the limit distribution under ϑ is chisquare

with k − k0 degrees of freedom if H0 is a k0-dimensional subspace.

Proof. By simple algebra the score statistic can be written as

Sn =
√
nPn ˙̀

ϑ+ĥ0/
√
n

= Gn( ˙̀
ϑ+ĥ0/

√
n − ˙̀

ϑ) + Gn
˙̀
ϑ + (

√
nPϑ ˙̀

ϑ+ĥ0/
√
n + Iϑĥ0) − Iϑĥ0.

The second and fourth terms on the right are as in the discussion preceding the
theorem, and tend in distribution to the limits as asserted. It suffices to show that
the first and thirds terms on the right tend to zero in probability.

For the second term this follows because the conditions imply that the class of
functions { ˙̀

θ: θ ∈ B} for a sufficiently small neighbourhood B of ϑ is Donsker, and
the map θ 7→ ˙̀

θ is continuous in second mean at ϑ.
Minus the third term can be rewritten as,

∫

˙̀
θ̂0

(p
1/2

θ̂0
+ p

1/2
ϑ )

[√
n(p

1/2

θ̂0
− p

1/2
ϑ ) − 1

2 ĥ
T
0

˙̀
ϑp

1/2
ϑ

]
dµ

+

∫

˙̀
θ̂0

(p
1/2

θ̂0
− p

1/2
ϑ )1

2 ĥ
T
0

˙̀
ϑp

1/2
ϑ dµ+

∫

( ˙̀
θ̂0

− ˙̀
ϑ)ĥ

T
0

˙̀
ϑpϑ dµ.

These three terms can all be shown to tend to zero in probability, by using the
Cauchy-Schwarz inequality and the implied differentiability in quadratic mean of
the model. See the proof of Theorem 25.54 in Van der Vaart (1998) for a similar
argument.
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For the asymptotic chisquare distribution of the score test statistic it is es-
sential that the null maximum likelihood estimator θ̂0 is asymptotically normal. It
is also clear from the heuristic discussion that the result depends on the form of
the asymptotic covariance matrix of this estimator. If in the definition of the score
statistic (14.26) the unknown null parameter were estimated by another asymptot-

ically normal estimator than the null maximum likelihood estimator θ̂0, then the
limit distribution of the score test statistic could be different from chisquare, as it
would not reduce to the distribution of a square projection, as in (14.32).

It was already noted that the likelihood ratio statistic and score statistic are
close relatives. The following theorem shows that in the regular case, with linear lo-
cal parameter spaces, they are both asymptotically equivalent to the Wald statistic,
which measures the difference between the maximum likelihood estimators between
full and null hypothesis.

14.34 Theorem. Assume that the conditions of Theorems 14.16 and 14.33 hold
with H = Rk and H0 a k0-dimensional linear subspace of Rk. Then, under ϑ, as
n→ ∞, the score statistic Sn and likelihood ratio statistic Λn satisfy

STn I
−1
ϑ Sn − n(θ̂ − θ̂0)

T Iϑ(θ̂ − θ̂0) 0,

Λn − n(θ̂ − θ̂0)
T Iϑ(θ̂ − θ̂0) 0.

Moreover, the sequence n(θ̂ − θ̂0)
T Iϑ(θ̂ − θ̂0) tends in distribution to a chisquare

distribution with k − k0 degrees of freedom.

Proof. The maximum likelihood estimator under the full model satisfies

ĥ =
√
n(θ̂ − ϑ) = I−1

ϑ ∆n,ϑ + oP (1).

See for instance Van der Vaart (1998), Theorem 5.39. The score statistic Sn was

seen to be asymptotically equivalent to ∆n,ϑ−Iϑĥ0 = Iϑ(ĥ− ĥ0). The first assertion
is immediate from this.

If H = Rk, then the likelihood ratio statistic Λn is asymptotically equivalent
to (see (14.15) and the proof of Theorem 14.16)

‖I−1/2
ϑ ∆n,ϑ − I

1/2
ϑ H0‖2 = STn I

−1
ϑ Sn + oP (1),

by (14.32). This proves the second (displayed) assertion.
That the sequence of Wald statistics is asymptotically chisquare now follows,

because this is true for the other two sequences of test statistics.
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14.4 Multivariate Normal Distribution

The d-dimensional multivariate normal distribution (coded as Nd(µ,Σ)) is charac-
terized by a mean vector µ ∈ Rd and a (d× d)-covariance matrix Σ. If Σ is positive
definite, then the distribution has density function

x 7→ 1

(2π)d/2
√

detΣ
e−

1
2 (x−µ)T Σ−1(x−µ).

In this section we review statistical methods for the multivariate normal distribu-
tion.

The log likelihood function for observing a random sample X1, . . . , Xn from
the multivariate normal Nd(µ,Σ)-distribution is up to the additive constant
−n(d/2) log(2π) equal to

(µ,Σ) 7→ − 1
2n log detΣ − 1

2

n∑

i=1

(Xi − µ)TΣ−1(Xi − µ)

= − 1
2n log detΣ − 1

2 tr
(

Σ−1
n∑

i=1

(Xi − µ)(Xi − µ)T
)

,

where tr(A) is the trace of the matrix A. The last equality follows by application
of the identities tr(AB) = tr(BA) and tr(A + B) = tr(A) + tr(B), valid for any
matrices A and B. The maximum likelihood estimator for (µ,Σ) is the point of
maximum of this expression in the parameter space. If the parameter space is the
maximal parameter space, consisting of all vectors µ in Rd and all positive-definite
matrices Σ, then the maximum likelihood estimators are the sample mean and
sample covariance matrix

X̄ =
1

n

n∑

i=1

Xi,

S =
1

n

n∑

i=1

(Xi − X̄)(Xi − X̄)T .

14.35 Lemma. The maximum likelihood estimator for (µ,Σ) based on a random
sample X1, . . . , Xn from the Nd(µ,Σ)-distribution in the unrestricted parameter
space is (X̄, S).

Proof. For fixed Σ maximizing the likelihood with respect to µ is the same as
minimizing the quadratic form µ 7→ ∑n

i=1(Xi − µ)TΣ−1(Xi − µ). This is a strictly
convex function and hence has a unique minimum. The stationary equation is given
by

0 =
∂

∂µ

n∑

i=1

(Xi − µ)TΣ−1(Xi − µ) = −2

n∑

i=1

Σ−1(Xi − µ).
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This is solved uniquely by µ = X̄. As this solution gives the maximum of the
likelihood with respect to µ for any given Σ, the absolute maximum of the likelihood
is achieved at (X̄, Σ̂) for some Σ̂.

The maximum likelihood estimator for Σ can now be found by maximizing
the likelihood with respect to Σ for µ fixed at X̄. This is equivalent to minimizing
Σ 7→ log detΣ + tr(Σ−1S). The difference of this expression with its value at S is
equal to

log detΣ + tr(Σ−1S) − log detS − tr(S−1S) = − log det(Σ−1S) + tr(Σ−1S) − d.

In terms of the eigenvalues λ1, . . . , λd of the matrix Σ−1/2SΣ−1/2 this can be written
as

−
d∑

i=1

logλi +

d∑

i=1

λi − d = −
d∑

i=1

(
logλi − λi + 1

)
.

Because log x−x+1 ≤ 0 for all x > 0, with equality only for x = 1, this expression
is nonnegative, and it is zero only if all eigenvalues are equal to one. It follows that
the minimum is taken for Σ−1/2SΣ−1/2 = I.

14.36 EXERCISE. Show that S is nonsingular with probability one if Σ is nonsin-
gular. [Hint: show that aTSa > 0 almost surely for every a 6= 0.]

In the genetic context we are often interested in fitting a multivariate normal
distribution with a restricted parameter space. In particular, the covariance matrix
is often structured through a covariance decomposition. In this case we maximize
the likelihood over the appropriate subset of covariance matrices. Depending on the
particular structure there may not be simple analytic formulas for the maximum
likelihood estimator, but the likelihood must be maximized by a numerical routine.

As shown in the preceding proof the maximum likelihood estimator for the
mean vector µ remains the sample average X̄n as long as µ is a free parameter in
Rn. Furthermore, minus 2 times the log likelihood, with X̄n substituted for µ is up
to a constant equal to

log det(ΣS−1) + tr
(
Σ−1S

)
.

We may think of this expression as a measure of discrepancy between Σ and S. The
maximum likelihood estimator for Σ minimizes this discrepancy, and can be viewed
as the matrix in the model that is “closest” to S. This criterion for estimating the
covariance matrix makes sense also without assuming normality of the observations.
Moreover, rather than the sample covariance matrix S we can use another reasonable
initial estimator for the covariance matrix.

In genetic applications the mean vector is typically not free, but restricted to
have equal coordinates. Its maximum likelihood estimator is then often the “overall
mean” of the observations. We prove this for the case of possibly non-identically
distributed observations. The likelihood for µ based on independent observations
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X1, . . . , Xn with Xi possessing a Nd(µ1,Σi)-distribution is up to a constant equal
to

µ 7→ − 1
2

n∑

i=1

log detΣi − 1
2

n∑

i=1

(Xi − µ1)TΣ−1
i (Xi − µ1)

= − 1
2

n∑

i=1

log detΣi − 1
2 tr

( n∑

i=1

Σ−1
i (Xi − µ1)(Xi − µ1)T

)

.

Here 1 is the vector in Rd with all coordinates equal to 1, so that µ1 = (µ, . . . , µ)T .

14.37 Lemma. The likelihood in the preceding display is maximized by µ̂ =
∑n

i=11
TΣ−1

i Xi/
∑n
i=11

TΣ−1
i 1. If all row sums of each matrix Σi are equal to a

single constant, then µ̂ = (nd)−1
∑n
i=1

∑d
i=1Xij .

Proof. The maximum likelihood estimator minimizes the strictly convex func-
tion µ 7→ ∑n

i=1(Xi − µ1)TΣ−1
i (Xi − µ1). The derivative of this function is

−2
∑n
i=11

TΣ−1(Xi − µ1), which is zero at µ̂ as given. By convexity this is a point
of minimum.

The vector of row sums of Σi is equal to Σi1. This vector has identical coor-
dinates equal to c if and only if Σi1 = c1, in which case Σ−1

i 1 = c−11. The second
assertion of the lemma follows upon substituting this in the formula for µ̂.

The covariance matrices Σi are often indexed by a common parameter γ. Con-
sider an observation X possessing a Nd(µ1, σ2Σγ)-distribution, for one-dimensional
parameters µ ∈ R, σ2 > 0 and γ ∈ R. The log likelihood for observing X is up to a
constant equal to

− 1
2 log σ2 − 1

2 log detΣγ − 1
2

1

σ2
(X − µ1)TΣ−1

γ (X − µ1).

The score function is the vector of partial derivatives of this expression with respect
to the parameters µ, σ2, γ. In view of the lemma below this can be seen to be, with
Σ̇γ the derivative of the matrix Σγ relative to γ,

˙̀
µ,σ2,γ(x) =





1
σ2 1TΣ−1

γ (x − µ1)

− 1
2σ2 + 1

2σ4 (x − µ1)TΣ−1
γ (x− µ1)

− 1
2 tr

(
Σ−1
γ Σ̇γ

)
+ 1

2σ2 (x− µ1)TΣ−1
γ Σ̇γΣ

−1
γ (x − µ1)



 .

14.38 Lemma. If t 7→ A(t) is a differentiable map from R into the invertible (d×d)-
matrices, then
(i) d

dtA(t)−1 = −A(t)−1A′(t)A(t)−1.

(ii) d
dt detA(t) = detA(t) tr

(
A(t)−1A′(t)T

)
.

Proof. Statement (i) follows easily from differentiating across the identity
A(t)−1A(t) = I.

For every i the determinant of an arbitrary matrix B = (Bij) can be written
detB =

∑

kBik detBik(−1)i+k, for Bik the matrix derived from B by deleting the
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ith row and kth column. The matrix B can be thought of as consisting of the d2

free elements Bij , where the matrix Bik is free of Bij , for every k. It follows that
the derivative of detB relative to Bij is given by detBij(−1)i+j . Consequently, by
the chain rule

d

dt
detA(t) =

∑

i

∑

j

detA(t)ij(−1)i+j A′(t)ij .

By Cramer’s formula for an inverse matrix, (B−1)ij = (−1)i+j detBij/ detB, this
can be written in the form of the lemma.

14.5 Logistic Regression

In the standard logistic regression model the observations are a random sample
(X1, Y1), . . . , (XN , YN ) from the distribution of a vector (X,Y ), where X ranges
over Rd and Y ∈ {0, 1} is binary, with distribution determined by

P (Y = 1|X = x) = Ψ(α+ βTx), X ∼ F.

Here Ψ(x) = 1/(1+e−x) is the logistic distribution function, the intercept α is real,
and the regression parameter β is a vector in Rd. If we think of X as the covariate
of a randomly chosen individual from a population and Y as his disease status, 1
referring to diseased, then the prevalence of the disease in the population is

pα,β,F = P (Y = 1) =

∫

Ψ(α+ βTx) dF (x).

By Bayes’ rule the conditional distributions of X given Y = 0 or Y = 1 are given
by

dF0|α,β,F (x) =

(
1 − Ψ(α+ βTx)

)
dF (x)

1 − pα,β,F
,

dF1|α,β,F (x) =
Ψ(α+ βTx) dF (x)

pα,β,F
.

These conditional distributions are the relevant distributions if the data are sampled
according to a case-control design, rather than sampled randomly from the popula-
tion. Under the case-control design the numbers of healthy and diseased individuals
to be sampled are fixed in advance, and the data consists of two random samples,
from F0|α,β,F and F1|α,β,F , respectively.

If we denote these samples by X1, . . . , Xm and Xm+1, . . . Xm+n, set N = m+n
and define auxiliary variables Y1, . . . , YN to be equal to 0 or 1 if the correspondingXi

belongs to the first or second sample, then in both the random and the case-control
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design the observations can be written as (X1, Y1), . . . , (XN , YN ). The likelihoods
for the two settings are

pros(α, β, F ) =

N∏

i=1

Ψ(α+ βTXi)
Yi

(
1 − Ψ(α+ βTXi)

)1−Yi
dF (Xi),

retro(α, β, F ) =

m∏

i=1

dF0|α,β,F (Xi)

N∏

i=m+1

dF1|α,β,F (Xi).

The names used for these functions are abbreviations of prospective design and
retrospective design, respectively, which are alternative labels for the two designs.
With our notational conventions these likelihoods satisfy the relationship

pros(α, β, F ) = retro(α, β, F )(1 − pα,β,F )mpnα,β,F .

Thus the two likelihoods differ by the likelihood of Bernoulli form (1 − p)mpn, for
p = pα,β,F the prevalence of the disease. It is intuitively clear that in the case-control
design this factor is not estimable, as it is not possible to estimate the prevalence
pα,β,F . The following lemma formalizes this, and, on the positive side, shows that
apart from this difference nothing is lost. In particular, the regression parameter β is
typically estimable from both designs, and the profile likelihoods are proportional.

Let FF be the set of pairs (F0|α,β,F , F1|α,β,F ) of control-case distributions when

(α, β, F ) ranges over the parameter space R×Rd×F , for F the set of distributions
on Rd whose support is not contained in a linear subspace of lower dimension (i.e.
if βTX = 0 almost surely for X ∼ F ∈ F , then β = 0).

14.39 Lemma. For all p ∈ (0, 1) and (F0, F1) ∈ FF there exists a unique
(α, β, F ) ∈ R × Rd ×F such that

F0 = F0|α,β,F , F1 = F1|α,β,F , p = pα,β,F .

Furthermore, equality Fi|α,β,F = Fi|α′,β′,F ′ for i = 0, 1 and parameter vectors

(α, β, F ), (α′, β′, F ′) ∈ R × Rd ×F can happen only if β = β′.

Proof. For any parameter vector (α, β, F ) the measures F0|α,β,F and F1|α,β,F are
absolutely continuous, and equivalent to F . The definitions show that their density
is given by

log
dF1|α,β,F
dF0|α,β,F

(x) = α+ βTx+ log
1 − pα,β,F
pα,β,F

.

Therefore, solving the three equations in the display of the lemma for (α, β, F )
requires that pα,β,F = p and

α+ βTx = log
dF1

dF0
(x) − log

1 − p

p
.
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Since (F0, F1) ∈ FF , there exists (α′, β′, F ′) such that the right side is equal to

α′ + β′Tx+ log
1 − pα′,β′,F ′

pα′,β′,F ′
− log

1 − p

p
.

The resulting equation is solved by β = β′ (uniquely) and α = α′ + log(1 −
pα′,β′,F ′)/pα′,β′,F ′ − log(1 − p)/p.

The equations Fi|α,β,F = Fi|α′,β′,F ′ = Fi for i = 1, 2 yield

1 − Ψ(α+ βTx)

1 − p
dF (x) = dF0(x),

Ψ(α+ βTx)

p
dF (x) = dF1(x).

If we define F by the second equation, then by the choice of (α, β) made previously
the first equation is automatically satisfied. Combining the equations we see that
F = (1 − p)F0 + pF1. This shows that F is indeed a probability measure, which is
equivalent to F0 and F1.

The parameter p in the lemma may be interpreted as the prevalence of the
disease in the full population. The lemma proves that this is not identifiable based on
case-control data: for any after-the-fact value p there exist parameter values (α, β, F )
that correspond to prevalence p and can produce any possible distribution for the
case-control data. Fortunately, the most interesting parameter β is identifiable.

In this argument the marginal distribution F of the covariates has been left
unspecified. This distribution is also not identifiable from the case-control data (it
is a mixture F = (1−p)F0 +pF1 that depends on the unknown prevalence p), and it
makes much sense not to model it, as it factors out of the prospective likelihood and
would normally be assumed not to contain information on the regression parameter
β. If we had a particular model for F (the extreme case being that F is known),
then the argument does not go through. The relation F = (1 − p)F0 + pF1 then
contains information on F and p.

To estimate the parameter β using case-control data, we might artificially fix
a value p ∈ (0, 1) and maximize the retrospective likelihood retro(α, β, F ) under

the constraint pα,β,F = p. This will give an estimator (α̂p, β̂, F̂p) of which the first

and last coordinates depend on p, but with β̂ the same for any p. Because the
Bernoulli likelihood p 7→ (1 − p)mpn is maximal for p̂ = n/N , the relationship

between prospective and retrospective likelihoods shows that (α̂p̂, β̂, F̂p̂) will be the
maximizer of the prospective likelihood. In particular, maximizing the prospective
likelihood relative to (α, β, F ) yields the correct maximum likelihood estimator for
β, even if the data are obtained in a case-control design.

Similar observations apply to the likelihood ratio statistics in the two models.
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14.6 Variance Decompositions

In calculus a function T (X1, . . . , Xn) is approximated by linear, quadratic, or higher
order polynomials through a Taylor expansion. If X1, . . . , Xn are random variables,
in particular variables with a discrete distribution, then such an approximation is
not very natural. Approximations by an additive function

∑

i gi(Xi), a quadratic
function

∑

(i,j) gi,j(Xi, Xj) or higher order functions may still be very useful. For
random variables a natural sense of approximation is in terms of variance. In this
section we obtain such approximations, starting from the abstract notion of a pro-
jection.

A representation of a given random variable T as a sum of uncorrelated vari-
ables corresponds to projections of T on given subspaces of random variables. These
projections are often conditional expectations. In this section we first discuss these
concepts and next derive the Hoeffding decomposition, which is a general decom-
position of a function of n independent variables as a sum of functions of sets of
1, 2, . . . , n variables.

14.6.1 Projections

Let T and {S:S ∈ S} be random variables, defined on a given probability space,
with finite second moments. A random variable Ŝ is called a projection of T onto S
(or L2-projection) if Ŝ ∈ S and minimizes

S 7→ E(T − S)2, S ∈ S.

Often S is a linear space in the sense that α1S1 +α2S2 is in S for every α1, α2 ∈ R,
whenever S1, S2 ∈ S. In this case Ŝ is the projection of T if and only if T − Ŝ is
orthogonal to S for the inner product 〈S1, S2〉 = ES1S2. This is the content of the
following theorem.

14.40 Theorem. Let S be a linear space of random variables with finite second
moments. Then Ŝ is the projection of T onto S if and only if Ŝ ∈ S and

E(T − Ŝ)S = 0, every S ∈ S.

Every two projections of T onto S are almost surely equal. If the linear space S
contains the constant variables, then ET = EŜ and cov(T − Ŝ, S) = 0 for every
S ∈ S.

Proof. For any S and Ŝ in S,

E(T − S)2 = E(T − Ŝ)2 + 2E(T − Ŝ)(Ŝ − S) + E(Ŝ − S)2.

If Ŝ satisfies the orthogonality condition, then the middle term is zero, and we
conclude that E(T − S)2 ≥ E(T − Ŝ)2, with strict inequality unless E(Ŝ − S)2 = 0.
Thus, the orthogonality condition implies that Ŝ is a projection, and also that it is
unique.
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Conversely, for any number α,

E(T − Ŝ − αS)2 − E(T − Ŝ)2 = −2αE(T − Ŝ)S + α2ES2.

If Ŝ is a projection, then this expression is nonnegative for every α. But the parabola
α 7→ α2ES2−2αE(T − Ŝ)S is nonnegative if and only if the orthogonality condition
E(T − Ŝ)S = 0 is satisfied.

If the constants are in S, then the orthogonality condition implies E(T − Ŝ)c =
0, whence the last assertions of the theorem follow.

The theorem does not assert that projections always exist. This is not true: the
infimum infS E(T −S)2 need not be achieved. A sufficient condition for existence is
that S is closed for the second moment norm, but existence is usually more easily
established directly.

The orthogonality of T − Ŝ and Ŝ yields the Pythagorean rule

ET 2 = E(T − Ŝ)2 + EŜ2.

If the constants are contained in S, then this is also true for variances instead of
second moments.

T

^
 S

S

Figure 14.2. The Pythagorean rule. The vector T is projected on the linear space S.

The sumspace S1 + S2 of two linear spaces S1 and S2 if random variables is
the set of all variables S1 + S2 for S1 ∈ S1 and S2 ∈ S2. The sum Ŝ1 + Ŝ2 of the
projections of a variable T onto the two subspaces is in general not the projection
on the sumspace. However, this is true in the special case that the two linear spaces
are orthogonal. The spaces S1 and S2 are called orthogonal if ES1S2 = 0 for every
S1 ∈ S1 and S2 ∈ S2.

14.41 Theorem. If Ŝ1 and Ŝ2 are the projections of T onto orthogonal linear spaces
S1 and S2, then Ŝ1 + Ŝ2 is the projection onto the sumspace S1 + S2.

Proof. The variable Ŝ1 + Ŝ2 is clearly contained in the sumspace. It suffices to
verify the orthogonality relationship. Now E(T − Ŝ1− Ŝ2)(S1 +S2) = E(T − Ŝ1)S1−
EŜ2S1 + E(T − Ŝ2)S2 − EŜ1S2, and all four terms on the right are zero.
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14.42 EXERCISE. Suppose Ŝ1 and Ŝ2 are the projections of T onto linear spaces
S1 and S2 with S1 ⊂ S2. Show that Ŝ1 is the projection of Ŝ2 onto S1.

14.6.2 Conditional Expectation

The expectation EX of a random variable X minimizes the quadratic form a 7→
E(X − a)2 over the real numbers a. This may be expressed as: EX is the best
“prediction” of X , given a quadratic loss function, and in the absence of additional
information.

The conditional expectation E(X |Y ) of a random variable X given a random
vector Y is defined as the best “prediction” of X given knowledge of Y . Formally,
E(X |Y ) is a measurable function g0(Y ) of Y that minimizes

E
(
X − g(Y )

)2

over all measurable functions g. In the terminology of the preceding section, E(X |Y )
is the projection of X onto the linear space of all measurable functions of Y . It
follows that the conditional expectation is the unique measurable function E(X |Y )
of Y that satisfies the orthogonality relation

E
(
X − E(X |Y )

)
g(Y ) = 0, every g.

If E(X |Y ) = g0(Y ), then it is customary to write E(X |Y = y) for g0(y). This is
interpreted as the expected value of X given that Y = y is observed. By Theo-
rem 14.40 the projection is unique only up to changes on sets of probability zero.
This means that the function g0(y) is unique up to sets B of values y such that
P (Y ∈ B) = 0. (These could be very big sets.)

The following examples give some properties and also describe the relationship
with conditional densities.

14.43 Example. The orthogonality relationship with g ≡ 1 yields the formula
EX = EE(X |Y ). Thus, “the expectation of a conditional expectation is the expec-
tation”.

14.44 Example. If X = f(Y ) for a measurable function f , then E(X |Y ) = X .
This follows immediately from the definition, where the minimum can be reduced
to zero. The interpretation is that X is perfectly predictable given knowledge of Y .

14.45 Example. Suppose that (X,Y ) has a joint probability density f(x, y) with
respect to a product measure µ× ν, and let f(x| y) = f(x, y)/fY (y) be the condi-
tional density of X given Y = y. Then

E(X |Y ) =

∫

xf(x|Y ) dµ(x).
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(This is well defined only if fY (y) > 0.) Thus the conditional expectation as defined
above concurs with our intuition.

The formula can be established by writing

E
(
X − g(Y )

)2
=

∫ [∫ (
x− g(y)

)2
f(x| y) dµ(x)

]

fY (y) dν(y).

To minimize this expression over g, it suffices to minimize the inner integral (between
square brackets) by choosing the value of g(y) for every y separately. For each y, the
integral

∫
(x− a)2 f(x| y) dµ(x) is minimized for a equal to the mean of the density

x 7→ f(x| y).

14.46 Example. If X and Y are independent, then E(X |Y ) = EX . Thus, the
extra knowledge of an unrelated variable Y does not change the expectation of X .

The relationship follows from the fact that independent random variables are
uncorrelated: since E(X − EX)g(Y ) = 0 for all g, the orthogonality relationship
holds for g0(Y ) = EX .

14.47 Example. If f is measurable, then E
(
f(Y )X |Y

)
= f(Y )E(X |Y ) for any X

and Y . The interpretation is that, given Y , the factor f(Y ) behaves like a constant
and can be “taken out” of the conditional expectation.

Formally, the rule can be established by checking the orthogonality relationship.
For every measurable function g,

E
(
f(Y )X − f(Y )E(X |Y )

)
g(Y ) = E

(
X − E(X |Y )

)
f(Y )g(Y ) = 0,

because X−E(X |Y ) is orthogonal to all measurable functions of Y , including those
of the form f(Y )g(Y ). Since f(Y )E(X |Y ) is a measurable function of Y , it must
be equal to E

(
f(Y )X |Y

)
.

14.48 Example. If X and Y are independent, then E
(
f(X,Y )|Y = y

)
= Ef(X, y)

for every measurable f . This rule may be remembered as follows: the known value
y is substituted for Y ; next, since Y carries no information concerning X , the
unconditional expectation is taken with respect to X .

The rule follows from the equality

E
(
f(X,Y ) − g(Y )

)2
=

∫ ∫
(
f(x, y) − g(y)

)2
dPX(x) dPY (y).

Once again, this is minimized over g by choosing for each y separately the value
g(y) to minimize the inner integral.

14.49 Example. For any random vectors X , Y and Z,

E
(
E(X |Y, Z)|Y

)
= E(X |Y ).

This expresses that a projection can be carried out in steps: the projection onto a
smaller set can be obtained by projecting the projection onto a bigger set a second
time.
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Formally, the relationship can be proved by verifying the orthogonality re-
lationship E

(
E(X |Y, Z) − E(X |Y )

)
g(Y ) = 0 for all measurable functions g. By

Example 14.47, the left side of this equation is equivalent to EE(Xg(Y )|Y, Z) −
EE(g(Y )X |Y ) = 0, which is true because conditional expectations retain expecta-
tions.

14.6.3 Projection onto Sums

Let X1, . . . , Xn be independent random vectors, and let S be the set of all variables
of the form

n∑

i=1

gi(Xi),

for arbitrary measurable functions gi with Eg2
i (Xi) < ∞. The projection of a vari-

able onto this class is known as its Hájek projection.

14.50 Theorem. Let X1, . . . , Xn be independent random vectors. Then the pro-
jection of an arbitrary random variable T with finite second moment onto the class
S is given by

Ŝ =
n∑

i=1

E(T |Xi) − (n− 1)ET.

Proof. The random variable on the right side is certainly an element of S. There-
fore, the assertion can be verified by checking the orthogonality relation. Since
the variables Xi are independent, the conditional expectation E

(
E(T |Xi)|Xj)

is equal to the expectation EE(T |Xi) = ET for every i 6= j. Consequently,
E(Ŝ|Xj) = E(T |Xj) for every j, whence

E(T − Ŝ)gj(Xj) = EE(T − Ŝ|Xj)gj(Xj) = E0gj(Xj) = 0.

This shows that T − Ŝ is orthogonal to S.

Consider the special case that X1, . . . , Xn are not only independent, but also
identically distributed, and that T = T (X1, . . . , Xn) is a permutation-symmetric,
measurable function of the Xi. Then

E(T |Xi = x) = ET (x,X2, . . . , Xn).

Since this does not depend on i, the projection Ŝ is also the projection of T onto the
smaller set of variables of the form

∑n
i=1g(Xi), where g is an arbitrary measurable

function.
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14.6.4 Hoeffding Decomposition

The Hájek projection gives a best approximation by a sum of functions of one Xi

at a time. The approximation can be improved by using sums of functions of two,
or more, variables. This leads to the Hoeffding decomposition.

Since a projection onto a sum of orthogonal spaces is the sum of the projections
onto the individual spaces, it is convenient to decompose the proposed projection
space into a sum of orthogonal spaces. Given independent variables X1, . . . , Xn and
a subset A ⊂ {1, . . . , n}, let HA denote the set of all square-integrable random
variables of the type

gA(Xi: i ∈ A),

for measurable functions gA of |A| arguments such that

(14.51) E
(
gA(Xi: i ∈ A)|Xj : j ∈ B

)
= 0, every B: |B| < |A|.

(Define E(T | ∅) = ET .) By the independence of X1, . . . , Xn the condition in the
last display is automatically valid for any B ⊂ {1, 2, . . . , n} that does not contain
A. Consequently, the spaces HA, when A ranges over all subsets of {1, . . . , n}, are
pairwise orthogonal. Stated in its present form, the condition reflects the intention
to build approximations of increasing complexity by projecting a given variable in
turn onto the spaces

[
1
]
,

[∑

i

g{i}(Xi)
]
,

[∑ ∑

i<j

g{i,j}(Xi, Xj)
]
, · · · ,

where g{i}(Xi) ∈ H{i}, g{i,j}(Xi, Xj) ∈ H{i,j}, etcetera, and [· · ·] denotes linear
span. Each new space is chosen orthogonal to the preceding spaces.

Let PAT denote the projection of T onto HA. Then, by the orthogonality of
the HA, the projection onto the sum of the first r spaces is the sum

∑

|A|≤r PAT of
the projections onto the individual spaces. The projection onto the sum of the first
two spaces is the Hájek projection. More generally, the projections of zero, first and
second order can be seen to be

P∅T = ET,

P{i}T = E(T |Xi) − ET,

P{i,j}T = E(T |Xi, Xj) − E(T |Xi) − E(T |Xj) + ET.

Now the general formula given by the following lemma should not be surprising.

14.52 Theorem. Let X1, . . . , Xn be independent random variables, and let T be
an arbitrary random variable with ET 2 <∞. Then the projection of T onto HA is
given by

PAT =
∑

B⊂A
(−1)|A|−|B|E(T |Xi: i ∈ B).
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If T ⊥ HB for every subset B ⊂ A of a given set A, then E(T |Xi: i ∈ A) = 0.
Consequently, the sum of the spaces HB with B ⊂ A contains all square-integrable
functions of (Xi: i ∈ A).

Proof. Abbreviate E(T |Xi: i ∈ A) to E(T |A) and gA(Xi: i ∈ A) to gA. By the
independence of X1, . . . , Xn it follows that E

(
E(T |A)|B

)
= E(T |A ∩B) for every

subsets A and B of {1, . . . , n}. Thus, for PAT as defined in the lemma and a set C
strictly contained in A,

E(PAT |C) =
∑

B⊂A
(−1)|A|−|B|E(T |B ∩C)

=
∑

D⊂C

|A|−|C|
∑

j=0

(−1)|A|−|D|−j
(|A| − |C|

j

)

E(T |D).

By the binomial formula, the inner sum is zero for every D. Thus the left side is
zero. In view of the form of PAT , it was not a loss of generality to assume that
C ⊂ A. Hence PAT is contained in HA.

Next we verify the orthogonality relationship. For any measurable function gA,

E(T − PAT )gA = E
(
T − E(T |A)

)
gA −

∑

B⊂A
B 6=A

(−1)|A|−|B|EE(T |B)E(gA|B).

This is zero for any gA ∈ HA. This concludes the proof that PAT is as given.
We prove the second assertion of the lemma by induction on r = |A|. If T ⊥ H∅,

then E(T | ∅) = ET = 0. Thus the assertion is true for r = 0. Suppose that it is true
for 0, . . . , r − 1, and consider a set A of r elements. If T ⊥ HB for every B ⊂ A,
then certainly T ⊥ HC for every C ⊂ B. Consequently, the induction hypothesis
shows that E(T |B) = 0 for every B ⊂ A of r − 1 or fewer elements. The formula
for PAT now shows that PAT = E(T |A). By assumption the left side is zero. This
concludes the induction argument.

The final assertion of the lemma follows if the variable TA: = T − ∑

B⊂A PBT
is zero for every T that depends on (Xi: i ∈ A) only. But in this case TA depends
on (Xi: i ∈ A) only and hence equals E(TA|A), which is zero, because TA ⊥ HB for
every B ⊂ A.

14.53 EXERCISE. If Y ∈ HA for some nonempty set A, then EXiY = 0 for any i.
Here EXi means: compute the expected value relative to the variable Xi, leaving all
other variables Xj fixed. [Hint: EXiY = E(Xi|Xj : j ∈ B) for B = {1, . . . , n}−{i}.]
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14.7 EM-Algorithm

The Expectation-Maximization Algorithm, abbreviated EM, is a popular, multi-
purpose algorithm to compute maximum likelihood estimators in situations where
the desired data is only partially observed. In many applications missing data mod-
els arise naturally, but the algorithm can also be applied by viewing the observed
data as part of an imaginary “full observation”.

We denote the observation by X , and write (X,Y ) for the “full data” (X,Y ),
where Y may be an arbitrary random vector for which the joint distribution of
(X,Y ) can be defined. The probability density of the observationX can be obtained
from the probability density (x, y) 7→ p̄θ(x, y) of the vector (X,Y ), by marginaliza-
tion,

pθ(x) =

∫

p̄θ(x, y) dµ(y).

By definition the maximum likelihood estimator of θ based on the observation X
maximizes the likelihood function θ 7→ pθ(X). If the integral in the preceding dis-
play can be evaluated explicitly, then the computation of the maximum likelihood
estimator becomes a standard problem, which may be solved analytically or nu-
merically using an iterative algorithm. On the other hand, if the integral cannot be
evaluated analytically, then computation of the likelihood may require numerical
evaluation of an integral for every value of θ, and finding the maximum likelihood
estimator may be computationally expensive. The EM-algorithm tries to overcome
this difficulty by maximizing a different function.

Would the full data (X,Y ) have been available, then we would have used the
maximum likelihood estimator based on (X,Y ). This estimator, which would typ-
ically be more accurate than the maximum likelihood estimator based on X only,
is the point of maximum of the log likelihood function θ 7→ log p̄θ(X,Y ). We shall
assume that the latter “full likelihood function” is easy to evaluate. A natural proce-
dure if Y is not available, is to replace the full likelihood function by its conditional
expectation given the observed data:

(14.54) θ 7→ Eθ0
(
log p̄θ(X,Y )|X

)
.

The idea is to determine the point of maximum of this function instead of the
likelihood.

Unfortunately, the expected value in (14.54) will typically depend on the pa-
rameter θ0, a fact which has been made explicit by writing θ0 as a subscript of
the expectation operator Eθ0 . Because θ0 is unknown, the function in the display
cannot be used as basis of an estimation routine. The EM-algorithm overcomes this
by iteration. Given a suitable first guess θ̃0 of the true value of θ, an estimator θ̃1
is determined by maximizing the criterion with Eθ̃0 instead of Eθ0. Next θ̃0 in Eθ̃0
is replaced by θ̃1, this new criterion is maximized, etc..

Initialise θ̃0.

E-step: given θ̃i compute the function θ 7→ Eθ̃i

(
log p̄θ(X,Y )|X = x

)
.
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M-step: define θ̃i+1 as the point of maximum of this function.

The EM-algorithm produces a sequence of values θ̃0, θ̃1, . . ., and we hope that for
increasing i the value θ̃i tends to the maximum likelihood estimator.

The preceding description could suggest that the result of the EM-algorithm is
a new type of estimator. This is sometimes meant to be true and then the iterations
are seen as a smoothing device and stopped before convergence. However, if the
algorithm is run to convergence, then the EM-algorithm is only a computational
device: its iterates θ̃0, θ̃1, . . . are meant to converge to the maximum likelihood
estimator.

Unfortunately, the convergence of the EM-algorithm is not guaranteed in gen-
eral, although under regularity conditions it can be shown that, for every i,

(14.55) pθ̃i+1
(X) ≥ pθ̃i

(X).

Thus the EM-iterations increase the value of the likelihood, which is a good property.
This does not imply convergence of the sequence θ̃i, as the sequence θ̃i could tend
to a local maximum or fluctuate between local maxima.

14.56 Lemma. The sequence θ̃0, θ̃1, . . . generated according to the EM-algorithm
yields an nondecreasing sequence of likelihoods pθ̃0(X), pθ̃1(X), . . ..

Proof. The density p̄θ of (X,Y ) can be factorized as

p̄θ(x, y) = p
Y |X
θ (y|x)pθ(x).

The logarithm changes the product in a sum and hence

Eθ̃i

(
log p̄θ(X,Y )|X

)
= Eθ̃i

(
log p

Y |X
θ (Y |X)|X

)
+ log pθ(X).

Because θ̃i+1 maximizes this function over θ, this sum is bigger at θ = θ̃i+1 than at
θ = θ̃i. If we can show that the first term on the right is bigger at θ = θ̃i than at
θ = θ̃i+1, then the second term must satisfy the reverse inequality, and the claim
(14.55) is proved. Thus it suffices to show that

Eθ̃i

(
log p

Y |X
θ̃i+1

(Y |X)|X
)
≤ Eθ̃i

(
log p

Y |X
θ̃i

(Y |X)|X
)
.

This inequality is of the form
∫

log(q/p) dP ≤ 0 for p and q the conditional density

of Y given X using the parameters θ̃i and θ̃i+1, respectively. Because log x ≤ x− 1
for every x ≥ 0, any pair of probability densities p and q satisfies

∫

log(q/p) dP ≤
∫

(q/p− 1) dP =

∫

p(x)>0

q(x) dx − 1 ≤ 0.

This implies the preceding display, and concludes the proof.
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14.57 EXERCISE. Suppose that we observe a variable X which given an observ-
able Y is normally distributed with mean Y and variance 1. Suppose that Y is
normally distributed with mean θ and variance 1. Determine the iterations of the
EM-algorithm, and show that the algorithm produces a sequence that converges to
the maximum likelihood estimator, from any starting point.

14.8 Hidden Markov Models

Hidden Markov models are used to model phenomena in areas as diverse as speech
recognition, financial risk management, the gating of ion channels or gene-finding.
They are in fact Markov chain models for a given phenomenon, where the states
of the chain are only partially observed or observed with error. The hidden nature
of the Markov chain arises, because many systems can be thought of as evolving
as a Markov process (in time or space) provided that the state space is chosen to
contain enough information to ensure that the jumps of the process are indeed deter-
mined based on the current state only. This may necessitate including unobservable
quantities in the states.

The popularity of hidden Markov models is also partly explained by the ex-
istence of famous algorithms to compute likelihood-based quantities. In fact, the
EM-algorithm was first invented in the context of hidden Markov models for speech
recognition.

Y1 Y2 Y3

. . .

Yn−1 Yn

X1 X2 X3

. . .

Xn−1 Xn

Figure 14.3. Graphical representation of a hidden Markov model. The “state variables” Y1, Y2, . . . ,
form a Markov chain, but are unobserved. The variablesX1, X2, . . . are observable “outputs” of the chain.
Arrows indicate conditional dependence relations. Given the state Yi the variable Xi is independent of
all other variables.

Figure 14.3 gives a graphical representation of a hidden Markov model. The
sequence Y1, Y2, . . . , forms a Markov chain, and is referred to as the sequence of
state variables. This sequence of variables is not observed (“hidden”). The variables
X1, X2, . . . are observable, with Xi viewed as the “output” of the system at time i.
Besides the Markov property of the sequence Y1, Y2, . . . (relative to its own history),
it is assumed that given Yi the variable Xi is conditionally independent of all other



246 14: Statistics and Probability

variables (Y1, X1, . . . , Yi−1, Xi−1, Yi+1, Xi+1, . . . , Yn, Xn). Thus the output at time
i depends on the value of the state variable Yi only.

We can describe the distribution of Y1, X1, . . . , Yn, Xn completely by:
- the density π of Y1 (giving the initial distribution of the chain).
- the set of transition densities (yi−1, yi) 7→ pi(yi| yi−1) of the Markov chain.
- the set of output densities (xi, yi) 7→ qi(xi| yi).

The transition densities and output densities may be time-independent (pi = p and
qi = q for fixed transition densities p and q), but this is not assumed. It is easy to
write down the likelihood of the complete set of variables Y1, X1, . . . , Yn, Xn:

π(y1)p2(y2| y1) × · · · × pn(yn| yn−1) q1(x1| y1) × · · · × qn(xn| yn).

However, for likelihood inference the marginal density of the outputs X1, . . . , Xn

is the relevant density. This is obtained by integrating or summing out the hidden
states Y1, . . . , Yn. This is conceptually easy, but the n-dimensional integral may be
hard to handle numerically.

The full likelihood has three components, corresponding to the initial density π,
the transition densities of the chain and the output densities. In typical applications
these three components are parametrized with three different parameters, which
range independently. For the case of discrete state and output spaces, and under
the assumption of stationarity transitions and outputs, the three components are
often not modelled at all: π is an arbitrary density, and pi = p and qi = q are
arbitrary transition densities. If the Markov chain is stationary in time, then the
inital density π is typically a function of the transition density p.

14.8.1 Baum-Welch Algorithm

The Baum-Welch algorithm is the special case of the EM-algorithm for hidden
Markov models. Historically it was the first example of an EM-algorithm.

Suppose that initial estimates π̃, p̃i and q̃i are given. The M-step of the EM-
algorithm requires that we compute

(14.58)

Eπ̃,p̃,q̃

(

log π(Y1)
n∏

i=2

pi(Yi|Yi−1)
n∏

i=1

qi(Xi|Yi)|X1, . . . , Xn

)

= Eπ̃,p̃,q̃

(

log π(Y1)|X1, . . . , Xn

)

+

n∑

i=2

Eπ̃,p̃,q̃

(

log pi(Yi|Yi−1)|X1, . . . , Xn

)

+

n∑

i=1

Eπ̃,p̃,q̃

(

log qi(Xi|Yi)|X1, . . . , Xn

)

.

To compute the right side we need the conditional distributions of Yi and the pairs
(Yi−1, Yi) given X1, . . . , Xn only, expressed in the initial guesses π̃, p̃i and q̃i. It
is shown below that these conditional distributions can be computed by simple
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recursive formulas. The computation of the distribution of Yi given the observations
is known as smoothing, and in the special case that i = n also as filtering.

The E-step of the EM-algorithm requires that the right side of the preceding
display be maximized over the parameters, which we may take to be π, pi and qi
themselves provided that we remember that the parameters must be restricted to
their respective parameter spaces. As this step depends on the specific models used,
there is no general recipe. However, if the three types of parameters π, pi and qi
range independently over their respective parameter spaces, then the maximization
can be performed separately, using the appropriate term of the right side of (14.58)
(provided the maxima are finite).

14.59 Example (Stationary transitions, nonparametric model). Assume that
pi = p and qi = q for fixed but arbitrary transition densities p and q, and no other
restrictions are placed on the model. The three terms on the right side of (14.58)
can be written

∫

log π(y) p
Y1|X1,...,Xn

π̃,p̃,q̃ (y) dµ(y),

∫ [∫

log p(v|u)
( n∑

i=2

p
Yi−1,Yi|X1,...,Xn

π̃,p̃,q̃ (u, v)
)

dµ(v)

]

dµ(u),

∫ [
∑

x∈X
log q(x| y)

( ∑

i:Xi=x

p
Yi|X1,...,Xi−1,Xi=x,Xi+1,...,Xn

π̃,p̃,q̃ (y)
)]

dµ(y).

The first expression is the divergence between the density π and the distribution of
Y1 given X1, . . . , Xn. Without restrictions on π (other than that π is a probability
density) it is maximized by taking π equal to the density of the second distribution,

π = p
Y1|X1,...,Xn

π̃,p̃,q̃ (y).

The inner integral (within square brackets) in the second expression is, for fixed u,
the divergence between the density v 7→ p(v|u) and the function given by the sum
(between round brackets) viewed as function of v. Thus by the same argument this
expression is maximized over arbitrary transities densities p by

p(v|u) =

∑n
i=2 p

Yi−1,Yi|X1,...,Xn

π̃,p̃,q̃ (u, v)
∑n

i=2 p
Yi−1|X1,...,Xn

π̃,p̃,q̃ (u)
.

The sum (in square brackets) in the third expression of the display can be viewed,
for fixed y, also as a divergence, and hence by the same argument this term is
maximized by

q(x| y) =

∑

i:Xi=x
p
Yi|X1,...,Xi−1,Xi=x,Xi+1,...,Xn

π̃,p̃,q̃ (y)
∑

x∈X
∑

i:Xi=x
p
Yi|X1,...,Xi−1,Xi=x,Xi+1,...,Xn

π̃,p̃,q̃ (y)
.

These expressions can be evaluated using the formulas for the conditional distribu-
tions of Yi−1 and (Yi−1, Yi) given X1, . . . , Xn, given below.
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14.8.2 Smoothing

The algorithm for obtaining formulas for the conditional distributions of the vari-
ables Yi−1, Yi given the observations X1, . . . , Xn is expressed in the functions

αi(y): = P (X1 = x1, . . . , Xi = xi, Yi = y),

βi(y): = P (Xi+1 = xi+1, . . . , Xn = xn|Yi = y).

Here the values of x1, . . . , xn have been omitted from the notation on the left, as
these can be considered fixed at the observed values throughout. These functions can
be computed recursively in i by a forward algorithm (for the α’s) and a backward
algorithm (for the β’s), starting from the initial expressions

α1(y) = π(y)q1(x1| y), βn(y) = 1.

The forward algorithm is to write

αi+1(y) =
∑

z

P (x1, . . . , xi+1, Yi+1 = y, Yi = z)

=
∑

z

qi+1(xi+1| y)pi+1(y| z)αi(z).

Here the argument xi within P (· · ·) is shorthand for the eventXi = xi. The backward
algorithm is given by

βi(y) =
∑

z

P (xi+1, . . . , xn|Yi+1 = z, Yi = y)P (Yi+1 = z|Yi = y)

=
∑

z

qi+1(xi+1| z)βi+1(z)pi+1(z| y).

Given the set of all α’s and β’s we may now obtain the likelihood of the observed
data as

P (X1 = x1, . . . , Xn = xn) =
∑

y

αn(y).

The conditional distributions of Yi and (Yi−1, Yi) given X1, . . . , Xn are the joint
distributions divided by this likelihood. The second joint distribution can be written

P (Yi−1 = y, Yi = z, x1, . . . , xn)

= P (Yi = z, xi, . . . , xn|Yi−1 = y, x1, . . . , xi−1)P (Yi−1 = y, x1, . . . , xi−1)

= P (xi+1, . . . , xn|Yi = z, xi)P (Yi = z, xi|Yi−1 = y, x1, . . . , xi−1)αi−1(y)

= βi(z)qi(xi| z)pi(z| y)αi−1(y).

By a similar argument we see that

P (Yi = y, x1, . . . , xn) = P (xi+1, . . . , xn|Yi = y, x1, . . . , xi)P (Yi = y, x1, . . . , xi)

= βi(y)αi(y).

14.60 EXERCISE. Show that P (X1 = x1, . . . , Xn = xn) =
∑

y αi(y)βi(y) for every
i = 1, . . . , n.
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14.8.3 Viterbi Algorithm

The Viterbi algorithm computes the most likely sample path of the hidden Markov
chain Y1, . . . , Yn given the observed outputs. It is a backward programming algo-
rithm, also known as dynamic programming. The “most likely path” is the vector
(y1, . . . , yn) that maximizes the conditional probability

(y1, . . . , yn) 7→ P (Y1 = y1, . . . , Yn = yn|X1, . . . , Xn).

This is of interest in some applications. It should be noted that there may be many
possible paths, consistent with the observations, and the most likely path may be
nonunique or not very likely and only slightly more likely than many other paths.
Thus for many applications use of the full conditional distribution of the hidden
states given the observations (obtained in the “smoothing” algorithm) is preferable.

14.9 Importance Sampling

If Y1, . . . , YB is a sequence of random variables with a fixed marginal distribution
P , then typically, for any sufficiently integrable function h, as B → ∞,

(14.61)
1

B

B∑

b=1

h(Yb) →
∫

h dP, a.s..

For instance, this is true by the Law of Large Numbers if the variables Yb are inde-
pendent, but it is true under many types of dependence as well (e.g. for irreducible,
aperiodic Markov chains, weakly mixing time series) In the case that the sequence
Y1, Y2, . . . is stationary, the property is exactly described as ergodicity.

The convergence gives the possibility of “computing” the integral
∫
h dP by

generating a suitable sequence Y1, Y2, . . . of variables with marginal distribution P .
We are then of course also interested in the speed of convergence, which roughly
would be expressed by the variance of B−1

∑B
b=1 h(Yb). For the variance the de-

pendence structure of the sequence Y1, Y2, . . . is important, but also the “variation”
of the function h. Extreme values of h(Y1) may contribute significantly to the ex-
pectation Eh(Y1), and even more so to the variance varh(Y1). If extreme values
are assumed with small probability, then we would have to generate a very long
sequence Y1, Y2, . . . , YB to explore these rare values sufficiently to obtain accurate
estimates. Intuitively this seems to be true whatever the dependence structure,
although certain types of dependence may be of help here. One would want the
sequence Y1, Y2, . . . to “explore” the various regions of the domain of h sufficiently
well in order to obtain a good impression of the average size of h.

Importance sampling is a method to improve the Monte Carlo estimate (14.61)
by generating the variables from a different distribution than P . If we are interested
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in computing
∫
h dP , but we generateX1, X2, . . . with marginal distribution Q, then

we could use the estimate, with p and q are densities of P and Q,

1

B

B∑

b=1

h(Xb)
p(Xb)

q(Xb)
,

Provided that P � Q (i.e. q can be chosen positive whenever p is positive), this
variable still has mean value

∫
h dP , and hence the same reasoning as before suggests

that it can be used as an estimate of this integral for large n. The idea is to use
a distribution Q for which the variance of the average in the display is small, and
from which it is easy to simulate. The ideal q is proportional to the function hp,
because then h(Xb)p(Xb)/q(Xb) is constant and the variance 0. Unfortunately, this
q is often not practical.

Consider importance sampling to calculate a likelihood in a missing data prob-
lem. The observed data is X and we wish to calculate the marginal density pθ(x)
of X under a parameter θ at the observed value x. If we can think of X as part of
the full data (X,Y ), then

L(θ;x) = pθ(x) =

∫

pθ(x| y) dQθ(y).

An importance sampling scheme to compute this expectation is to generate
Y1, Y2, . . . from a distribution Q and estimate the preceding display by

L̂B(θ;x) =
1

B

B∑

b=1

pθ(x|Yb)qθ(Yb)
q(Yb)

.

A Monte-Carlo implementation of the method of maximum likelihood is to compute
this estimate for all values of the parameter θ, and find the point of maximum of
θ 7→ L̂B(θ;x). Alternatively, it could consist of an iterative procedure in which the
iterates are estimated by the Monte-Carlo method.

The optimal distribution for importance sampling has density proportional to
q(y) ∝ pθ(x| y)qθ(y), and hence is exactly the conditional law of Y given X = x
under θ. This is often not known, and it is also not practical to use a different dis-
tribution for each parameter θ. For rich observations x, the conditional distribution
of Y given x is typically concentrated in a relatively narrow area, which may make
it difficult to determine an efficient proposal density q.

* 14.10 MCMC Methods

Het principe van de methode van Bayes is eenvoudig genoeg: uitgaande van een
model en een a-priori verdeling berekenen we de a-posteriori verdeling met behulp
van de regel van Bayes. Het rekenwerk in de laatste stap is echter niet altijd een-
voudig. Traditioneel worden vaak a-priori verdelingen gekozen die het rekenwerk
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voor het gegeven model vereenvoudigen. De combinatie van de binomiale verdeling
met de beta a-priori verdeling is daarvan een voorbeeld. Meer recent vervangt men
het analytische rekenwerk wel door stochastische simulatie, zogenaamde Markov
Chain Monte Carlo (of MCMC) methoden. In principe is het met dergelijke meth-
oden mogelijk een willekeurige a-priori verdeling te combineren met een gegeven
statistisch model. In deze subsectie geven we een zeer beknopte introductie tot deze
methoden.

Gegeven een waarneming X , met realisatie x, met kansdichtheid pθ en een
a-priori dichtheid π, is de a-posteriori dichtheid proportioneel aan de functie

θ 7→ pθ(x)π(θ).

In de meeste gevallen is het makkelijk om deze uitdrukking te berekenen, omdat
deze functie direct gerelateerd is aan de specificatie van het statistisch model en de
a-priori verdeling. Om de Bayes schatter of de a-posteriori verdeling te berekenen,
is het echter nodig de integraal van de functie in het display en de integraal van θ
keer de functie relatief ten opzichte van θ, voor gegeven x, te evalueren. Het feit dat
dit lastig kan zijn, heeft de populariteit van Bayes schatters geen goed gedaan. Het
is weinig attractief gedwongen te zijn tot een bepaalde a-priori dichtheid om wille
van de eenvoud van de berekeningen.

Als de parameter θ laag-dimensionaal is, bijvoorbeeld reëelwaardig, dan is het
redelijk recht-toe recht-aan om de berekeningen numeriek te implementeren, bi-
jvoorbeeld door de integralen te benaderen met sommen. Voor hoger-dimensionale
parameters, bijvoorbeeld van dimensie groter gelijk aan 4, zijn de problemen groter.
Simulatie methoden hebben deze problemen sinds 1990 verzacht. MCMC methoden
zijn een algemene procedure voor het simuleren van een Markov keten Y1, Y2, . . .
waarvan de marginale verdelingen ongeveer gelijk zijn aan de a-posteriori verdeling.
Voordat we de MCMC algoritmen beschrijven, bespreken we in de volgende alineas
enkele essentiële begrippen uit de theorie van de Markov ketens.

Een Markov keten is een rij Y1, Y2, . . . stochastische grootheden waarvan de
voorwaardelijke verdeling van Yn+1 gegeven de voorgaande grootheden Y1, . . . , Yn
alleen van Yn afhangt. Een equivalente formulering is dat gegeven de “huidige”
variabele Yn de “toekomstige” variabele Yn+1 onafhankelijk is van het “verleden”
Y1, . . . , Yn−1. We kunnen de variabele Yn dan zien als de toestand op het “tijdstip”
n, en voor het simuleren van de volgende toestand Yn+1 is het voldoende de huidige
toestand Yn te kennen, zonder interceptie van de voorgaande toestanden te kennen.
We zullen alleen Markov ketens beschouwen die “tijd-homogeen” zijn. Dit wil zeggen
dat de voorwaardelijke verdeling van Yn+1 gegeven Yn niet afhangt van n, zodat de
overgang van de ene toestand naar de volgende toestand steeds volgens hetzelfde
mechanisme plaats vindt. Het gedrag van de keten wordt dan volledig bepaald door
de overgangskern Q gegeven door

Q(y,B) = P (Yn+1 ∈ B|Yn = y).

Voor een vaste y geeft B 7→ Q(B| y) de kansverdeling op het volgende tijdstip
gegeven de huidige toestand y. Vaak wordt Q gegeven door een overgangsdichtheid
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q. Dit is de voorwaardelijke dichtheid van Yn+1 gegeven Yn en voldoet aanQ(y,B) =
∫

B q(y, z) dz, waarbij de integraal moet worden vervangen door een som in het
discrete geval.

Een kansverdeling Π heet een stationaire verdeling voor de overgangskern Q
als, voor iedere eventualiteit B,

∫

Q(y,B) dΠ(y) = Π(B).

Deze vergelijking zegt precies dat de stationaire verdeling behouden blijft onder de
overgang van Yn naar Yn+1. Bezit Y1 de stationaire verdeling, dan bezit ook Y2 de
stationaire verdeling, etc.. Als Q een overgangsdichtheid q bezit en Π een dichtheid
π (die dan stationaire dichtheid wordt genoemd), dan is een equivalente vergelijking

∫

q(y, z)π(y) dy = π(z).

Deze laatste vergelijking geeft een eenvoudige manier om stationaire verdelingen te
karakteriseren. Een dichtheid π is een stationaire dichtheid als voldaan is aan de
detailed balance relatie

π(y)q(y, z) = π(z)q(z, y).

Deze relatie eist dat een overgang van y naar z even waarschijnlijk is aan een
overgang van z naar y, als in beide gevallen het startpunt een random punt is gekozen
volgens π. Een Markov keten met deze eigenschap wordt reversibel genoemd. Dat
de detailed balance relatie impliceert dat π een stationaire dichtheid is, kan worden
gezien door de beide kanten van de relatie naar y te integreren, en gebruik te maken
van de gelijkheid

∫
q(z, y) dy = 1, voor iedere z.

De MCMC algoritmen genereren een Markov keten met een overgangskern
waarvan de stationaire dichtheid gelijk is aan de a-posteriori verdeling, met de
waargenomen waarde x vast genomen. De dichtheid y 7→ π(y) in de voorgaande
algemene discussie van Markov ketens wordt in de toepassing op het berekenen van
de a-posteriori dichtheid dus vervangen door de dichtheid die proportioneel is aan
θ 7→ pθ(x)π(θ). Gelukkig is in de simulatie schema’s de proportionaliteits constante
onbelangrijk.

Omdat het meestal lastig is de eerste waarde Y1 van de keten te genereren vol-
gens de stationaire dichtheid (= a-posteriori dichtheid) is een MCMC Markov keten
meestal niet stationair. Wel convergeert de keten naar stationariteit als n→ ∞. In
de praktijk simuleert men de keten over een groot aantal stappen, en gooit ver-
volgens de eerste gesimuleerde data Y1, . . . , Yb weg, de zogenaamde “burn-in”. De
resterende variabelen Yb+1, Yb+2, . . . , YB kunnen dan worden opgevat als een real-
isatie van een Markov keten met de a-posteriori verdeling als stationaire verdeling.
Door middel van bijvoorbeeld een histogram van Yb+1, . . . , YB verkrijgen we dan
een goede indruk van de a-posteriori dichtheid, en het gemiddelde van Yb+1, . . . , YB
is een goede benadering van de Bayes schatter, de a-posteriori verwachting. De
motivatie voor het gebruik van deze “empirische benaderingen” is hetzelfde als in
Paragraaf , met dit verschil dat de variabelen Y1, Y2, . . . thans een Markov keten
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vormen, en dus niet onafhankelijk zijn. Voor vele Markov ketens geldt echter ook
een Wet van de Grote Aantallen en deze garandeert dat ook nu gemiddelden zich
asymptotisch gedragen als verwachtingen. Wel blijkt de snelheid van convergentie
sterk af te hangen van de overgangskern, zodat in de praktijk het nog een hele kunst
kan zijn om een MCMC algoritme op te zetten dat binnen een redelijke (CPU) tijd
goede benaderingen levert.

Inmiddels bestaan vele typen MCMC algoritmen. De twee belangrijkste algorit-
men, welke vaak ook samen worden gebruikt, zijn het Metropolis-Hastings algoritme
en de Gibbs sampler.

14.62 Example (Metropolis-Hastings). Laat q een overgangsdichtheid waarvoor
het makkelijk is om te simuleren volgens de kansdichtheid z 7→ q(y, z), voor iedere
gegeven y. Definieer

α(y, z) =
π(z)q(z, y)

π(y)q(y, z)
∧ 1.

Merk op dat het voldoende is de vorm van π en q te weten; de proportionaliteits
constante valt weg. Neem een vaste beginwaarde Y0 en handel vervolgens recursief
als volgt:

gegeven Yn genereer Zn+1 volgens Q(Yn, ·).
genereer Un+1 volgens de homogene verdeling op [0, 1].
if Un+1 < α(Yn, Zn+1) laat Yn+1: = Zn+1

else laat Yn+1: = Yn.

De overgangskern P van de Markov keten Y1, Y2, . . . bestaat uit twee stukken,
corresponderend met de “if-else” splitsing. Deze kern wordt gegeven door

P (y,B) =

∫

B

α(y, z)q(y, z) dz +
(

1 −
∫

α(y, z)q(y, z) dµ(y)
)

δy(B).

Hierin is δy de gedenereerde verdeling (Dirac maat) in y: gegeven Yn = y blijven we
in y met kans

1 −
∫

α(y, z)q(y, z) dz.

Het “andere deel” van de keten beweegt volgens de subovergangsdichtheid
α(y, z)q(y, z). De functie α is zo gekozen dat het bereik in het interval [0, 1] be-
vat is en zodanig dat voldaan is aan de detailed balance relatie

(14.63) π(y)α(y, z)q(y, z) = π(z)α(z, y)q(z, y).

Dit gedeelte van de Markov keten is daarom reversibel. De beweging van y naar y van
het eerste “deel” van de keten is trivialerwijze symmetrisch. Uit deze vaststellingen
is gemakkelijk af te leiden dat π een stationaire dichtheid voor de Markov keten
Y1, Y2, . . . is.

Een populaire keuze voor de overgangsdichtheid q is de random walk kern
q(y, z) = f(z − y) voor een gegeven dichtheid f . Als we f symmetrisch rond 0



254 14: Statistics and Probability

kiezen, dan reduceert α(y, z) tot π(z)/π(y). De keuze van een goede kern is echter
niet eenvoudig. Het algemene principe is een overgangskern q te kiezen die “beweg-
ingen” naar variabelen Zn+1 in de gehele drager van π voorstelt in de eerste stap
van het algoritme, en tegelijkertijd niet te vaak tot de “else” stap leidt, omdat dit
de efficiëntie van het algoritme nadelig zou bëınvloeden. In MCMC jargon heet het
dat we een overgangskern q zoeken die “voldoende mixing is”, “voldoende de ruimte
afzoekt”, en “niet te vaak blijft hangen”.

14.64 Example (Gibbs Sampler). De Gibbs sampler reduceert het probleem van
simuleren uit een hoog-dimensionale a-posteriori dichtheid tot herhaald simuleren
uit lager-dimensionale verdelingen. Het algoritme wordt vaak gebruikt in combinatie
met de Metropolis-Hastings sampler, als geen geschikte overgangsdichtheid q voor
de Metropolis-Hastings algoritme voor handen is.

Veronderstel dat π een dichtheid is afhankelijk van m variabelen, en veronder-
stel dat we over een procedure beschikken om variabelen te genereren uit ieder van
de voorwaardelijke dichtheden

πi(xi|x1, . . . , xi−1, xi+1, . . . xm) =
π(x)

∫
π(x) dµi(xi)

.

Kies een gegeven beginwaarde Y0 = (Y0,1, . . . , Y0,m), en handel vervolgens recursief
op de volgende wijze:

Gegeven Yn = (Yn,1, . . . , Yn,m),
genereer Yn+1,1 volgens π1(·|Yn,2, . . . , Yn,m).
genereer Yn+1,2 volgens π2(·|Yn+1,1, Yn,3 . . . , Yn,m)

...

genereer Yn+1,m volgens πm(·|Yn+1,1, . . . , Yn+1,m−1).

De coördinaten worden dus om de beurt vervangen door een nieuwe waarde, steeds
conditionerend op de laatst beschikbare waarde van de andere coördinaten. Men
kan nagaan dat de dichtheid π stationair is voor ieder van de afzonderlijke stappen
van het algoritme.

14.65 Example (Ontbrekende data). Veronderstel dat in plaats van “volledige
data” (X,Y ) we slechts de data X waarnemen. Als (x, y) 7→ pθ(x, y) een kans-
dichtheid van (X,Y ) is, dan is x 7→

∫
pθ(x, y) dy een kansdichtheid van de waarne-

ming X . Gegeven een a-priori dichtheid π is de a-posteriori dichtheid derhalve pro-
portioneel aan

θ 7→
∫

pθ(x, y) dµ(y)π(θ).

We kunnen de voorgaande MCMC algoritmen toepassen op deze a-posteriori
dichtheid. Als de marginale dichtheid van X (de integraal in het voorgaande dis-
play) echter niet analytisch kan worden berekend, dan is het lastig om de MCMC
schema’s te implementeren.
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Een alternatief is om de marginale verdeling niet te berekenen, en de niet-
waargenomen waarden Y mee te simuleren. In de Bayesiaanse notatie is de a-
posteriori verdeling de voorwaardelijke verdeling van een denkbeeldige variabele
Θ̄ gegeven de waarneming X . Dit is de marginale verdeling van de voorwaardelijke
verdeling van het paar (Θ̄, Y ) gegeven X . Als we in staat zouden zijn een rij vari-
abelen (Θ̄1, Y1), . . . , (Θ̄n, Yn) volgens de laatste voorwaardelijke verdeling te gener-
eren, dan zouden de eerste coördinaten Θ̄1, . . . , Θ̄n van deze rij trekkingen uit de
a-posteriori verdeling zijn. Marginalizeren van een empirische verdeling is hetzelfde
als “vergeten” van sommige variabelen, en dit is computationeel heel gemakkelijk!

Dus kunnen we een MCMC algoritme toepassen om variabelen (Θ̄i, Yi) te
simuleren uit de kansdichtheid die proportioneel is aan de afbeelding (θ, y) 7→
pθ(x, y)π(θ), met x gelijk aan de waargenomen waarde van de waarneming. Ver-
volgens gooien we de Y -waarden weg.

14.11 Gaussian Processes

A Gaussian process (Xt: t ∈ T ) indexed by an arbitrary set T is a collection
of random variables Xt defined on a common probability space such that the
finite-dimensional marginals, the stochastic vectors (Xt1 , . . . , Xtn) for finite set
s t1, . . . , tn ∈ T , are multivariate-normally distributed. Because the multivariate
normal distribution is determined by its mean vector and covariance matrix, the
marginal distributions of a Gaussian process are determined by the mean function
and covariance function

t 7→ µ(t) = EXt, (s, t) 7→ C(s, t): = cov(Xs, Xt).

A covariance function is symmetric in its arguments, and it is nonnegative-definite
in the sense that for every finite set t1, . . . , tn the (n × n)-matrix

(
S(ti, tj)

)
is

nonnegative-definite. By Kolmogorov’s extension theorem any function µ and sym-
metric, nonnegative function C are the mean and covariance function of some Gaus-
sian process.

The mean and covariance function also determine the distribution of countable
sets of variables Xt, but not the complete sample paths t 7→ Xt. This is usually
solved by working with a “regular” version of the process, such as a version with
continuous or right-continuous sample paths. While a Gaussian process as a col-
lection of variables exists for every mean function and every nonnegative-definite
covariance function, existence of a version with such regular sample paths is not
guaranteed and generally requires a nontrivial proof.

A Gaussian process (Xt: t ∈ R) indexed by the reals is called stationary if the
distribution of (Xt1+h, . . . , Xtn+h) is the same for every h, and t1, . . . , tn. This is
equivalent to the variables having the same mean and the covariance function being
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a function of the difference s− t: for some constant µ, some function C: R → R and
every s, t,

µ = EXt, cov(Xs, Xt) = C(s− t).

By the symmetry of covariance, the function C is necessarily symmetric about 0.
The variance σ2 = varXt = C(0) is of course also constant, and E(Xs − Xt)

2 =
2C(0)−2C(s−t) is a function of |s−t|. Conversely a Gaussian process with constant
mean, constant variance σ2 and E(Xs −Xt)

2 = 2B
(
|s− t|

)
for some function B is

stationary, with C(t) = σ2 −B
(
|t|

)
.

An Ornstein-Uhlenbeck process is the stationary Gaussian process with mean
zero, and covariance function

EXsXt = e−|s−t|.

14.12 Renewal Processes

A renewal process is a point process T0 = 0 < T1 < T2 < · · · on the positive
real line, given by the cumulative sums Tn = X1 + X2 + · · · + Xn of a sequence
of independent, identically distributed, positive random variables X1, X2, . . .. A
delayed renewal process satisfies the same definition, except that X1 is allowed a
different distribution than X2, X3, . . .. Alternatively, the term “renewal process” is
used for the corresponding number of “renewals” Nt = max{n:Tn ≤ t} up till time
t, or for the process

(
N(B):B ∈ B

)
of counts N(B) = #{n:Tn ∈ B} of the number

of events falling in sets B belonging to some class B (for instance, all intervals or
all Borel sets).

In the following we consider the delayed renewal process. We write F1 for the
distribution of X1 and F for the common distribution function of X2, X3, . . .. The
special case of a renewal process corresponds to F1 = F . For simplicity we assume
that F is not a lattice distribution, and possesses a finite mean µ.

The nth renewal time Tn has distribution Fn = F1 ∗ F (n−1)∗, for ∗ denoting
convolution and F k∗ the convolution of k copies of F . The renewal function m(t) =
ENt gives the mean number of renewals up till time t. By writing Nt =

∑∞
n=1 1Tn≤t

we see that

m(t) =

∞∑

n=1

F1 ∗ F (n−1)∗(t).

The quotient Nt/t is the number of renewals per time instant. For large t this
variable and its mean are approximately equal to 1/µ: as t→ ∞,

(14.66)

Nt
t

→ 1

µ
, a.s.,

m(t)

t
→ 1

µ
.
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Roughly speaking, this means that there are h/µ renewals in a long interval of length
h. For distant intervals this is also true for short intervals. By the (elementary)
renewal theorem the expected number of renewals m(t + h) −m(t) in the interval
(t, t+ h] satisfies, for all h > 0, as t→ ∞,

m(t+ h) −m(t) → h

µ
.

For this last result it is important that F is not a lattice distribution.
By the definitions TNt is the last event in [0, t] and TNt+1 is the first event in

(t,∞]. The excess time or residual life at time t is the variable Et = TNt+1 − t,
giving the time to the next renewal. In general, the distribution of Et is dependent
on t. However, for t→ ∞,

P (Et ≤ y) → 1

µ

∫ y

0

(
1 − F (x)

)
dx: = F∞(y).

The distribution F∞, with density x 7→
(
1 − F (x)

)
/µ, is known as the stationary

distribution.
This name is explained by the fact that the delayed renewal process with initial

distribution F1 equal to the stationary distribution F∞ is stationary, in the sense
that the distribution of the counts N(B+t) in a set B shifted by t is the same as the
distribution of N(B), for every t.] In fact, given the distribution F of X2, X3, . . .,
the stationary distribution is the unique distribution making the process stationary.
For a stationary renewal process the distribution of the residual life time Et is equal
to F∞ for every t. This shows that for every fixed t, the future points (in (t,∞))
arrive in intervals that have the same distribution as the intervals E1, E2, . . . in
the original point process starting from 0. Because for a stationary process the
increments m(t+ h) −m(t) depend on h only, the asymptotic relationships m(t +
h) −m(t) → h/µ and m(t)/t→ 1/µ become equalities for every t.

Given a renewal process 0 < T1 < T2 < · · · we can define another point
process 0 < S1 < S2 < · · · by random thinning: one keeps or deletes every Ti with
probabilities p and 1 − p, respectively, and defines S1 < S2 < · · · as the remaining
time points. A randomly thinned delayed renewal process is again a delayed renewal
process, with initial and renewal distributions given by

G1(y) =

∞∑

r=1

p(1 − p)r−1F1 ∗ F (r−1)∗(y),

G(y) =
∞∑

r=1

p(1 − p)r−1F r∗(y).

It can be checked from these formulas that a randomly thinned stationary renewal
process is stationary, as is intuitively clear.

] In terms of the process (Nt: t ≥ 0) stationarity is the same as stationary increments: the distri-
bution of Nt+h −Nt depends on h > 0 only and not on t ≥ 0.
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14.12.1 Poisson Process

The Poisson process is the renewal process with F1 = F the exponential distribution
(with mean µ; intensity 1/µ). It has many special properties:
(i) ((Lask of memory.) The residual life Et is distributed as the renewal times Xi,

for every t; F∞ = F .
(ii) The process

(
N(B):B ∈ B

)
is stationary.

(iii) The distribution of N(B) is Poisson with mean λ(B)/µ.
(iv) For pairwise disjoint sets B1, . . . , Bk, the variables N(B1), . . . , N(Bk) are in-

dependent.
(v) The process (Nt: t ≥ 0) is Markov.
(vi) Given the number of events N(B) in an interval B, the events are distributed

uniformly over B (i.e. given by the ordered values of a random sample of size
N(B) from the uniform distribution on B).

(vii) A random thinning with retention probability p yields a Poisson process with
intensity p/µ. The Poisson process is the only renewal process which after
random thinning possesses renewal distribution G that belongs to the scale
family of the original renewal distribution F .

* 14.12.2 Proofs. For proofs of the preceding and more, see Grimmett-Stirzaker, 1992,
Probability and Random Processes, Chapter 10, or Karlin and Taylor, 1975, A first Course
in Stochastic Processes, Chapter 5, or the following concise notes.

The more involved results are actually consequences of two basic results. For two
functions A,B: [0,∞) → R of bounded variation let A ∗ B be the function A ∗ B(t) =
∫ t

0
A(t − x) dB(x) =

∫ t

0
B(t − x) dA(x).

The first basic result is, that, for every given bounded function a and given distribu-
tion function F on (0,∞),

(14.67) A = a + A ∗ F & A ∈ LB ⇐⇒ A = a + m̃ ∗ a.

Here m̃ =
∑∞

n=1
F n∗ is the renewal function corresponding to F , and A ∈ LB means that

the function A is bounded on bounded intervals.†

The second, much more involved result is the renewal theorem, which says that the
function A = a + m̃ ∗ a for a given “directly Riemann integrable” function a, satisfies

lim
t→∞

A(t) →
1

µ

∫ ∞

0

a(x) dx.

Linear combinations of monotone, integrable functions are examples of directly Riemann
integrable functions.‡

By conditioning on the time of the first event the renewal function of a delayed renewal

† The proof of this result starts by showing that m̃ = F + m̃ ∗ F , which is the special case of
(14.68) with F1 = F and m = m̃ (below). Next if A is given by the equation on the right, then
A∗F = a∗F +a∗ m̃∗F = a∗F +a∗ (m̃−F ) = a∗ m̃ = A−a, and hence A is a solution of the equation
on the left, which can be shown to be locally bounded. The converse implication follows if A = a+ m̃∗a
is the only locally bounded solution. The difference D of two solutions satisfies D = D ∗F . By iteration
this yields D = D ∗ F∗n and hence |D(t)| ≤ F∗n(t) sup0≤s≤t|D(s)|, which tends to 0 as n → ∞.

‡ See W. Feller, (1971). An introduction to probability theory and its applications, volume II, page
363.
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process can be seen to satisfy

(14.68) m = F1 + m̃ ∗ F1.

[ In view of (14.67) the function m also satisfies the renewal equation m = F1 + m ∗ F .
By conditioning on the time of the first event the residual time probability Ay(t):=

P (Et > y) can be shown to satisfy Ay = ay + Ãy ∗ F1, for ay(t) = 1 − F1(t + y) and
Ãy(t) = P (Ẽt > y) the residual life of the renewal process without delay.] In particular,
for the renewal process without delay we have Ãy = ãy + Ãy ∗F , for ãy(t) = 1−F (t + y).
In view of (14.67) this implies that Ãy = ãy + m̃ ∗ ãy . Substituting this in the equation for
Ay, we see that Ay = ay + ãy ∗ F1 + m̃ ∗ ãy ∗ F1 = ay + ãy ∗ m, by (14.68).

The function A = a+ m̃∗a corresponding to a = 1[0,h] satisfies A(t+h) = m̃(t+h)−
m̃(t). Therefore, the renewal theorem gives that m̃(t + h)− m̃(t) →

∫ ∞

0
a(x) dx = h/µ, as

t → ∞.† For the delayed renewal process the equation (14.67) allows to write m(t+h)−m(t)
as

F1(t + h) − F1(t) +

∫ t

0

(
m̃(t + h − x) − m̃(t − x)

)
dF1(x) +

∫ t+h

t

m̃(t + h − x) dF1(x).

The integrand in the third integral is bounded by max0≤t≤h m̃(t) < ∞, and hence the
integral tends to zero as t → ∞, as does the first term. Because the integrand in the middle
integral tends pointwise to h/µ and is bounded, the integral tends to

∫
h/µ dF1 = h/µ as

t → ∞ by the dominated convergence theorem. This extends the renewal theorem to the
delayed renewal process.

An application of the renewal theorem to the equation Ãy = ãy +Ãy ∗F , immediately
yields that P (Ẽt > y) = Ãy(t) → µ−1

∫ ∞

0

(
1 − F (x + y)

)
dx = 1 − F∞(y). The equation

Ay = ay + Ãy ∗ F1, where ay(t) = 1 − F1(t + y) → 0 as t → ∞, allows to extend this to
the delayed renewal process: Ay(t) → 1 − F∞(y).

If the delayed renewal process is stationary, then m(s + t) = m(s) + m(t), whence m
is a linear function. Substitution of m(t) = ct in the renewal equation m = F1 + m ∗ F
readily yields that F1 = F∞. Substitution of m(t) = t/µ and F1 = F∞ into the equation
Ay = ay + ãy ∗m yields after some algebra that Ay = 1−F∞. This shows that the residual
life distribution is independent of t and equal to F1, so that the process “starts anew” at
every time point.

The proofs of the two statements (14.66) are based on the inequalities TNt ≤ t ≤
TNt+1. The first statement follows by dividing these inequalities by Nt and noting that
TNt/Nt and TNt+1/Nt tend to µ by the strong law of large numbers applied to the variables
Xi, as Nt → ∞ almost surely. For the second statement one establishes that Nt + 1 is
a stopping time for the filtration generated by X1, X2, . . ., for every fixed t, so that, by
Wald’s equation,

ETNt+1 = E

Nt+1∑

i=1

Xi = E(Nt + 1)µ.

Combination with the inequality TNt+1 ≥ t immediately gives lim inf ENt/t ≥ 1/µ. If
the Xi are uniformly bounded by a constant c, then also ETNt+1 ≤ ETNt + c ≤ t + c,

[ Write m(t) = EE(Nt|X1) and note that E(Nt|X1 = x) is equal to 0 if t < x and equal to 1 plus
the expected number of renewals at t− x in a renewal process without delay.

] Note that P (Et > y|X1 = x) is equal to 1 if x > t + y equal to 0 if t < x ≤ t + y and equal to
Ãy(t− x) if x ≤ t.

† Actually Feller derives the general form of the renewal theorem from this special case.
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which implies that lim supENt/t ≤ 1/µ. Given general Xi, we have Nt ≤ Nc
t for Nc

the renewal process corresponding to the truncated variables Xi ∧ c. By the preceding
lim supENt/t ≤ 1/µc, where µc = EX1 ∧ c ↑ µ, as c → ∞.

14.13 Markov Processes

A continuous time Markov process‡ on a countable state space X is a stochastic
process (Xt: t ≥ 0) such that, for every 0 ≤ t1 < t2 < · · · < tn <∞ and x1, . . . , xn ∈
X ,

P (Xtn = xn|Xtn−1 = xn−1, . . . Xt0 = x0) = P (Xtn = xn|Xtn−1 = xn−1).

The Markov process is called homogeneous (or said to have stationary transitions)
if the right side of the preceding display depends on the time instants only through
their difference tn− tn−1. Equivalently, there exists a matrix-valued function t 7→ Pt
such that, for every s < t and x, y ∈ X ,

P (Xt = y|Xs = x) = Pt−s(x, y).

The transition matrices Pt are (square) stochastic matrices of dimension the car-
dinality of X .[ The collection of matrices (Pt: t ≥ 0) form a semigroup (i.e.
PsPt = Ps+t and P0 = I) for matrix multiplication, by the Chapman-Kolmogorov
equations

P (Xs+t = y|X0 = x) =
∑

z

P (Xs+t = y|Xs = z)P (Xs = z|X0 = x).

The generator of the semigroup is its derivative at zero

A =
d

dt |t=0
Pt = lim

t↓0
Pt − I

t
.

This derivative can be shown to exist, entrywise, as soon as the semigroup is stan-
dard. A semigroup (Pt: t ≥ 0) is called standard if the map t 7→ Pt(x, y) is continuous
at 0 (where P0 = I is the identity), for every x, y ∈ X . It is immediate from its defi-
nition that the diagonal elements of a generator are nonpositive and its off-diagonal
nonnegative. It can also be shown that its row sums satisfy

∑

y A(x, y) ≤ 0, for ev-
ery x. However, in general the diagonal elements can be equal to −∞, and the row
sums can be strictly negative. The semigroup is called conservative if the generator
A is finite everywhere and has row sums equal to 0.

We also call a matrix A conservative if it is satisfies, for every x 6= y,

−∞ < A(x, x) ≤ 0, A(x, y) ≥ 0,
∑

y

A(x, y) = 0.

‡ Markov processes on countable state space are also called Markov chains.

[ “Stochastic means Pt(x, y) ≥ 0 for every x, y and ΣyPt(x, y) = 1 for every x.
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We shall see below that every such matrix is the generator of a semigroup of a
Markov chain. Conservatism is a natural restriction, although not every generator
is conservative. It excludes so-called instantaneous states x, defined as states with
A(x, x) = −∞.]

The semigroup is called uniform if the maps t 7→ Pt(x, y) are continuous at 0
uniformly in its entries (x, y). This strengthening of standardness can be shown to be
equivalent to finiteness and uniform boundedness of the diagonal of the generator
A [G& R, 6.10.5]. Any uniform semigroup is conservative. We shall also call a
conservative matrix uniform if supxA(x, x) > −∞.

Continuity of the semigroup is equivalent to P (Xt = x|X0 = x) → 1 as t ↓ 0,
for every x ∈ X , and is a mild requirement, which excludes only some pathologi-
cal Markov processes. For instance, it is satisfied if every sample path t 7→ Xt is
right continuous (relative to the discrete topology on the state space, thus meaning
that the process remains for a short while in every state x it reaches). Uniform
continuity strengthens the requirement to uniformity in x ∈ X , and does exclude
some processes of interest. For instance a “pure birth” process on the state space
N, whose states are the numbers of individuals present and where the birth rate is
proportional to this number. On the other hand, continuous Markov semigroups on
finite state spaces are (of course) automatically uniformly continuous.

The Kolmogorov backward equation and Kolmogorov forward equation are, for
t ≥ 0,

d

dt
Pt = APt = PtA.

The backward equation is satisfied by any conservative semigroup, and both equa-
tions are valid for uniform semigroups. The equations are often used in the reverse
direction by starting with a generator A, and next trying to solve the equations for
a semigroup (Pt: t ≥ 0) under the side conditions that Pt is a stochastic matrix for
every t and P0 = I. This is always possible for a uniform generator, with the unique
solution given as Pt = etA.† A solution exists also for a conservative generator, but
the corresponding Markov chain may “explode” in finite time.

A continuous time Markov process (Xt: t ≥ 0) with right continuous paths
gives rise to an accompanying jump chain, defined as the sequence of consecutive
states visited by the chain, and a sequence of holding times, consisting of the in-
tervals between its jump times. Together the jump chain and holding times give a
complete description of the sample paths, at least up till the time of first explosion.
True explosion is said to occur if the Markov process makes infinitely many jumps
during a finite time interval; the first explosion time is then defined as the sum of
the (infinitely many) holding times. True explosion cannot happen if the Markov
semigroup is uniformly continuous, and the first explosion time is then defined as
infinity.

] There are examples of standard Markov chains with A(x, x) = −∞ for every x.

† The exponential of a matrix is defined by its power series: eA = Σ∞
n=0A

n/n!, with A0 = I, where
the convergence of the series can be interpreted entrywise if the state space is finite and relative to an
operator norm otherwise.
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The behaviour of a conservative Markov process (until explosion) has a simple
description: after the chain reaches a state x, it will remain there for an exponentially
distributed holding time with mean 1/

∣
∣A(x, x)

∣
∣, and will next jump to another state

y 6= x with probability A(x, y)/
∣
∣A(x, x)

∣
∣. A more precise description is that the

distribution of the chain (as given by the semigroup) is the same as the distribution
of a Markov chain such that
(i) The jump chain Y0, Y1, . . . is a discrete time Markov chain on X with transition

matrix Q given by Q(x, y) = A(x, y)/
∣
∣A(x, x)

∣
∣1x 6=y for every x, y ∈ X .

(ii) Given Y0, . . . , Yn−1 the first n holding times are independent exponentially
distributed variables with parameters −A(Y0, Y0), . . . ,−A(Yn−1, Yn−1).

Thus the diagonal elements of the generator matrix A determine the mean waiting
times, and the off-diagonal elements in a given row are proportional to the transition
probabilities of the jump chain.

If X0 possesses a distribution π, then Xt possesses the distribution πPt given
by

(πPt)(y) =
∑

x

π(x)Pt(x, y).

(The notation πPt is logical if π is viewed as a horizontal vector
(
π(x):x ∈ X

)

that premultiplies the matrix Pt.) A probability distribution π on the state space is
called a stationary distribution if πPt = π for every t. If the semigroup is uniform,
then this is equivalent to the equation πA = 0.

A Markov process is called irreducible if Pt(x, y) > 0 for any pair of states
x, y ∈ X and some t > 0. (In that case Pt(x, y) > 0 for all t > 0 if the semigroup is
standard.) For an irreducible Markov process with standard semigroup Pt(x, y) →
π(x) as t→ ∞, for every x, y ∈ X , as soon as there exists a stationary distribution
π, and Pt(x, y) → 0 otherwise. In particular, there exists at most one stationary
distribution. For a finite state space there always exists a stationary probability
distribution.

* 14.13.1 Proofs. In this section we give full proofs for the case that the state space
is finite and some other insightful proofs. For the general case, see K.L.Chung, Markov
chains with stationary transition probabilities, or D. Freedman, Markov Chains.

The proof of existence of a generator can be based on the identify (Ph −
I)(

∑n−1

j=0
Pjh) = Pnh − I . Provided that the second matrix on the left is invertible, this

identity can be written as

Ph − I

h
= (Pnh − I)

(

h

n−1∑

j=1

Pjh

)−1

.

For a standard semigroup on a finite space the matrix h
∑n−1

j=1
Pjh tends to

∫ t

0
Ps ds if

h = t/n and n → ∞, which itself approaches the identity as t ↓ 0 and hence indeed is
nonsingular if t is sufficiently close to 0. Thus the right side tends to a limit.

This argument can be extended to uniform semigroups on countable state spaces by
interpreting the matrix-convergence in the operator sense. Every Pt is an operator on the
space `∞ of bounded sequences x = (x1, x2, . . .), normed by ‖x‖∞ = supi |xi|. The norm
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of an operator P : `∞ → `∞ is ‖P‖ = supx

∑

y

∣
∣P (x, y)

∣
∣. A semigroup (Pt: t ≥ 0) is uniform

exactly when Pt → I in the operator norm, as t ↓ 0, because ‖Pt−I‖ = 2 supx

(
1−Pt(x, x)

)
.

It follows also that for a uniform semigroup the convergence (Pt − I)/t → A is
also relative to the operator norm. This implies immediately that ‖A‖ < ∞, whence
supx A(x, x) > −∞, and

∑

y
A(x, y) = 0, for every x, because (Pt − I)/t has these proper-

ties for every t ≥ 0. The norm convergence also allows to conclude that the limit as h → 0
of (Pt+h − Pt)/h = (Ph − I)Pt/h = Pt(Ph − I)/h exists in norm sense for every t ≥ 0,
and is equal to APt = PtA =. This establishes the Kolmogorov backward and forward
equations.

The backward equation can be established more generally for conservative semigroups
by noting that, for any finite set Z ⊂ X that does not contain x,

∑

z∈Z

(
Ph(x, z) − I(x, z)

)
Pt(z, y)/h →

∑

z∈Z

A(x, z)Pt(z, y),

∑

z /∈Z

∣
∣Ph(x, z) − I(x, z)

∣
∣Pt(z, y)/h ≤

∑

z /∈Z

Ph(x, z)/h =
(
1 −

∑

z∈Z

Pt(x, z)
)
/h

→ −
∑

z∈Z

A(x, z) =
∑

z /∈Z

A(x, z).

If Z increases to X , then the right side of the first equation converges to
∑

z
A(x, z)Pt(x, z)

and the right side of the last equation to zero.
For a uniform generator A the matrix exponential etA is well defined, and solves

the Kolmogorov backward and forward equations. To see that it is the only solution we
iterate the backward equation to see that the nth derivative satisfies P

(n)
0 = An. By an

(operator-valued) Taylor expansion it follows that Pt =
∑

(tn/n!)An = etA.
To prove that a Markov chain with uniform semigroup satisfies the description in

terms of jump chain and holding times, it now suffices to construct such a chain and show
that it has generator A.

Given an arbitrary stochastic matrix R of dimension the cardinality of X consider the
stochastic process X with state space X which starts arbitrarily at time 0, and changes
states only at the times of a Poisson process (Nt: t ≥ 0) with intensity λ, when it moves
from a current state x to another state y with probability R(x, y). One can check that this
process X is Markovian and has stationary transitions, given by

Pt(x, y) =

∞∑

n=0

e−λt (λt)n

n!
Rn(x, y) = eλt(R−I)(x, y).

(Here Rn(x, y) is the (x, y)-entry of the matrix Rn, the n-fold product of the matrix R with
itself, which is the n-step transition matrix of the chain.) It follows that X has generator
A = λ(R − I).

If the matrix R has zero diagonal, then each jump time of N is also a jump time of X
and hence is exponentially distributed with mean λ. More generally, we allow the diagonal
of R to be positive and then a move of X at a jump time of N may consist of a “jump”
from a state x to itself. The waiting time for a true jump from x to another state is longer
than t if all jumps that occur before t are to x itself. Because the possibility that N has n
jumps is Poisson with mean λt, this event has probability

∞∑

n=0

e−λt(λt)n

n!
R(x, x)n = e

−λ

(
1−R(x,x)

)
t
.
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Thus the waiting time from x to another state is exponentially distributed with intensity
λ
(
1 − R(x, x)

)
= −A(x, x). By construction, from state x the process jumps to y with

probability R(x, y), and if jumps to x itself are discarded the process jumps to y 6= x with
probability R(x, y)/

∑

z
R(x, z) = A(x, y)/A(x, x). It follows that X is a Markov process

with generator A with the desired jump chain and holding times.
Given a uniform generator A, the matrix R = I + λ−1A for some fixed λ ≥

supx |A(x, x)| is a stochastic matrix, and can be used in the preceding. The resulting
generator λ(R − I) is exactly A.

That a stationary distribution of a uniform Markov chain π satisfies πA = 0 is imme-
diate from the definition of A and the fact πPt is constant. Conversely, by the backward
equation πA = 0 implies that πPt has derivative zero and hence πPt is constant in t.

* 14.13.2 Kronecker Product

The Kronecker product of a (k×l)-matrix A = (Aij) and a (m×n)-matrix B = (bij)
is the (km× ln)-matrix

A⊗B =







a11B a12B · · · a1lB
a21B a22B · · · a2lB

...
...

...
ak1B ak2B · · · aklB






.

If (Xn) and (Yn) are Markov chains with state spaces X = {x1, . . . , xk} and Y =
{y1, . . . , ym}, then

(
(Xn, Yn)

)
is a stochastic process with state space X × Y. If

the two Markov chains are independent, then the joint chain is also a Markov
chain. If P = (pij) and Q = (qij) are the transition matrices of the chains, then
P ⊗ Q is the transition matrix of the joint chain, if the space X × Y is ordered as
(x1, y1), (x1, y2), . . . , (x1, ym), (x2, y1), . . . , (x2, ym), . . . , (xk, y1), . . . , (xk, ym).

* 14.14 Multiple Testing

A test is usually designed to have probabilities of errors of the first kind smaller
than a given “level” α. If N tests are carried out at the same time, each with a
given level αj , for j = 1, . . . , N , then the probability that one or more of the tests
takes the wrong decision is obviously bigger than the level of each separate test.
The worst case scenario is that the critical regions of the tests are disjoint, so that
the probability that some test takes the wrong decision is equal to the sum

∑

j αj
of the error probabilties of the individual tests. Motivated by this worst case the
Bonferroni correction simply decreases the level of each individual test to αj = α/N ,
so that the overall level is certainly bounded by

∑

j αj ≤ N(α/N) = α. However,
usually the critical regions of the tests do overlap and the overall probability of an
error of the first kind is much smaller than this upper bound. The question is then
how to design a “less conservative” correction for multiple testing.

This question is not easy to answer in general, as it depends on the joint
distribution of the test statistics. If the jth test rejects the jth null hypothesis
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Hj
0 : θ ∈ Θj

0 if the observation X falls in a critical region Kj, then an error of

the first kind relative to Hj
0 occurs if X ∈ Kj and θ ∈ Θj

0. The multiple testing

procedure rejects all null hypotheses Hj
0 such that X ∈ Kj. The actual state of

affairs may be that the null hypotheses Hj
0 for every j in some set J ⊂ {1, . . . , N}

are true, i.e. the true parameter θ is contained in ∩j∈JΘj
0. Some error of the first

kind then occurs if X ∈ ∪j∈JKj and hence the overall probability of an error of the
first kind is

(14.69) sup
θ∈∩j∈JΘj

0

Pθ
(
X ∈ ∪j∈JKj

)
.

The multiple testing procedure is said to provide strong control of the familywise
error rate if this expression is smaller than a prescribed level α, for any possible
configuration J of true hypotheses. Generally strong control is desirable, but one
also defines weak control as the property that the expression in the display is smaller
than α if all null hypothesis are true (ı.e. in the case that J = {1, . . . , N}).

The overall error (14.69) can be bounded by the errors of the individual test
by

sup
θ∈∩j∈JΘj

0

∑

j∈J
Pθ

(
X ∈ Kj

)
≤

∑

j∈J
sup
θ∈Θj

0

Pθ
(
X ∈ Kj

)
.

If all individual tests have level α, then the right side is bounded by #J α ≤ Nα.
This proves that the Bonferroni correction gives strong control. It also shows why
the Bonferroni correction is conservative: not only is the sum-bound pessimistic,
because the critical regions {X ∈ Kj} may overlap, also the final bound Nα is
based on the possibility that all null #J hypotheses are correct.

Interestingly, if the tests are in reality stochastically independent, then the
union bound is not bad. Under independence,

Pθ
(
X ∈ ∪j∈JKj) = 1 −

∏

j∈J

(
1 − Pθ(X ∈ Kj)

)
.

If all tests are of level α and θ ∈ ∩j∈JΘj
0, then the right side is bounded by 1 −

(1 − α)#J . This is of (of course) smaller than the Bonferroni bound #Jα, but it
is not much smaller. To obtain overall level α0, the Bonferroni correction would
suggest to use size α0/#J , while the preceding display suggests the value 1 − (1 −
α0)

1/#J . The quotient of these values tends to − log(1−α0)/α0 if #J → ∞, which
is approximately 1.025866 for α0 = 0.05.

However, positive dependence among the hypotheses is more common than
independence. Because there are so many different forms of (positive) dependence,
there is no general recipe to handle this situation. If the critical regions take the
form Kj = {T j > c} for some test statistics T j = T j(X) and critical value c, then
the event that some hypothesis Hj

0 for j ∈ J is rejected is

{
max
j∈J

T j > c
}
.
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The overall error probability then requires the distribution of the maximum of the
test statistics, which is a complicated function of their joint distribution.

If this joint distribution is not analytically available, then permutation or ran-
domization methods may help out. These are based on the assumption that the data
X can be split into two parts X = (V,W ), where under the full null hypothesis W
possesses a fixed distribution. For instance, in the two-sample problem, where X
consists of the observations for both samples, the vector V is defined as the un-
ordered set of observed values stripped from the information to which sample they
belong and W is defined as the sample labels; under the null hypothesis that the
two samples arise from the same distribution any assignment W of the values to
the two samples is equally likely. The idea is to compare the observed value of a
test statistic to the set of values obtained by randomizing W , but keeping V fixed.

We denote this randomization by W̃ ; mathematically this should be a random
variable defined on the same probability space as X = (V,W ), so that we can speak
of the joint distribution of (V,W, W̃ ). It is convenient to describe the permutation
procedure through a corrected p-value. The p-value for the jth null hypothesis Hj

0

is a random function Pj(X) of X = (V,W ), where it is understood that Hj
0 is

rejected if Pj(X) is smaller than a prescribed level. The Westfall and Young single
step method adapts these p-values for multiple testing by replacing Pj(X) by

P̃j(X) = P
(

min
i=1,...,N

Pi(V, W̃ ) ≤ Pj(V,W )|X
)

.

The probability is computed given the value of X and hence refers only to
the randomization variable W̃ . In practice, this probability is approximated by
simulating many copies of W̃ and calculating the fraction of copies such that
mini=1,...,N Pi(V, W̃ ) is smaller than Pj(V,W ).

14.70 Theorem. Suppose that the variables W and W̃ are conditionally indepen-
dent given V . If the conditional distributions of the random vectors

(
Pj(V, W̃ ): j ∈

J
)

and
(
Pj(V,W ): j ∈ J

)
given V are the same under ∩j∈JHj

0 , then under ∩j∈JHj
0 ,

P
(

∃j ∈ J : P̃j(X) < α
)

≤ α.

Consequently, if the condition holds for every J ⊂ {1, . . . , N}, then the Westfall
and Young procedure gives strong control over the familywise error rate.

Proof. Let F−1(α|X) be the α-quantile of the conditional distribution of the vari-
able mini Pi(V, W̃ ) given X = (V,W ). By the first assumption of the theorem, this
quantile is actually a function of V only. By the definition of P̃j(X) it follows that

P̃j(X) < α if and only if Pj(X) < F−1(α|X). Hence

P
(

∃j ∈ J : p̃j(V,W ) < α|V
)

= P
(

min
j∈J

pj(V,W ) < F−1(α|X)|V
)

= P
(

min
j∈J

pj(V, W̃ ) < F−1(α|X)|V
)

.
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In the last step we use that F−1(α|X) is deterministic given V , and the assumed
equality in conditional distribution. The right side becomes bigger if we replace
the minimum over J by the minimum over all indices {1, . . . , N}, which yields
F

(
F−1(α|X)−|X

)
≤ α. The proof of the first assertion follows by taking the

expecation over V .

The condition thatW and W̃ are conditionally independent given V is explicitly
stated, but ought to be true by construction. It is certainly satisfied if W̃ is produced
by an “external” randomization device.

The second condition of the theorem ought also be satisfied by construction,
but it is a bit more subtle, because it refers to the set of true hypotheses. If the
conditional distributions of W and W̃ given V are the same under ∩j∈JHj

0 , then
certainly the conditional distributions of the p-values are the same. However, this
assumption is overly strong. Imagine carrying out two two-sample tests based on
two measurements (say of characteristics A and B) on each individual in groups of
cases and controls. The variable V can then be taken to be a matrix of two rows
whose columns are bivariate vectors recording the measured characteristics A and
B on the combined cases and controls stripped from the case/control status. The
variable W can be taken equal to a binary vector recording for each column of
V whether it corresponds to a case or a control, and we construct W̃ as a random
permutation ofW . If cases and controls are indistinguishable for both characteristics
(i.e. the full null hypothesis is true), then the values V are not informative on W ,
and hence W and W̃ are equal in conditional distribution given V . However, if
the cases and controls are indistinguishable with respect to A (i.e. HA

0 holds), but
differ in characteristic B, then V is informative on W , and hence the conditional
distributions of W and W̃ given V differ. On the other hand, under HA

0 the first
coordinates of the set of bivariate vectors V are an i.i.d. sample and hence if we
(re)order these first coordinates using W̃ , we obtain the same distribution as before.
As long as the p-values PA(X) for testing characteristic A depend only on these
first coordinates (and there is no reason why they would not), the condition that
pA(V,W ) and pA(V, W̃ ) are equally distributed given V is satisfied.

Note that in this example the units that are permuted are the vectors of all
measurements on a single individual. This is because we also want the joint (condi-
tional) distributions of

(
pj(X): j ∈ J

)
to remain the same after permutation.

14.14.1 False Discovery Rate

If interest is in very many hypotheses (e.g. N ≥ 1000), then controlling the level is
perhaps not useful, as this is tied to preventing even a single error of the first kind.
Instead we might accept that a small number of true null hypotheses is rejected
provided that this is a small fraction of all hypotheses that are rejected. The false
discovery rate (FDR) formalized this as the expected quotient

FDR(θ) = Eθ
#{j:X ∈ Kj , θ ∈ Θj

0}
#{j:X ∈ Kj} .
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An FDR of at most 5% is considered to be a reasonable criterion.
The following procedure, due to Benjamini and Hochberg (BH), is often applied.

The procedure is formulated in terms of the p-values Pj of the N tests N .
(i) Place the p-values in increasing order: P(1) ≤ P(2) ≤ · · · ≤ P(N), and let the

hypothesis H
(j)
0 correspond to P(j).

(ii) Reject all null hypotheses H
(j)
0 with NP(j) ≤ jα.

(iii) Reject in addition all null hypotheses with p-value smaller than one of the
rejected hypotheses in (ii).

The Benjamini-Hochberg method always rejects more hypotheses than the Bonfer-
roni method, as the latter rejects an hypotheses if NPj ≤ α, whereas the Benjamini-
Hochberg method employs an extra factor j in the evaluation of the jth p-value (in
(ii)). However, the procedure controls the FDR at level α, or nearly so. Below we
prove that

(14.71) FDR(θ;BH) ≤ #{j: θ ∈ Θj
0}

N
α (1 + logN).

Thus by decreasing α by the factor 1+logN the Benjamini-Hochberg method gives
control of the FDR at level α. This factor is modest as compared to the factor N
used by the Bonferroni correction. Moreover, the theorem below also shows that
the factor can be deleted if the tests are stochastically independent or are positively
dependent (in a particular sense).

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 14.4. Illustration of the Benjamimi-Hochberg procedure for multiple testing. The points are
the order p-values p(1) ≤ p(2) ≤ · · · ≤ p(100) (vertical axis) plotted agains the numbers 1, 2, . . . , 100
(horizontal axis). The dotted curve is the line p 7→ 0.20/100p. The hypotheses corresponding to p-values
left of the intersection of the two curves are rejected at level α = 0.20. (In case of multiple intersections,
we would use the one that is most to the right.)

The factor #{j: θ ∈ Θj
0}/N is the fraction correct null hypotheses. If this frac-

tion is far from unity, then the Benjamini-Hochberg procedure will be conservative.
One may attempt to estimate this fraction from the data and use the estimate to
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increase the value of α used. In the case of independent tests it works to replace α
by, for any given λ ∈ (0, 1),

(14.72) α
(1 − λ)N

#{j:Pj > λ} + 1
, λ ∈ (0, 1).

Unfortunately, this “adaptive” extension of the Benjamini-Hochberg procedure ap-
pears to perform less well in the case the tests are dependent.

In the following theorem we assume that the Pj are random variables with

values in [0, 1] whose distribution under the null hypothesis θ ∈ Θj
0 is stochastically

larger than the uniform distribution, i.e. Pθ(Pj ≤ x) ≤ x for every x ∈ [0, 1]. This
expresses that they are true p-values, in that the test which rejects if Pj ≤ α is of
level Pθ(Pj ≤ α) ≤ α for every α ∈ (0, 1).

14.73 Theorem. If Pj is stochastically larger than the uniform distribution under

every θ ∈ Θj
0, then (14.71) holds. If, moreover, P1, . . . , PN are independent or the

function x 7→ Pθ
(
K(P1, . . . , PN ) ≥ y|Pj = x

)
is decreasing for every θ ∈ Θj

0 and
every coordinate-wise decreasing function K: [0, 1]N → N, then also

(14.74) FDR(θ;BH) ≤ #{j: θ ∈ Θj
0}

N
α,

Finally, if α in the BH-procedure is replaced by (14.72) and P1, . . . , PN are inde-
pendent, then this remains true.

Proof. Let P = (P1, . . . , PN ) be the vector of p-values and let K(P ) =
max{j:NP(j) ≤ jα}. The definition (i)-(iii) of the Benjamini-Hochberg procedure

shows that H
(j)
0 is rejected if and only if j ≤ K(P ), or equivalently NP(j) ≤ K(P ).

In other words, the hypothesis Hj
0 is rejected if and only if NPj ≤ K(P )α. The

FDR can therefore be written as

Eθ
#{j:Pj ≤ K(P )α/N, θ ∈ Θj

0}
K(P )

=
∑

j:θ∈Θj
0

Eθ

(1{Pj ≤ K(P )α/N}
K(P )

)

.

The sum is smaller than its number of terms times the maximal by (α/N)(1 +
logN), to prove (14.71), and by α/N , to prove (14.74). Because the expectation
is taken under θ ∈ Θj

0, the variables Pj are stochastically larger than the uniform
distribution.

The desired inequality for (14.71) therefore follows immediately from the first
assertion of Lemma 14.75 below.

The function K is a coordinate-wise decreasing function of P1, . . . , PN . For
independent P1, . . . , PN the map x 7→ Pθ

(
K(P ) ≥ y|Pj = x

)
is therefore decreasing.

In the remaining case this is true by assumption. The desired inequality to prove
(14.74) therefore also follows from Lemma 14.75.
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To prove the last assertion of the theorem we set G(P ) = (1−λ)N/
(
#{j:Pj >

λ} + 1
)

and redefine K(P ) as K(P ) = max{j:NP(j) ≤ jαG(P )}. We repeat the
first part of the proof to see that the (adaptive) FDR can be written as

∑

j:θ∈Θj
0

Eθ

(1{Pj ≤ K(P )α/NG(P )}
K(P )

)

.

If P j is the vector P with the jth coordinate Pj replaced by 0, then G(P j) ≥ G(P ).
Hence the preceding display is smaller than

∑

j:θ∈Θj
0

Eθ

(1{Pj ≤ K(P )α/NG(P j)}
K(P )

)

≤
∑

j:θ∈Θj
0

Eθ
α

N
G(P j),

by Lemma 14.75, applied conditionally given (Pi: j 6= j). The variable G(P j) is
bounded above by (1 − λ)N/

(
#{i 6= j: θ ∈ Θi

o, Pi > λ} + 1
)
, in which each of the

Pi is subuniform, so that the variable G(P j) is stochastically bounded above by
(1− λ)N/(1 +Bj) for Bj binomially distributed with parameters #{i 6= j: θ ∈ Θi

o}
and 1 − λ.

14.75 Lemma. Let (P,K) be a an arbitrary random vector with values in [0, 1]×
{1, 2, . . . , N}. If P is stochastically larger than the uniform distirbution, then, for
every c ∈ (0, 1),

E
(1{P ≤ cK}

K

)

≤ c
(
1 + log(c−1 ∧N)

)
.

If the function x 7→ P (K ≥ y|P = x) is decreasing for every y, then this inequality
is also true without the factor 1 + log(c−1 ∧N).

Proof. The left side of the lemma can be written in the form

E

∫ ∞

K

1

s2
ds1{P ≤ cK} =

∫ ∞

0

E1{K ≤ s, P ≤ cK}ds
s2

≤
∫ ∞

0

E1{P ≤ cbsc ∧ cN}ds
s2

≤
∫ ∞

0

(
cbsc ∧ cN ∧ 1

) ds

s2
.

Here bsc is biggest integer not bigger than s, and it is used that K is integer-valued.
The last expression can be computed to be equal to c(1/2+1/3+ · · ·+1/D)+(cN∧
1)/D, for D the smallest integer bigger than or equal to c−1 ∧ N . This expression
is bounded by c

(
1 + log(c−1 ∧N)

)
. This completes the proof of the first assertion.

By assumption the conditional distribution of K given P = x is stochastically
decreasing in x. This implies that the corresponding quantile functions u 7→ Q(u|x)
decrease as well: Q(u|x′) ≤ Q(u|x) if x′ ≥ x, for every u ∈ [0, 1].

Fix u ∈ (0, 1). The function x 7→ cQ(u|x) − x assumes the value cQ(u| 0) ≥ 0
at x = 0 and is strictly decreasing on [0, 1]. Let x∗ be the unique point where the
function crosses the horizontal axis, or be equal to x∗ = 0 or x∗ = 1 if the function is
never positive or always positive, respectively. In all cases cQ(u|P ) ≥ cQ(u|x∗−) ≥
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x∗ als P < x∗ and the event {P ≤ cQ(u|P )} is contained in the event {P ≤ x∗}. It
follows that

E
(1{P ≤ cQ(u|P )}

Q(u|P )

)

≤ E
(1{P ≤ x∗}

Q(u|P )

)

≤ E
(1{P ≤ x∗}

x∗/c

)

≤ c.

This is true for every u ∈ (0, 1) and hence also for U replaced by a uniform random
variable that is independent of P . Because the variable Q(U |x) is distributed ac-
cording to the conditional distribution of K given P = x, the vector

(
P,Q(U |P )

)

is distributed as the vector (P,K). Thus we obtain the assertion of the lemma.


