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Abstract

We will talk about the probability theorem and learn about the Maxwell’s distribution,
and solve some problems on it.
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1 Introduction

1.1 Information about Probability

Assume that we have a system having a really large number of particles. Also assume that our
particles are characterized by some quantity, which can only have discrete values:

υ1, υ2, . . . , υn

Let us make a very large number of measurements (N) of the quantity υ, bringing the system
before each measurement to the same initial state. Instead of performing repeated measure-
ments of the same system, we can take N identical systems in the same state and measure the
quantity υ once in all these systems. Such a set of identical systems in an identical state is
called a statistical ensemble.

Let N1 be the measurements that give result υ1 and like so, Ni will be measurements for

xi. This is obvious that
∑

Ni = N which is total number of systems that ensemble. So the

quantity
Ni

N
called relative frequency which shows appearence of resuly υi, and if we take the

so big amount of ensemble systems that ratio will give us probability of appearance of the
result:

Pi = lim
N→∞

Ni

N

And from here if we take sum of both sides:∑
Pi =

∑
lim
N→∞

Ni

N
= 1

since
∑

Ni = N . With this definition we can also get the information about probability of

being in two different quantity, namely:

Pi or k =
Ni +Nk

N
= Pi + Pk

Furthermore assume that particles not only defined by υi also there is another quantity ε
also characterizes the particles. Lets find the P (υi, εk) by the definition N(υi) = P (υi)N also
ε does not depend on υ so:

N(υi, εk) = N(υi)P (εk) = P (υi)NP (εk)

So
P (υi, εk) = P (υi)P (εk) (1)

We can also find the mean value of some quantity υ with knowing P (υ):

〈υ〉 =

∑
Niυi
N

=
∑

P (υi)υi



1 INTRODUCTION 2

1.2 Probability distribution function

Let us go further and say that our quantity is not discrete. Here is diagram for simplifying:

Area
= ∆P

υ υ + ∆υ

Figure 1: Visualation with histogram

Area= dP

υ υ + dυ

f(υ)

Figure 2: Visualation with graph

The histogram characterizes graphically the probability of obtaining results of measure-
ments confined within different intervals of width ∆υ. If we take the limit ∆υ → 0 we will get
those histogram transforms to smooth curve.The function f(υ) defining this curve analytically
is called a probability distribution function.

In accordance with the procedure followed in plotting the distribution curve, the area of
the bar of width dυ equals the probability of the fact that the result of a measurement will be
within the range from υ to u+ dυ. Denoting this probability by dP we can write that

dP (υ) = f(υ)dυ

So integrating both sides we see that ∫
f(υ)dυ = 1

Knowing the f(υ) we can find the mean values:

〈υ〉 =

∫
υdP =

∫
υf(υ)dυ

Or with the similar method we can find mean value of any function g(υ)

〈g(υ)〉 =

∫
g(υ)f(υ)du
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2 The Maxwell’s Distribution

2.1 Proving the Maxwell’s Distribution

We shall use the following procedure to find a way of quantitatively describing the distribution
of molecules by velocity magnitudes. Let us take Cartesian coordinate axes in an imaginary
space which we shall call v-space (velocity space). We shall lay off the values of vx, vy, vz of
individual molecules along these axes (what we have in view are the velocity components along
the axes x, y, z taken in conventional space). Hence, a point in this v-space will correspond to
the velocity of each molecule. Owing to collisions, the positions of the points will continuously
change, but their density at each place will remain unchanged (we are dealing with equlibrium
state).

v

dv

vx

vy

vz

Figure 3: v-space

Owing to all the directions of motion having equal rights, the arrangement of the points
relative to the origin of coordinates will be spherically symmetrical. Hence, the density of the
points in our v-space can depend only on the magnitude of the velocity v. Let us denote this
density by Nf(v) (here N is the total number of molecules in the given mass of gas). Hence,
the number of molecules whose velocity components are within the limits from vx to vx + dvx,
from vy to vy + dvy , and from vz to vz + dvz can be written in the form

dNvx,vy ,vz = Nf(v)dvxdvydvz (2)

The product of three small changes gives ann element of volume in v-space.
So from the volume of the element in v-space the equation simplifies:

dNv = Nf(v)4πv2dv (3)

the probability of the velocity component vx of a molecule having a value within the limits
from vx to vx + dvx can be written in the form

dPvx = φ(vx)dvx

where φ is distribution function. For the other components the equations will symmetrical. So
by the equation 1:

dPvx,vy ,vz = φ(vx)φ(vy)φ(vz)dvxdvydvz

Also taking into account equation 2 we get that:

f(v) = φ(vx)φ(vy)φ(vz) (4)
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So if we take logarithm both sides :

ln f(v) = lnφ(vx) + lnφ(vy) + lnφ(vz)

differentiating this equation with respect to vx:

f ′(v)

f(v)

∂v

∂vx
=
φ′(vx)

φ(vx)
(5)

Since v =
»
v2x + v2y + v2z we can take partial derivative

∂v

∂vx
=

vx»
v2x + v2y + v2z

=
vx
v

Plugging this in equation 5:
f ′(v)

f(v)

1

v
=
φ′(vx)

φ(vx)

1

vx

Since right hand side is not dependent on vy and vz(also left hand side too, it is an equality).
Consequently it cannot depend on vx too because they are symmetrical in definition of f(v),
namely equation 4.So that equation is equal to constant. Let that constant be−α(why negative,
it can be positive but at the end you will see it becames negative) So:

φ′(vx)

φ(vx)
= −αvx

Integrating both sides:

φ(vx)) = C exp

Å
−αv

2
x

2

ã
For vy and vz equations will be symmetrical. Thus by the equation 4:

f(v) = C3 exp

Ç
−
α(v2x + v2y + v2z)

2

å
= C3e−

αv2

2

We can find constant C from normalization of φ(note that vx can be any real number):

C

∫ ∞
−∞

exp

Å
−αv

2
x

2

ã
dvx = 1 (6)

We can substitute new variable and change this to Gaussian integral. So at the end we get

C =

…
α

2π

So our distribution functions:

φ(vx) =

…
α

2π
exp

Å
−αv

2
x

2

ã
(7)

f(v) =
( α

2π

)3/2
exp

Å
−αv

2

2

ã
(8)

To find constant α we will calculate the value of 〈v2x〉 with using equation 7 and knowing that

it’s equal to
kT

m
according to Lemma 1. So:

〈v2x〉 =

∫ ∞
−∞

v2xφ(vx)dvx =

…
α

2π

∫ ∞
−∞

v2x exp

Å
−αv

2
x

2

ã
dvx (9)
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And this can be done with integration by parts and Gaussian integral. So overall we get:

〈v2x〉 =
1

α
=⇒ α =

m

kT

So finally we show that

f(v) =
( m

2πkT

) 3
2

exp

Å
−mv

2

2kT

ã
But if we want to find the actual probability distribution function, we have to multiply it by
4πv2 because of equation 3

So overall:

F (v) = 4πv2
( m

2πkT

) 3
2

exp

Å
−mv

2

2kT

ã
�

Lemma 1. In the ideal gases the mean square of the one of the components of the velocity is

equals to
kT

m

Proof. We need to relate pressure to energy so that we can get equation for root mean square
velocity. Consider this scenario

pθ

θ

Figure 4: Molecule collides with the wall

So the momentum change is

dp = 2mv cos θdn = dN
dΩ

4π

2mv2 cos2 θ∆S∆t

V

If we substitute formula for dΩ and integrate it we get

dp = dN
2mv2∆S∆t

2πV

∫ π/2

0

cos2 θ sin θdθ︸ ︷︷ ︸
1/3

∫ 2π

0

dφ︸ ︷︷ ︸
2π

So overall

dp = dN
mv2∆S∆t

3V

Once again integrating this expression we get total momentum change in area ∆S with time
∆t

∆p =
m∆S∆t

3V

∫ ∞
0

v2dN

The expression
1

N

∫ ∞
0

v2dN is the mean value of square velocity. So substituting this yields

∆p =
m∆S∆t

3V
N〈v2〉 =

1

3
nm〈v2〉∆S∆t
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where n is molecules per volume. This is momentum change. So if we divide it by ∆t we will
get force, and again dividing by ∆S we will get the pressure.So

P =
1

3
nm〈v2〉 =

2

3
n

≠
mv2

2

∑
=

2

3
m〈ε〉

And if we compare this result with the ideal gas law we can see that

〈ε〉 =
3

2
kT

And by the definition of kinetic energy

〈v2〉 =
3kT

m

Also the velocity has components: 〈v2〉 = 〈v2x〉 + 〈v2y〉 + 〈v2z〉 . In this equation all three
components has equal rights, so they have to be equal. Overall we get that

〈v2x〉 =
kT

m

�

2.2 Applying Maxwell’s Distribution

We have the probability distribution function, so we can find some values like mean velocity
or most probable velocity.
For finding mean velocity 〈v〉 we need to integrate:∫ ∞

0

v2F (v)dv = 4π
( m

2πkT

) 3
2

∫ ∞
0

exp

Å
−mv

2

2kT

ã
v3dv (10)

So we can integrate this with substitution and integration by parts.We get:

〈v〉 =

…
8kT

πm

With the same method we can also find 〈v2〉. So integrating:

〈v2〉 =

∫ ∞
0

v2F (v)dv =
3kT

m

And the root of this velocity is called root mean square velocity:

vrms =

…
3kT

m

For the most probable velocity we need to find the maximum of the F (v), which can be
found by taking derivative and setting equal to zero:

exp

Å
−mv

2

2kT

ãÅ
2− mv2

kT

ã
= 0

From here it is obvious that

vmp =

…
2kT

m
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2.3 Maxwell’s Distribution in spherical coordinates

We can even go further and write Maxwell’s distribution not only for a sphere shell but also a
tiny element on the system. It is more convenient to use spherical coordinates in our v-space.
Changing from cartesian to spherical:

x

y

z

P

r

xP

yP

zP

ϕ

θ

Figure 5: Spherical coordinate system

The little volume in the cartesian coordinates is dV = dxdydz But we want to simplify
things so from basic trigonometry it is obvious that

xP r sin θ cosϕ yP = r sin θ sinϕ zP = r cos θ

So tiny volume in the spherical coordinates is

dV = r2 sin θdθdrdϕ

So Maxwell’s distribution changes into(in our v-space r = v):

f(v) = v2
( m

2πkT

) 3
2

exp

Å
−mv

2

2kT

ã
sin θdθdϕ

So we can use this when averaging things, due to coordinates.
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3 Problems

3.1 Easy problems

Problem 1
Do the integrals provided in Section 2.

From now on, you can use following integrals:

I0 =

∫ ∞
0

e−ax
2

=
1

2

…
π

a
(11)

I1 =

∫ ∞
0

xe−ax
2

=
1

2a
(12)

I2 =

∫ ∞
0

x2e−ax
2

=
1

4

…
π

a3
(13)

I3 =

∫ ∞
0

x3e−ax
2

=
1

2a2
(14)

I4 =

∫ ∞
0

x4e−ax
2

=
3

8

…
π

a5
(15)

I5 =

∫ ∞
0

x5e−ax
2

=
1

a3
(16)

Problem 2
Show that for any ideal gas the product of mean velocity and the mean inverse velocity
is:

〈v〉
≠

1

v

∑
=

4

π

Problem 3
If the formula for Maxwell’s distribution in terms of kinetic energy E is given as:

F (E)dE = aEb exp

Å
− E

kT

ã
dE

Find the constants a and b.

Problem 4
We can also define the distribution in terms of the De-Broglie wavelength:

λ =
h

mv

where h is Planck constant. Suppose that it is given as

F (λ)dλ = aλ−b exp
(
− c

λ2

)
dλ

then find constants a, b and c.
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3.2 Intermediate problems

Problem 5
One mole of ideal gas kept in the vessel. Temperature of the gas is kept constant equal to
T . Gas concentration in the vessel is n. Estimate the number of molecules Nc colliging
with the flat wall of container per unit area S during period of time ∆t.
Hint: First try a simplified problem then try to generalize your result.

Problem 6
Using Maxwell’s distribution calculate pressure of P of ideal gas with concentration n
and temperature T .

3.3 Harder problems

Problem 7
An ideal monoatomic gas is leaking from thermally insulated vessel into vacuum through
a tiny hole ,which is much smaller than the mean free path of gas. Assuming Maxwell’s
velocity distribution for the atoms, calculate the parameter γ, which is defined as the
ratio between average kinetic energy of molecules of gas outside the vessel to average
energy oh the gas inside the vessel:

γ =
〈Eoutside〉
〈Einside〉

Assume that none of the atoms flow back.

Problem 8
A thermally insulated vessel with thin walls has a small hole at one of its sides. This
vessel was initially empty at the vacuum. A thin beam of molecules moving with equal
velocities v0 is directed at the hole of the vessel in a direction perpendicular to the surface
of the hole. (The arrows show gas molecules.)

v0

Determine the temperature of the gas T inside the vessel after a long period of time.
Molar mass of the gas is µ.
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3.4 Hardest Problems

Try these problems:

• 2020 OPhO Invitational Round Problem 7

• 2002 APhO Problem 3

• 2015 APhO Problem 2(b)

• 2019 APhO Problem 2B

4 Solutions

Solution 1

1. So first integral is equation 6. To do that we just need to substitute u2 =
αv2

2
and

du = dv

…
α

2
. So integral becomes

C

…
2

α

∫ ∞
−∞

e−u
2

du = 1.

And this is Gaussian integral which is equals to
√
π. So constant is…

α

2π

2. Second integral is equation 9.

〈v2〉 =

…
α

2π

∫ ∞
−∞

v2x exp

Å
−αv

2
x

2

ã
dvx

This can be doable using integration by parts. So we want to differentiate vx and
integrate other part

D I

+ vx vxe
−αv

2
x

2

− 1 − 1

α
e−

αv2x
2

So integral becomes

− vx
2α
e−

αv2x
2

∣∣∣∣∞
−∞

+
1

2α

∫ ∞
−∞

e−
αv2x
2 dvx

First term vanishes because of exponential. Second term is same as integral 1. So
overall doing same steps we get

〈v2x〉 =

…
α

2π

…
2π

α3
=

1

α

3. Third integral is equation 10. We can use same method for this.but this time we
will different v2. So
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D I

+ v2 v exp

Å
−mv

2

2kT

ã
− 2v −kT

m
exp

Å
−mv

2

2kT

ã
The same as integral two first term vanishes because of exponential and we left
with ∫ ∞

0

kT

m
2v exp

Å
−mv

2

kT

ã
dv

So if we substitute u =
mv2

kT
we get

∫ ∞
0

2

Å
kT

m

ã2
e−udu = 2

Å
kT

m

ã2
Overall

〈v〉 = 4π
( m

2πkT

) 3
2

2

Å
kT

m

ã2
=

…
8kT

πm

Solution 2

For this problem we just need to find

≠
1

v

∑
So by the definition≠

1

v

∑
=

∫ ∞
0

f(v)

v
dv = 4π

( m

2πkT

) 3
2

∫ ∞
0

v exp

Å
−mv

2

2kT

ã
dv

using provided integral 12 we get that≠
1

v

∑
= 4π

( m

2πkT

) 3
2 kT

m
=

…
2m

πkT

And 〈v〉 =

…
8kT

πm
is known so if we multiply them we get

4

π

Solution 3
Original Maxwell’s distribution is

f(v)dv = 4πv2
( m

2πkT

) 3
2

exp

Å
−mv

2

2kT

ã
dv

For transformation we must have

F (E)dE = f(v)dv =⇒ F (E)dE = f(v)
dv

dE
dE

We can find its derivative by the definition E =
mv2

2
=⇒ dE

dv
= mv So F (E)dE is

F (E)dE = 4πv2
( m

2πkT

) 3
2

exp

Å
−mv

2

2kT

ãÅ
1

mv

ã
dE =

=
2√

π(kT )3/2

√
E exp

Å
− E

kT

ã
dE

Or

a =
2√

π(kT )3/2
b =

1

2
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Solution 4
New deBroglie wavelength distribution should satisfy the condition

f(v)dv = −F (λ)dλ =⇒ −f(v)
dv

dλ
dλ

By definition
dλ

dv
= − h

mv2
Combining equations and replacing parameter v =

h

mλ
yields

F (λ)dλ =

…
2

π

h3

λ4(mkT )3/2
exp

Å
− h2

2mkTλ2

ã
dλ

or

a =

…
2

π

h3

(mkT )3/2
b = 4 c =

h2

2mkT

Solution 5
Like hint says lets first look at simplified problem. Lets assume all the molecules from
origin move with velocity v in cylindrical shape and to one direction θ with the normal
of the wall
Stage 1
Then during time interval ∆t only molecules with height v∆t can strike to the wall.The
number of molecules can strike will be

N1 = n∆V = nv∆tS cos θ

Where S cos θ is the cross sectional area of that beam.
Stage 2
Now lets average this with Maxwell’s distribution. The range of velocity is [0;∞] the

polar angle [0; 2π] the azimithual angle is [0;
π

2
]. Now

Nc =
∑

nSv cos θ∆

Å
v2
( m

2πkT

) 3
2

exp

Å
−mv

2

2kT

ã
sin θdθdϕdv

ã
= nS∆t

( m

2πkT

) 3
2

∫ ∞
0

v3 exp

Å
−mv

2

2kT

ã
dv

∫ π/2

0

cos θ sin θdθ

∫ 2π

0

dϕ

Using provided integral 14

Nc = nS∆t
( m

2πkT

) 3
2 ·
Å

1

2

(2kT )2

m2

ã
1

2
· 2π

So canceling out terms we get an accurate estimation for number of collisions for ideal
gas with temperature T is

Nc = n

…
kT

2πm
S∆t

Solution 6
So we can consider the scenario in the figure 4 for simplified problem. So we know that
the pressure will be P = 2mnv2 cos2 θ from proof the lemma 1.
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Let’s average it with Maxwell’s distribution.

P =
∑

2mnv2 cos2 θ ·
Å
v2
( m

2πkT

) 3
2

exp

Å
−mv

2

2kT

ã
sin θdθdϕdv

ã
= 2mn

( m

2πkT

) 3
2

∫ ∞
0

v4 exp

Å
−mv

2

2kT

ã
dv

∫ π/2

0

cos2 θ sin θdθ

∫ 2π

0

dϕ

Here we can use the integral 15 and get the result:

P = 2mn
( m

2πkT

)3/2
·
Ç

3
√
π

8

Å
5kT

m

ã5/2å
· 1

3
2π = nkT

Solution 7
Average kinetic energy inside of container is

〈Einside〉 =
3

2
kT

according to lemma 1 or you can calculate it by

〈Einside〉 =

∫ ∞
0

mv2

2
f(v)dv

For the outside of vessel we can calculate it like other problems. Consider a simple
scenario with all the molecules with the same velocity they are mocing in same direction.
In this case the number of molecules that go outside will be

Nout = nvS cos θ∆t

Now let’s average this energy and number of molecules with Maxwell’s distribution. We
have derived number of molecules before. It is

Nout = n

…
kT

2πm
S∆t

So applying similar approach for Eout

Eout =
∑ mv2

2
nvS cos θ∆t

Å
u2
( m

2πkT

) 3
2

exp

Å
−mv

2

2kT

ã
sin θdθdϕdv

ã
=
mnS∆t

2

( m

2πkT

)3/2 ∫ ∞
0

v5 exp

Å
−mv

2

2kT

ã
dv

∫ π/2

0

cos θ sin θdθ

∫ 2π

0

dϕ

Using the integral 16 yields

Eout = nS∆t2kT

…
kT

2πm

The avarage energy of molecules in the outside will be

〈Eoutside〉 =
Eout

Nout

So dividing energy to number of molecules we get

〈Eout〉 = 2kT

Our final result is
〈Eoutside〉
〈Einside〉

=
4

3
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Note
For the solution of OPhO problem 7 check this Aops forum

https://artofproblemsolving.com/community/c1222116_opho_invitational_round

	Introduction
	Information about Probability
	Probability distribution function

	The Maxwell's Distribution
	Proving the Maxwell's Distribution
	Applying Maxwell's Distribution
	Maxwell's Distribution in spherical coordinates

	Problems
	Easy problems
	Intermediate problems
	Harder problems
	Hardest Problems

	Solutions

