- **1.** If $f \in L^1(\mathbb{T})$ and $N \in \mathbb{N}$ find the Fourier coefficients of the function f(Nx) via those of f(x).
- **2.** If $f \in L^1(\mathbb{T})$ and $g \in L^\infty(\mathbb{T})$ show that

$$\lim_{n \to \infty} \frac{1}{2\pi} \int_{0}^{2\pi} f(t)g(nt) \, dt = \widehat{f}(0)\widehat{g}(0).$$

Show it first when f is a trigonometric polynomial. Then use the density of trigonometric polynomials in $L^1(\mathbb{T})$. Problem 1 will be useful.

3. If $a \in \mathbb{R} \setminus \{0\}$ and $0 < \sigma < 1$ show that the sequence $\{an^{\sigma}\}$ is uniformly distributed in [0,1]. ($\{x\}$ denotes the fractional part of $x \in \mathbb{R}$.)

Use Weyl's criterion. Approximate the sum $\sum_{n=1}^{N} e^{2\pi i k \{an^{\sigma}\}} = \sum_{n=1}^{N} e^{2\pi i kan^{\sigma}}$ by the integral $\int_{1}^{N} e^{2\pi i kax^{\sigma}} dx$ and bound their difference using the Mean Value Theorem in every interval of the form [i, i+1].