1. If m(A) = 1 and $f \in L^{\infty}(A)$ show that $\lim_{p \to \infty} ||f||_p = ||f||_{\infty}$. $\forall Let \epsilon > 0$ and

$$E = \{ x \in A : |f(x)| \ge (1 - \epsilon) ||f||_{\infty} \}.$$

Then m(E) > 0 (otherwise esssup|f| would be smaller) and $||f||_p \ge (\int_E |f|^p)^{1/p}$.

2. Let $0 < \lambda_1 < \cdots < \lambda_N$ be real numbers. Show that the functions $\mathbb{R} \to \mathbb{C}$

x

$$\rightarrow e^{i\lambda_j x}, \quad j=1,2,\ldots,N,$$

are linearly independent.

Take *n*-th derivative of the function $f(x) = \sum_{j=1}^{N} c_j e^{i\lambda_j x}$ for very large *n*. If *f* is identically 0 on \mathbb{R} then $f^{(n)}$ is also identically zero. Show that this can happen only with all c_j equal to 0.

3. Let $G \subseteq \mathbb{R}$ be an additive subgroup. If *G* has an accumulation point in \mathbb{R} show that it is dense in \mathbb{R} , i.e. that you can find an element of *G* in any interval.

4. (i) If $a_n, b_n, n = 1, 2, ..., N$ are complex numbers and $B_k = \sum_{n=1}^k b_n$ show the very useful formula of summation by parts (which is the analogue of intergration by parts for sums)

$$\sum_{n=M}^{N} a_n b_n = a_N B_N - a_M B_{M-1} - \sum_{n=M}^{N-1} (a_{n+1} - a_n) B_n$$

(ii) If $a_n \to 0$ is a decreasing sequence and the partial sums of the series $\sum_n b_n$ are bounded then the series $\sum_n a_n b_n$ converges.