▶ Announcements
23-1-2020: Το μάθημα θα διδαχθεί στα Αγγλικά μια και στο ακροατήριο θα υπάρχουν φοιτητές από το πρόγραμμα Erasmus. Θα γίνει με τέτοιο τρόπο ώστε με μια στοιχειώδη γνώση Αγγλικών να μην έχει κανείς πρόβλημα να το παρακολουθήσει. Όλες οι ασκήσεις και τα διαγωνίσματα θα είναι και στις δύο γλώσσες.
▶ Schedule
Room A208. Mon and Thu, 9-11.
Teacher's office hours: Mon 11-1.
▶ Course description
Goal: Introduction to harmonic analysis, mostly Fourier Series.
Contents: Quick introduction to Lebesgue measure on the real line. Periodicity, trigonometric polynomials, orthogonality. Fourier coefficients and Fourier series of periodic functions. Absolute convergence and size of Fourier coefficients with respect to function smoothness. Uniqueness, convolution, kernels, Cesaro means, Fejer's theorem and applications. The $L^2$ theory. Pointwise convergence of Fourier series. Norm convergence. Localization. Bernsterin's inequality.
▶ Books and lecture notes
▶ Student evaluation
Intermediate exam 40%, final exam 60%. This remains the same for all further examination periods.
▶ Class diary
Today we talked about Lebesgue measure on the real line, how it is defined, saw some examples (for instance, we proved that all countable setss have measure 0) and listed some basic properties of the set function $m(E)$ (the Lebesgue measure of the set $E \subseteq \RR$). We proved some (but not all) of these properties. We also defined the ternary Cantor set and saw that it has measure 0 without being a countable set.
We used the concept of Lebesgue measure to define the integral of arbitrary functions. First we defined the integral of simple functions (functions that take finitely many values only) and then we defined, using them, the integral of arbitrary nonnegative functions. The integral of signed (or complex valued) functions is obtained by linearity. We also defined the function space $L^1(A)$, which consists of those functions defined on $A \subseteq \RR$ for which $\int_A \Abs{f} \lt \infty$. Using these definitions we proved several statements regarding the integral (exercises 1.9, 1.10, 1.12, 1.13 (Markov’s inequality)). We stated (without proof) the monotone convergence theorem and, using it, we did exercises 1.15, 1.16.
Today we talked about the Dominated Convergence Theorem and its applications. Then we talked about Lebesgue measure in $\RR^2$ and also saw that the Lebesgue integral in $\RR^2$ is defined in exactly the same way as in $\RR$. We stated Fubini’s theorem on repeated integration and saw how this is applied in order to show that the convolution of two functions in $L^1(\RR)$ is defined almost everywhere and its integral is bounded by the product of the integrals of the absolute values of the factors: $\int_\RR \Abs{f*g} \le \int_\RR \Abs{f} \int_\RR \Abs{g}$. Finally we talked about norms in vector spaces and saw their axioms and that the $L^1(A)$ norm $$ \Norm{f}_1 = \int_A \Abs{f} $$ for functions in $L^1(A)$ has these properties provided we do not distinguish functions that differ only on a set of measure 0.
Today we completed our crash-course on Lebesgue measure and integration (Chapter 1 of [KP]). We studied $L^p$ spaces and the basic inequalities for $L^p$ norms (Hölder and Cauchy’s inequalities) and saw that $L^p(A) \subseteq L^q(A)$ if $m(A) \lt \infty$ and $p \gt q$. We also saw that $C_0(\RR)$ is dense in $L^p(\RR)$ (for $p\lt\infty$) and saw how to use this to prove (a) that translation is continuous in $L^p(\RR)$ ($p\lt\infty$) and also to prove the Riemann-Lebesgue lemma for the Fourier Transform on $L^1(\RR)$.
We talked about periodic functions and then about trigonometric polynomials. We proved (uniqueness theorem) that a trigonometric polynomial of degree $\le N$ which is 0 at $2n+1$ different points in $[0, 2\pi)$ is necessarily the zero polynomial (has all its coefficients equal to 0). Then we defined the inner product on $[0, 2\pi)$ and saw some of its elementary properties. Please read the entire Chapter 2 of [KP].