All curves are positively oriented unless otherwise noted.

1. If f is analytic in $\mathbb{C} \backslash\{0,1\}$ and $\sum_{n=-\infty}^{\infty} a_{n} z^{n}$ is its Laurent series for $|z|>1$ show that the series is not finite towards $-\infty$, i.e., there are arbitrarily large $n>0$ such that $a_{-n} \neq 0$.
2. Find the singularities and the corresponding residues for the functions:
(a) $\frac{e^{3} z}{z-2}$,
(b) $\frac{z+1}{z^{2}-3 z+2}$,
(c) $\frac{\cos z}{z^{2}}$,
(d) $\left(\frac{z-1}{z+1}\right)^{3}$.
3. If f has an isolated singularity at z_{0} show that $\operatorname{Res}\left(f^{\prime} ; z_{0}\right)=0$.
4. If f has a pole of order m at z_{0} show that

$$
\operatorname{Res}\left(\frac{f^{\prime}}{f} ; z_{0}\right)=m
$$

5. Find the number of roots of the following polynomials in the region $|z|<1$.

$$
\text { (a) } z^{6}-5 z^{4}+z^{3}-2 z, \quad \text { (b) } 2 z^{4}-2 z^{3}+2 z^{2}-2 z+9
$$

6. Find the number of roots of the function $2 z^{5}-6 z^{2}+z+1$ in the region $1 \leq|z|<2$.
7. If $c \in \mathbb{C},|c|>e$, show that the equation $c z^{n}=e^{z}$ has n roots in the region $|z|<1$.
8. Compute the following improper integrals:
(a) $\int_{0}^{\infty} \frac{d x}{x^{2}+1}$,
(b) $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}$,
(c) $\int_{0}^{\infty} \frac{d x}{x^{4}+1}$,
(d) $\int_{0}^{\infty} \frac{\cos x d x}{x^{2}+1}$,

Notice that the functions are all even, so $\int_{0}^{\infty} \ldots=\frac{1}{2} \int_{-\infty}^{\infty} \ldots$.

