All curves are positively oriented unless otherwise noted.

1. If f is analytic in $\mathbb{C} \setminus \{0,1\}$ and $\sum_{n=-\infty}^{\infty} a_n z^n$ is its Laurent series for |z| > 1 show that the series is not finite towards $-\infty$, i.e., there are arbitrarily large n > 0 such that $a_{-n} \neq 0$.

2. Find the singularities and the corresponding residues for the functions:

(a)
$$\frac{e^3 z}{z-2}$$
, (b) $\frac{z+1}{z^2-3z+2}$, (c) $\frac{\cos z}{z^2}$, (d) $\left(\frac{z-1}{z+1}\right)^3$.

- **3.** If *f* has an isolated singularity at z_0 show that $\text{Res}(f'; z_0) = 0$.
- 4. If f has a pole of order m at z_0 show that

$$\operatorname{Res}\left(\frac{f'}{f}; z_0\right) = m.$$

5. Find the number of roots of the following polynomials in the region |z| < 1.

(a)
$$z^6 - 5z^4 + z^3 - 2z$$
, (b) $2z^4 - 2z^3 + 2z^2 - 2z + 9$.

- 6. Find the number of roots of the function $2z^5 6z^2 + z + 1$ in the region $1 \le |z| < 2$.
- 7. If $c \in \mathbb{C}$, |c| > e, show that the equation $cz^n = e^z$ has *n* roots in the region |z| < 1.
- 8. Compute the following improper integrals:

(a)
$$\int_{0}^{\infty} \frac{dx}{x^2+1}$$
, (b) $\int_{0}^{\infty} \frac{dx}{(x^2+1)^2}$, (c) $\int_{0}^{\infty} \frac{dx}{x^4+1}$, (d) $\int_{0}^{\infty} \frac{\cos x dx}{x^2+1}$

Notice that the functions are all even, so $\int_0^\infty \ldots = \frac{1}{2} \int_{-\infty}^\infty \ldots$