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UNIVERSITY OF CRETE – DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS
Problem Set No 15

Solutions

1. C1(T) is the space of functions on T that have a continuous derivative. Show that the quantity
∥f∥C1 := |f(0)|+ ∥f ′∥∞

is a norm on this space and that with this norm C1(T) is a Banach space.
Show also that the following quantity is also a norm (on the same function space)

∥f∥′ := |f(0)|+ ∥f ′∥L2(T),

but that the space is not complete with this norm.
Do we have convergence of the partial sums of the Fourier series on C1(T) (with the first norm)? Namely,

is it true that for every f ∈ C1(T)

∥SNf − f∥C1

N→ 0?

The same question for the second norm.

Solution: For the first part look at Problem Set 14 where the question appears verbatim.
For the norm ∥·∥′ the proof of the norm property is also easy. Again, the only property that needs some thought

is the property ∥f∥′ = 0 =⇒ f ≡ 0. If ∥f∥′ = 0 we get that f(0) = 0 and ∥f ′∥2 = 0, so that f ′ = 0 almost
everywhere. But f ∈ C1(T) which implies that f ′ is continuous, hence it is 0 everywhere.
To show that C1(T) is not complete under this norm we must find a Cauchy sequence fn which does not

converge in this norm. We define fn by setting fn(0) = 0 and specifying f ′n, a continuous function, taking care thatr 2π

0
f ′n = 0 (otherwise fn will not be periodic). Define f ′n on [−π, π) to be the following function (where the height

is ±1):

−π

π0

− 1
n 1

n π − 1
n

−π + 1
n

Then f ′n converges (in L2) to the function that is -1 on (−π, 0) and +1 on (0, π). The idea is that this is not
a continuous function. Suppose then that fn → f ∈ C1(T) in the ∥·∥′ norm. This implies that f ′n → f ′ in the
L2 norm. But L2 limits are unique, hence f ′, which is a continuous function, must be equal a.e. to the function
g(x) = −1 (−π < x < 0) + 1 (0 < x < π). But no continuous function f ′ can do this: suppose f ′ = g a.e. To be
precise let us say that f = g′ except on a set E ⊆ T of measure 0. Then (f ′)−1((−1, 1)) is an open set and, by the
indermediate value theorem, it is not empty, hence it is of positive measure. Therefore (f ′)−1((−1, 1)) \E is also of
positive measure, hence nonempty, and f ′ = g on this set. This is impossible since g only takes the values ±1.
We now prove that we do not have convergence of the partial sums in the norm ∥·∥. The trigonometric

polynomials are dense in C1(T) and for every trigonometric polynomial its partial sums are eventually identical
with it, so we have convergence at the trigonometric polynomials in any norm. Therefore, to have ∥SNf − f∥ → 0
for all f ∈ C1(T) it is necessary and sufficient that the operator norms

∥SN∥C1(T)→C1(T)

form a bounded sequence. In other words there must exist a finite constant M such that

∥Snf∥ ≤M∥f∥, for all f ∈ C1(T).

This is the same as
|f(0)|+ ∥f ′∥∞ ≤M(|DN ∗ f(0)|+ ∥DN ∗ f ′∥∞),

where DN is the usual Dirichlet kernel.
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We have seen in the lectures that there exists ϕ ∈ C(T) with ∥ϕ∥∞ ≤ 1 such that

DN ∗ ϕ(0) =
 
DNϕ ≥ C logN, where C is a positive constant.

Define then ψ(x) = ϕ(x)−
ffl
ϕ, so that |ψ(x)| ≤ 2. Define

f(x) =

xw
0

ψ(t) dt,

which implies that f ∈ C1(T) with f ′ = ψ and f(0) = 0. We have
∥f∥ = ∥ψ∥∞ ≤ 2.

We also have  
DNf

′ =

 
DN (ϕ−

 
ϕ) =

 
DNϕ−

 
DN

 
ϕ ≥ C logN − 1,

which implies

∥SNf∥ ≥ ∥DN ∗ f ′∥∞ ≥ |DN ∗ f ′(0)| =
∣∣∣∣ DNf

′
∣∣∣∣ ≥ C logN − 1,

thus ∥SN∥ ≥ C logN−1
2 and it is not a bounded sequence.

Changing to the ∥·∥′ norm we will now prove that we do have convergence of the partial sums, which is
equivalent to the boundedness of the sequence

∥SN∥C1(T)→C1(T)

where now C1(T) is equipped with the ∥·∥′ norm. This, in turn, will follows if we prove, for some positive constant
M , the bounds

|DN ∗ f(0)| ≤M(|f(0)|+ ∥f ′∥2)
and

∥DN ∗ f ′∥2 ≤M(|f(0)|+ ∥f ′∥2).
The second bound is easier. By Parseval we have

∥DN ∗ f ′∥22 =

N∑
n=−N

∣∣∣f̂ ′(n)∣∣∣2 ≤
∞∑

n=−∞

∣∣∣f̂ ′(n)∣∣∣2 = ∥f ′∥22.

For the first bound we have

|DN ∗ f(0)| =
∣∣∣∣ DN (x)f(x) dx

∣∣∣∣
=

∣∣∣∣∣∑
n

D̂N (n)f̂(n)

∣∣∣∣∣
=

∣∣∣∣∣
N∑

n=−N

f̂(n)

∣∣∣∣∣
≤

∣∣∣f̂(0)∣∣∣+ ∑
n ̸=0

f̂ ′(n)

|n|

≤ ∥f∥∞ +

√∑
n ̸=0

1

n2

√∑
n ̸=0

∣∣∣f̂ ′(n)∣∣∣2 (Cauchy-Schwarz)

≤ ∥f∥∞ + C1∥f ′∥2,

where C1 =
√∑

n ̸=0
1
n2 . We also have, again by the Cauchy-Schwarz inequality,

|f(x)| =

∣∣∣∣∣
xw
0

f ′(t) dt

∣∣∣∣∣ ≤ √
2π∥f ′∥2,

so that ∥f∥∞ is also bounded by a multiple of ∥f ′∥2.


