1. If a sequence of polynomials convergers to f uniformly on \mathbb{R} show that f too is a polynomial.

Solution:

Suppose the polynomials $p_n(x) \to f(x)$ uniformly on \mathbb{R} . Suppose n_0 is such that $|p_n(x) - f(x)| \leq 1$ for all x. Then for $m, n \geq n_0$ we have, by the triangle inequality, that $|p_m(x) - p_n(x)| \leq 2$. But the difference of two polynomials is a polynomial and the only polynomials which are bounded on \mathbb{R} are the constants, so $p_m(x) - p_n(x) = C_{m,n}$. In other words the non-constant part of the polynomials $p_n, n \geq n_0$, is the same. We can move this part to fto conclude that the sequence of constant terms of our polynomials converges uniformly to a function, hence our constant terms converge to some C. It follows that f minus the polynomial we subtracted from it is a constant, hence f is a polynomial.

2. If $f : [1, +\infty) \to \mathbb{R}$ is continuous and the limit $\lim_{x \to +\infty} f(x)$ exists and is a real number show that f can be approximated uniformly by functions of the form p(1/x) where p is a polynomial.

Solution: The function $g: (0,1] \to \mathbb{R}$ defined by g(x) = f(1/x) is obviously continuous on (0,1]. If we define it at 0 to be $g(0) = \lim_{x\to\infty} f(x)$ then it becomes continuous on [0,1]. By Werierstrass' theorem g(x) is a uniform limit of polynomials $p_n(x)$, which implies that f(x) is a uniform limit of the functions $p_n(1/x)$.