## Solutions

**1.** In the lecture we showed that if  $f \in C(\mathbb{T})$  has non-zero Fourier coefficients only on the powers of 3 then  $S_N f$  converges to f uniformly on  $\mathbb{T}$ .

Prove the same if the Fourier coefficients of f are non-zero only at the locations  $\pm n_1, \pm n_2, \pm n_3, \ldots$ , with  $1 \le n_1 < n_2 < n_3 < \cdots$ , where  $\frac{n_{k+1}}{n_k} \ge \rho > 1$ , for  $k \ge 1$ .

## Solution:

The only thing that needs to change in our proof of the case with frequencies at  $\pm 3^n$  is that we shall need a different kernel in place of the de la Vallée Poussin kernel. We need a kernel  $R_N$  whose Fourier coefficients (on the positive axis, and symmetrically on the negative frequency axis) up to N are equal to 1, its Fourier coefficients from N to  $\rho N$  are bounded by 1 and its coefficients from  $\rho N$  and beyond are 0.

For this we define

$$R_N(x) = A_N K_{|\rho N|}(x) - B_N K_N(x)$$

for two appropriate numbers  $A_N, B_N$ . The Fourier coefficients of  $R_N$  are shown below.



The two isosceles triangles  $(-\lfloor \rho N \rfloor, 0) - (\lfloor \rho N \rfloor, 0) - (0, A_N)$  and  $(-N, 1) - (N, 1) - (0, A_N)$  are similar. We clearly have  $B_N = A_N - 1$  and we can find  $A_N$  by the similarity of the two triangles

$$\frac{A_N - 1}{A_N} = \frac{N}{\lfloor \rho N \rfloor} \sim \frac{1}{\rho}$$

which leads to  $A_N \sim \frac{\rho}{\rho-1}$ ,  $B_N \sim \frac{\rho}{\rho-1} - 1$ . It is important that these quantities converge to constants ( $\rho/(\rho-1)$ ) and  $1/(\rho-1)$  respectively).

Hence  $R_N * f = A_N K_{\lfloor \rho N \rfloor} * f(x) - B_N K_N * f(x)$ . Since  $K_{\lfloor \rho N \rfloor} * f$  and  $K_N * f$  both converge uniformly to f and  $A_N \to \rho/(\rho - 1)$ ,  $B_N \to 1/(\rho - 1)$ , it follows that  $R_N * f$  converges uniformly to f.

Now, as in the original proof, we observe that  $R_N * f$  and  $S_N * f$  differ only by a quantity that tends to 0 uniformly in x and this completes the proof.

**2.** Define the function  $f : \mathbb{R} \to \mathbb{R}$  to be 0 on the irrationals and at 0 and to be equal to 1/n on every rational of the form m/n with (m, n) = 1. Show that f is continuous exactly on the irrationals and at 0.

## Solution:

Assume  $x = \frac{m}{n}$  is a non-zero rational, with (m, n) = 1. Then f(x) = 1/n. If we approach x by any sequence of irrationals we get 0 which is  $\neq f(x)$ , so x is not a point of continuity.

If x = 0 then f(0) = 0. If  $x_n \to x$  then we break up the sequence  $x_n$  in its rational members, call it  $r_n$ , and its irrational members, call it  $q_n$ . Then  $f(q_n) = 0$  so the limit is 0 on that sequence and since  $r_n \to 0$  it follows that the denominators of  $r_n$  (we may assume  $r_n \neq 0$ ) tend to infinity, so  $f(r_n) \to 0$ , and this shows that 0 is a point of continuity.

If x is irrational, so f(x) = 0, and  $x_n \to x$  again we break up the sequence  $x_n$  in its rational members, call it  $r_n$ , and its irrational members, call it  $q_n$ . Along  $q_n$  the limit is 0 and along  $r_n$  the limit is again 0 as, again, the denominators must tend to infinity. No irrational number can be the limit of a sequence of rationals unless the denominators of that sequence tend to infinity. If the denominators did not tend to infinity we could find a subsequence with bounded denominators. But such a convergent sequence must eventually be constant, so our number x would be rational. **3.** The function  $f : \mathbb{R} \to \mathbb{R}$  is increasing. Show that there exists a countable set  $E \subseteq \mathbb{R}$ , possibly empty, such that *f* is continuous on  $\mathbb{R} \setminus E$ .

## Solution:

At any point  $x \in \mathbb{R}$  the side limits  $L(x) = \lim_{t \to x^-} f(t)$  and  $R(x) = \lim_{t \to x^+} f(t)$  exist and are real numbers because of the monotonicity of f. The function f is continuous at x if and only if L(x) = R(x) (and then f(x) is also forced to have the same value). So if x is a point of discontinuity we have L(x) < R(x).

If x < y are two different points of discontinuity we have  $L(x) < R(x) \le L(y) < R(y)$ , because f is increasing. If we map each point of continuity to any rational number in the nonempty open interval (L(x), R(x)) it follows, from the above remark, that two different discontinuities x and y get mapped to different rational numbers. This mapping is therefore a 1-1 map from the set of discontinuities into the rational numbers. Since the rational numbers are countable then so are the discontinuities of f.