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University of Crete – Department of Mathematics and Applied Mathematics
Problem Set No 10

Solutions

1. In our lectures about Weyl’s theorem on equidistribution (but also in our notes and in the book of Stein
and Shakarchi) Weyl’s theorem refers to continuous functions which have period 1. This is natural because
the trigonometric polynomials of the form

N∑
k=−N

pke
2πikx

which are used in the proof (but also in the statement of the theorem) approximate uniformly (according to
Fejér’s theorem) only functions which have period 1.
But this restriction is unnecessary. Show that if for the sequence an ∈ [0, 1) we have

(1) 1

N

N∑
k=1

f(ak) →
1w
0

f

for every continuous and 1-periodic function f then (1) holds for every continuous, not necessarily periodic,
function.

In the proof we gave we showed (1) for every step function, not necessarily periodic.

Solution:
In our proof we showed (1) for all step functions on [0, 1]. But these step functions can approximate uniformly

any continuous function on [0, 1], not just periodic continuous functions. By the same argument then, that we
transfered (1) from step functions to periodic continuous functions, we can transfer (1) to all continuous functions.

2. If a ∈ R \ {0} and 0 < σ < 1 show that the sequence {anσ} is uniformly distributed in [0, 1]. ({x} denotes
the fractional part of x ∈ R.)

Use Weyl’s criterion. Approximate the sum
∑N

n=1 e
2πik{anσ} =

∑N
n=1 e

2πikanσ by the integralr N

1
e2πikax

σ

dx and bound their difference using the Mean Value Theorem in every interval of the form [i, i+1].

Solution:
Define fk(x) = e2πikax

σ . Then f ′
k(x) = 2πikaσxσ−1e2πikax

σ .
We must show that for all integers k ̸= 0 we have

N∑
n=1

e2πik{an
σ} = o(N), as N → ∞.

Since {t} = t− ⌊t⌋ for any t it follows that the above sum is the same (we ignore the last term which is at most 1,
so it cannot affect the conclusion) as

Sk,N =

N−1∑
n=1

e2πikan
σ

=

N−1∑
n=1

fk(n)

We will compare this sum to the integral

Ik,N =

Nw
1

e2πikax
σ

dx =

Nw
1

fk(x) dx.

First we compute Ik,N . It differs by a bounded quantity from
r N

0
e2πikax

σ

dx so we compute the latter integral
which is easier and we will show that it is o(N) as N → ∞. After the change of variable

y =
2π

Nσ
xσ,

designed to lead to the interval of integration [0, 2π], we get
Nw
0

e2πikax
σ

dx =
N

σ(2π)1/σ

2πw
0

eikaN
σyy

1−σ
σ dy.

The function y
1−σ
σ is in L1([0, 2π]) (in fact, it is even continuous), so the last integral is the Fourier coefficient of

this function evaluated at the frequency kaNσ , which tends to +∞ with N . By the Riemann-Lebesgue lemma this
Fourier coefficient is o(1) (tends to 0) so our integral divided by N is clearly o(N). (Strictly speaking, the fact that
the frequency kaNσ is not an integer does not allow us to call this a “Fourier coefficient”, but the Riemann-Lebesgue
lemma still holds, with the same proof.)
Therefore it is enough to show that

|Ik,N − Sk,N | = o(N).
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We have

|Ik,N − Sk,N | ≤
N−1∑
n=1

∣∣∣∣∣
n+1w
n

fk(x) dx− fk(n)

∣∣∣∣∣
=

N−1∑
n=1

∣∣∣∣∣
n+1w
n

(fk(x)− fk(n)) dx

∣∣∣∣∣ dx
Using the mean value theorem on fk we have

fk(x)− fk(n) = f ′
k(ξ)(x− n), for some ξ ∈ (n, x),

so
|fk(x)− fk(n)| ≤ |f ′

k(ξ)| = 2π|ka|σ 1

ξ1−σ
≤ C

n1−σ
.

Substituting in the inequality above we get

|Ik,N − Sk,N | ≤ C

N−1∑
n=1

1

n1−σ
= O(Nσ) = o(N),

as we had to show.

3. Working as in Exercise 2 show that the sequence {a logn} is not uniformly distributed in [0, 1] for any
a ∈ R.

Solution:
According to Weyl’s theorem it is enough to show that

∑N
n=1 e

2πika logn is not o(N) for some non-zero integer k.
We will actually show that this is so for every non-zero integer k. As in the previous exercise, we can show, using
the Mean Value Theorem, that the difference of this sum with the integral

r N

1
e2πika log x dx is o(N). So it is enough

to show that this integral is not o(N).
Assume it is, i.e. assume that 1

N

r N

1
e2πika log x dx → 0 as N → ∞. Writing f(N) =

r N

1
e2πika log x dx we have

f(N)/N → 0. If ϵ > 0 is a small constant this implies that

(2) f(N)− f((1− ϵ)N)

N
→ 0.

But

(3) f(N)− f((1− ϵ)N) =

Nw
(1−ϵ)N

e2πika log x dx

and in the interval [(1− ϵ)N,N ] we have

logN − log 1

1− ϵ
≤ logx ≤ logN.

Notice that we can make the positive constant log 1
1−ϵ as small as we want by choosing ϵ > 0 small enough. In that

interval then we have, for the angle appearing in the exponent of the exponential in (3), the bounds

2πka logN − 2πka log 1

1− ϵ︸ ︷︷ ︸
θϵ

≤ 2πka logx ≤ 2πka logN,

so that this angle varies by at most θϵ. We choose ϵ > 0 small enough to make θϵ <
2π

1000 . This implies that in the
integral we are integrating complex numbers of modulus 1 whose angles are all within 2π

1000 of each other. This
implies that the integral (over an interval of lentgh ϵN) is of modulus ≥ CϵϵN . As N → ∞ this contradicts (2).


