1. Let C be the upper semicircle of the unit circle $|z|=1$. Find the integral

$$
\oint_{C} e^{z} d z
$$

Also the integral

$$
\oint_{C} \overline{z^{2}} d z .
$$

2. Prove that

$$
\left|\oint_{C} \frac{d z}{z^{2}-1}\right| \leq \frac{\pi}{3}
$$

where C is the arc from 2 to $2 i$ of the circle $|z|=2$. Write the corresponding inequality if C is the arc of the same circle from 2 to $2 e^{i \pi / 4}$.
3. Let f be a polynomial of degree n :

$$
f(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}, \quad a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{C}
$$

Show that there is a constant $C>0$ such that if $R \geq 1$ we have

$$
\left|\oint_{C_{R}} f(z) d z\right| \leq C R^{n+1},
$$

where C_{R} is the circle $|z|=R$.

