1. Let C be the upper semicircle of the unit circle |z| = 1. Find the integral

Also the integral

2. Prove that

$$\left| \oint\limits_C \frac{dz}{z^2 - 1} \right| \le \frac{\pi}{3},$$

 $\oint_C e^z \, dz.$

 $\oint_C \overline{z^2} \, dz.$

where C is the arc from 2 to 2i of the circle |z| = 2. Write the corresponding inequality if C is the arc of the same circle from 2 to $2e^{i\pi/4}$.

3. Let *f* be a polynomial of degree *n*:

$$f(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0, \quad a_0, a_1, \dots, a_n \in \mathbb{C}.$$

Show that there is a constant C > 0 such that if $R \ge 1$ we have

$$\left| \oint\limits_{C_R} f(z) \, dz \right| \le C R^{n+1},$$

where C_R is the circle |z| = R.