1. Compute the integrals

$$
\text { (a) } \int_{1}^{2}\left(\frac{1}{t}-i\right)^{2} d t,(b) \int_{0}^{\pi / 6} e^{2 i t} d t,(c) \int_{0}^{\infty} e^{-z t} d z(\operatorname{Re} z>0)
$$

2. Compute the integral $\forall m, n \in \mathbb{Z}$:

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i m t} \overline{e^{i n t}} d t
$$

3. Find a differentiable function $f:[0,1] \rightarrow \mathbb{C}$ such that for no $\xi \in[0,1]$ it is true that

$$
f^{\prime}(\xi)=f(1)-f(0)
$$

In this way you have shown that the mean value theorem fails for complex valued functions.
4. If Γ is the upper half of the unit circle $\{|z|=1\}$ (oriented from left to right) compute the contour integral

$$
\oint_{\Gamma} 1+z^{2} d z .
$$

5. If Γ is the line segment from 1 to i compute the contour integral

$$
\oint_{\Gamma} e^{z} d z .
$$

6. If Γ is the line segment from 1 to 0 followed by the line segment from 0 to i find a parametrization of the curve Γ. Then compute the contour integral

$$
\oint_{\Gamma} z^{3} d z .
$$

