1. Compute the integrals

$$(a)\int_{1}^{2} \left(\frac{1}{t} - i\right)^{2} dt, \ (b)\int_{0}^{\pi/6} e^{2it} dt, \ (c)\int_{0}^{\infty} e^{-zt} dz \ (\operatorname{Re} z > 0)$$

2. Compute the integral $\forall m, n \in \mathbb{Z}$:

$$\frac{1}{2\pi} \int_{0}^{2\pi} e^{imt} \overline{e^{int}} \, dt$$

3. Find a differentiable function $f:[0,1] \to \mathbb{C}$ such that for no $\xi \in [0,1]$ it is true that

$$f'(\xi) = f(1) - f(0)$$

In this way you have shown that the mean value theorem fails for complex valued functions.

4. If Γ is the upper half of the unit circle $\{|z| = 1\}$ (oriented from left to right) compute the contour integral

$$\oint_{\Gamma} 1 + z^2 \, dz.$$

5. If Γ is the line segment from 1 to *i* compute the contour integral

$$\oint_{\Gamma} e^z \, dz.$$

6. If Γ is the line segment from 1 to 0 followed by the line segment from 0 to *i* find a parametrization of the curve Γ . Then compute the contour integral

$$\oint_{\Gamma} z^3 \, dz$$