All curves are positively oriented unless otherwise noted.

- 1. If f is analytic at z_0 and $f'(z_0) \neq 0$ show that there exists r > 0 such that f is 1-1 on the set $|z z_0| < r$.
- **2.** Find Möbius transformations that map the points $0, 1, \infty$ to the points

(a) $0, i, \infty$, (b) 0, 1, 2 (c) $-i, \infty, 1$ (d) $-1, \infty, 1$.

- **3.** Find a Möbius transformation that maps the half-plane $\operatorname{Re} z \operatorname{Im} z < 1$ to the disk |w| < 1.
- 4. Find a conformal map w = f(z) which maps the domain $0 < \operatorname{Arg} z < \frac{\pi}{4}$ to the domain $\frac{\pi}{4} < \operatorname{Arg} w < \pi$.