1. Find one value of $\arg z$.

$$
z=\frac{-2}{1+\sqrt{3} i}, \quad z=\frac{i}{-2-2 i}, \quad z=(\sqrt{3}-i)^{6} .
$$

2. Using the polar form show that

$$
(i-1)^{7}=-8(1+i)
$$

3. Find the following roots in polar coordinates and show them geometrically.

$$
(2 i)^{1 / 2}, \quad(-1)^{1 / 3}, \quad(-16)^{1 / 4}, \quad 8^{1 / 6}
$$

4. Use de Moivre's formula to compute $\cos 4 \theta$ as a function of $\cos \theta, \sin \theta$.
5. If $z \in \mathbb{C} \backslash\{1\}$ and $n \in \mathbb{N}$ show that $1+z+z^{2}+\cdots+z^{n}=\frac{1-z^{n+1}}{1-z}$. Then use this to show the formula

$$
1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta=\frac{1}{2}+\frac{\sin \frac{2 n+1}{2} \theta}{2 \sin (\theta / 2)}, \quad(0<\theta<2 \pi)
$$

6. Which curve in the complex plane is described by each of the following parametrizations?

$$
\begin{aligned}
z(t) & =1+i+\sqrt{2} e^{i t}, \quad 0 \leq t<2 \pi, \\
w(t) & =1+i+(i-1) t, \quad t \in \mathbb{R}, \\
u(t) & =i t-(1-t), \quad 0 \leq t \leq 1, \\
s(t) & =t+t^{2} i, \quad t \in \mathbb{R}, \\
S(t) & =i t-t^{2}, \quad t \in \mathbb{R} .
\end{aligned}
$$

