All curves are positively oriented unless otherwise noted.

1. If f is analytic in $\mathbb{C} \setminus \{0,1\}$ and $\sum_{n=-\infty}^{\infty} a_n z^n$ is its Laurent series for |z| > 1 show that the series is not finite towards $-\infty$, i.e., there are arbitrarily large n > 0 such that $a_{-n} \neq 0$.

2. (a) If f is an entire function and $g(z) = \overline{f(\overline{z})}$ show, using only the definition of the derivative, that g is also entire.

- (b) If two entire functions coincide on the real axis show that coincide everywhere.
- (c) If an entire function f is real on the real axis show that $f(\overline{z}) = \overline{f(z)}$.
- 3. Find the singularities and the corresponding residues for the functions:

(a)
$$\frac{e^3 z}{z-2}$$
, (b) $\frac{z+1}{z^2-3z+2}$, (c) $\frac{\cos z}{z^2}$, (d) $\left(\frac{z-1}{z+1}\right)^3$.

- 4. If f has an isolated singularity at z_0 show that $\text{Res}(f'; z_0) = 0$.
- **5.** If *f* has a pole of order *m* at z_0 show that

$$\operatorname{Res}\left(\frac{f'}{f};z_0\right) = m$$