All curves are positively oriented unless otherwise noted.

1. If f is analytic in $\mathbb{C} \backslash\{0,1\}$ and $\sum_{n=-\infty}^{\infty} a_{n} z^{n}$ is its Laurent series for $|z|>1$ show that the series is not finite towards $-\infty$, i.e., there are arbitrarily large $n>0$ such that $a_{-n} \neq 0$.
2. (a) If f is an entire function and $g(z)=\overline{f(\bar{z})}$ show, using only the definition of the derivative, that g is also entire.
(b) If two entire functions coincide on the real axis show that coincide everywhere.
(c) If an entire function f is real on the real axis show that $f(\bar{z})=\overline{f(z)}$.
3. Find the singularities and the corresponding residues for the functions:
(a) $\frac{e^{3} z}{z-2}$,
(b) $\frac{z+1}{z^{2}-3 z+2}$,
(c) $\frac{\cos z}{z^{2}}$,
(d) $\left(\frac{z-1}{z+1}\right)^{3}$.
4. If f has an isolated singularity at z_{0} show that $\operatorname{Res}\left(f^{\prime} ; z_{0}\right)=0$.
5. If f has a pole of order m at z_{0} show that

$$
\operatorname{Res}\left(\frac{f^{\prime}}{f} ; z_{0}\right)=m
$$

