All curves are positively oriented unless otherwise noted.

1. Find the integral

$$
\oint_{C} \frac{3 z^{3}+2}{(z-1)\left(z^{2}+9\right)} d z
$$

where C is the circle $|z|=4$. Same for the circle $|z-2|=2$.
2. If C is any circle which does not pass through the points $0, \pm 1$ how many different values can assume the integral

$$
\oint_{C} \frac{1}{z+1}+\frac{10}{z}+\frac{100}{z-1} d z ?
$$

3. (a) If the function $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ is continuous and even and C is the circle $|z|=1$ show that

$$
\oint_{C} f(z) d z=0 .
$$

(b) If, in addition, the function is analytic in $\mathbb{C} \backslash\{0\}$ show the same if C is any simple closed curve going once around 0 .
(c) Find a contiuous even function and a curve C as in (b) such that

$$
\oint_{C} f(z) d z \neq 0 .
$$

4. Assume f is analytic at z_{0} and has a zero there of order m. Show that the function $g(z)=f^{\prime}(z) / f(z)$ has a simple pole at z_{0} with residue m.
