University of Crete – Department of Mathematics and Applied Mathematics Problems No 17

All curves are positively oriented unless otherwise noted.

1. Find the integral

$$\oint_C \frac{3z^3 + 2}{(z - 1)(z^2 + 9)} \, dz$$

where C is the circle |z| = 4. Same for the circle |z - 2| = 2.

2. If C is any circle which does not pass through the points $0,\pm 1$ how many different values can assume the integral

$$\oint_C \frac{1}{z+1} + \frac{10}{z} + \frac{100}{z-1} \, dz?$$

3. (a) If the function $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ is continuous and even and C is the circle |z| = 1 show that

$$\oint_C f(z) \, dz = 0.$$

- (b) If, in addition, the function is analytic in $\mathbb{C} \setminus \{0\}$ show the same if C is any simple closed curve going once around 0.
- (c) Find a contiuous even function and a curve ${\cal C}$ as in (b) such that

$$\oint_C f(z) \, dz \neq 0.$$

4. Assume f is analytic at z_0 and has a zero there of order m. Show that the function g(z) = f'(z)/f(z) has a simple pole at z_0 with residue m.