All curves are positively oriented unless otherwise noted.

1. Find the Taylor series of the function $\cos z$ around $\pi / 2$.
2. Assume that $f=g^{\prime}$ in the region $\left|z-z_{0}\right|<r$. Assume that f, g are analytic in this region. Assume also that $g(z)=\sum_{n=0}^{\infty} g_{n}\left(z-z_{0}\right)^{n}$ in that region. Find the Taylor series of f in terms of the g_{n}.
3. Find the Taylor series of the function $\log (1-z)$ around 0 . Where does it converge?
4. Find the Taylor series of the function

$$
f(z)=\frac{1}{1-z}
$$

with center at $1 / 2$. Determine in which disk this power series converges.
Repeat the same question but with center at $1 / 3$.
Hint: Write $w=z-\frac{1}{2}$. Then

$$
\frac{1}{1-z}=\frac{2}{1-2 w}=2 \sum_{n=0}^{\infty}(2 w)^{n}
$$

Repeat the same question but with center at 2.
5. Assume that f is analytic in the region $|z|<1$ and that $f \equiv 0$ on the real axis. Show that $f \equiv 0$ in the region $|z|<1$.

Hint: The values of f on the real axis are enough to determine all its derivatives at 0 .

