1. Assume f is analytic in the annulus $1 \leq|z| \leq 2$. Assume also that $|f(z)| \leq 3$ for $|z|=1$ and that $|f(z)| \leq 12$ for $|z|=2$. Show that

$$
|f(z)| \leq 3|z|^{2}, \quad(1 \leq|z| \leq 2)
$$

2. Assume that f is analytic on the simple closed curve C and in its interior. Assume also that $|f(z)-1|<1$ for all $z \in C$. Show that f does not vanish in the interior of C.
3. Show that for every polynomial $p(z)$ of degree n

$$
p(z)=p_{0}+p_{1} z+p_{2} z^{2}+\cdots+p_{n} z^{n}
$$

we have

$$
p_{j}=\frac{p^{(j)}(0)}{j!}, \quad j=0,1, \ldots, n
$$

For every such polynomial and with $M=\max _{|z|=1}|p(z)|$ show that $\left|p_{j}\right| \leq M$, for $j=0,1, \ldots, n$.
4. Assume that f is analytic in $|z|<1$ and that

$$
|f(z)| \leq \frac{1}{1-|z|}, \quad(|z|<1)
$$

Show that

$$
\left|f^{(n)}(0)\right| \leq \frac{n!}{R^{n}(1-R)}, \quad(0<R<1)
$$

Which value should we choose for R so as to get the smallest upper bound?
5. Assume that f is analytic in $|z|<r$ and that there we have $|f(z)| \leq M$. Prove that

$$
\left|f^{(n)}(z)\right| \leq \frac{n!M}{(r-|z|)^{n}}, \quad(|z|<r)
$$

6. Assume that f is entire and that

$$
|f(z)| \leq|z|^{5}
$$

for all z with $|z| \geq 1$. Show that f is a polynomial of degree up to 5 .

