1. Using the function $e^{f(z)}$ show that the maximum principle holds also for the real part of an analytic function f, and, of course, for the imaginary part as well: none of these two functions can have a local maximum. Show that they cannot have a local minimum either.
2. Find the maximum and the minimum (and where these values are taken) for $\operatorname{Re} f$ where $f(z)=e^{z}$ in the region

$$
[0,1] \times[0, \pi] .
$$

3. If f is analytic at z and $f(z) \neq 0$ show that there is $r>0$ such that the value $|f(z)|$ is not the minimum value of $|f(w)|$ for $|w-z| \leq r$. Hint: Consider $g(z)=1 / f(z)$.
4. Find the maximum and the minimum absolute value of the function $f(z)=(z-2 i)^{3}$ for $|z| \leq 1$.
