These problems are to be solved by you as part of your preparation for the midterm exam.

- 1. Compute the real and imaginary part of $\frac{i-4}{2i-3}$.
- **2.** Compute the modulus and the conjugate of the numbers $(1+i)^6$, i^{17} .
- **3.** Write the following numbers in the form x + iy.

$$1/(1-i), \ 1/(2\sqrt{3}-2i), \ \frac{1+4i}{3+2i}, \ e^{-2\pi i/3}, \ 3e^{2\pi i/4}.$$

4. Write the following numbers in polar form $re^{i\theta}$.

8, 6*i*,
$$\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)^7$$

5. Let z = 1 + 2i, w = 2 - i. Compute

 $z + 3w, \ \overline{w} - z, \ z^3, \ \operatorname{Re}(w^2 + w), \ z^2 + \overline{z} + i.$

- **6.** Compute the square roots of -1 i.
- 7. Compute the cube roots of -8.
- **8.** Prove that there is no $z \in \mathbb{C}$ such that |z| z = i.
- **9.** Find all $z \in \mathbb{C}$ such that $z^2 \in \mathbb{R}$.
- 10. Simplify the following numbers

$$i^{999}, i^3 + i^6 + i^9, \frac{1+2i}{3-4i} - \frac{2-i}{5i^3}, \frac{|1+i|}{1-i}.$$

11. Solve the following equations

$$z^{2} + 5 = 0, \ z^{2} - 4z + 5 = 0, \ z^{4} + 1 = 0, \ 32z^{5} - 1 = 0, \ z + i = \frac{1}{z} + \frac{1}{i}.$$

- **12.** Find an expression for $\sin(3\theta)$ in terms of $\sin\theta, \cos\theta$.
- 13. Prove the parallelogram law

$$|z - w|^{2} + |z + w|^{2} = 2(|z|^{2} + |w|^{2}).$$

14. Describe the regions of $\mathbb C$ described by each of the following relations

$$|z - (3 + 2i)| = 5, |z - 2 + i| = |1 + 3i|, |z + 2i| = 2, |z - 4| = 0.$$

15. Describe the regions of \mathbb{C} described by each of the following relations

$$|z+3| = |z-4i|, |z+1| = 2|z-1|, \frac{\pi}{4} \le \operatorname{Arg} z \le \frac{\pi}{2}, \operatorname{Arg} \frac{z-1}{z+1} = \frac{\pi}{4}.$$

16. Describe the regions of \mathbb{C} described by each of the following relations

$$|z+3| < 2$$
, $|\text{Im } z| < 1$, $1 < |z-1| < 2$, $|z-1| + |z+1| \le 2$.

17. Which of the following functions of z = x + iy satisfy the Cauchy-Riemann equations? $e^{-x}e^{-iy}, \ 2x + ixy^2, \ x^2 + iy^2, \ e^x e^{-iy}, \ \operatorname{Im} z, |z|^2, \ \overline{z}.$

18. We define

$$\cosh z = (e^z + e^{-z})/2, \ \sinh z = (e^z - e^{-z})/2.$$

Prove

$$\sin z = \sin x \cosh y + i \cos x \sinh y$$
$$\cos z = \cos x \cosh y - i \sin x \sinh y$$
$$\sin z|^2 = \sin^2 x + \sinh^2 y$$
$$\cos z|^2 = \cos^2 x + \sinh^2 y$$

19. Find the radius of convergence of each of the following power series.

$$\sum_{k\geq 0} \cos kz^k, \ \sum_{k\geq 0} 4^k (z-2)^k, \ \sum_{k\geq 0} \frac{z^k}{k^k}, \ \sum_{k\geq 1} \frac{(-1)^k}{k} z^{k(k+1)}, \ \sum_{k\geq 0} z^{k!}$$

20. Find a simple formula for each of the following power series.

$$\sum_{k\geq 0} \frac{z^{2k}}{k!}, \ \sum_{k\geq 1} k(z-1)^{k-1}, \ \sum_{k\geq 2} k(k-1)z^k.$$

21. For which z does the series $\sum_{n=0}^{\infty} z^n$ converge?

22. Assuming as known the Taylor series $e^z = \sum_{n=0}^{\infty} z^n/n!$ find the Taylor series around 0 for sin *z*, cos *z*.

23. Assuming as known the Taylor series $e^z = \sum_{n=0}^{\infty} z^n/n!$ show that e^z is the derivative of itself. Similarly compute the derivatives of sin *z*, cos *z* from their Taylor series.

24. Compute the integral $\oint_{ABC} \overline{z} \, dz$, where ABC is the triangle that connects the points A = 0, B = 1, C = i in the positive orientation. Similarly compute $\oint_{ABC} \operatorname{Re} z \, dz$. Do the above integrals depend or not on which is the closed curve of integration?

25. Compute the following integrals where C is the square with vertices at $\pm 4 \pm 4i$, in the positive orientation.

$$\oint_C \frac{e^z}{z^3} dz, \ \oint_C \frac{e^z}{(z-\pi i)^2} dz, \ \oint_C \frac{\sin 2z}{(z-\pi)^2} dz, \ \oint_C \frac{e^z \cos z}{(z-\pi)^3} dz.$$

How do the answers to the above change if curve C is the same square but with 2 turns?

26. Compute the integral $\oint_C \frac{z}{z^2+4} dz$ along the circle |z| = 3 in the positive orientation.

27. If *f* is analytic in the closed disk $|z - a| \le r$ show that $f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{i\theta}) d\theta$ (mean value property). **28.** After you find the constants *A* and *B* such that

$$\frac{1}{z^2 + 1} = \frac{A}{z + i} + \frac{B}{z - i}$$

compute $\oint_{|z|=2} \frac{ze^z}{z^2+1} dz.$

29. We know Cauchy's integral formula $f(z) = \frac{1}{2\pi i} \oint_C \frac{f(w)}{w-z} dw$ if f is analytic in the interior of C and on it. Show that the same holds if f is analytic in the interior of C and only continuous in the closed set that consists of C and its interior. For simplicity you may assume that C is a circle and z a point in its interior.

30. A trigonometric polynomial is a function $f:[0,2\pi) \to \mathbb{C}$ of the form

$$f(t) = \sum_{n=-N}^{N} a_n e^{int}, \quad t \in [0, 2\pi).$$

The natural number N is called the degree of the polynomial (we assume $a_N \neq 0$ or $a_{-N} \neq 0$). At most how many roots can a trigonometric polynomial of degree N have in the interval $[0, 2\pi)$?