These problems are to be solved by you as part of your preparation for the midterm exam.

1. Compute the real and imaginary part of $\frac{i-4}{2 i-3}$.
2. Compute the modulus and the conjugate of the numbers $(1+i)^{6}, i^{17}$.
3. Write the following numbers in the form $x+i y$.

$$
1 /(1-i), 1 /(2 \sqrt{3}-2 i), \frac{1+4 i}{3+2 i}, e^{-2 \pi i / 3}, 3 e^{2 \pi i / 4}
$$

4. Write the following numbers in polar form $r e^{i \theta}$.

$$
8,6 i,\left(\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}\right)^{7}
$$

5. Let $z=1+2 i, w=2-i$. Compute

$$
z+3 w, \bar{w}-z, z^{3}, \operatorname{Re}\left(w^{2}+w\right), z^{2}+\bar{z}+i
$$

6. Compute the square roots of $-1-i$.
7. Compute the cube roots of -8 .
8. Prove that there is no $z \in \mathbb{C}$ such that $|z|-z=i$.
9. Find all $z \in \mathbb{C}$ such that $z^{2} \in \mathbb{R}$.
10. Simplify the following numbers

$$
i^{999}, i^{3}+i^{6}+i^{9}, \frac{1+2 i}{3-4 i}-\frac{2-i}{5 i^{3}}, \frac{|1+i|}{1-i}
$$

11. Solve the following equations

$$
z^{2}+5=0, z^{2}-4 z+5=0, z^{4}+1=0,32 z^{5}-1=0, z+i=\frac{1}{z}+\frac{1}{i} .
$$

12. Find an expression for $\sin (3 \theta)$ in terms of $\sin \theta, \cos \theta$.
13. Prove the parallelogram law

$$
|z-w|^{2}+|z+w|^{2}=2\left(|z|^{2}+|w|^{2}\right)
$$

14. Describe the regions of \mathbb{C} described by each of the following relations

$$
|z-(3+2 i)|=5,|z-2+i|=|1+3 i|,|z+2 i|=2,|z-4|=0
$$

15. Describe the regions of \mathbb{C} described by each of the following relations

$$
|z+3|=|z-4 i|,|z+1|=2|z-1|, \frac{\pi}{4} \leq \operatorname{Arg} z \leq \frac{\pi}{2}, \operatorname{Arg} \frac{z-1}{z+1}=\frac{\pi}{4}
$$

16. Describe the regions of \mathbb{C} described by each of the following relations

$$
|z+3|<2,|\operatorname{Im} z|<1,1<|z-1|<2,|z-1|+|z+1| \leq 2
$$

17. Which of the following functions of $z=x+i y$ satisfy the Cauchy-Riemann equations?

$$
e^{-x} e^{-i y}, 2 x+i x y^{2}, x^{2}+i y^{2}, e^{x} e^{-i y}, \operatorname{Im} z,|z|^{2}, \bar{z}
$$

18. We define

$$
\cosh z=\left(e^{z}+e^{-z}\right) / 2, \sinh z=\left(e^{z}-e^{-z}\right) / 2
$$

Prove

$$
\begin{aligned}
\sin z & =\sin x \cosh y+i \cos x \sinh y \\
\cos z & =\cos x \cosh y-i \sin x \sinh y \\
|\sin z|^{2} & =\sin ^{2} x+\sinh ^{2} y \\
|\cos z|^{2} & =\cos ^{2} x+\sinh ^{2} y
\end{aligned}
$$

19. Find the radius of convergence of each of the following power series.

$$
\sum_{k \geq 0} \cos k z^{k}, \sum_{k \geq 0} 4^{k}(z-2)^{k}, \sum_{k \geq 0} \frac{z^{k}}{k^{k}}, \sum_{k \geq 1} \frac{(-1)^{k}}{k} z^{k(k+1)}, \sum_{k \geq 0} z^{k!}
$$

20. Find a simple formula for each of the following power series.

$$
\sum_{k \geq 0} \frac{z^{2 k}}{k!}, \sum_{k \geq 1} k(z-1)^{k-1}, \sum_{k \geq 2} k(k-1) z^{k}
$$

21. For which z does the series $\sum_{n=0}^{\infty} z^{n}$ converge?
22. Assuming as known the Taylor series $e^{z}=\sum_{n=0}^{\infty} z^{n} / n$! find the Taylor series around 0 for $\sin z, \cos z$.
23. Assuming as known the Taylor series $e^{z}=\sum_{n=0}^{\infty} z^{n} / n$! show that e^{z} is the derivative of itself. Similarly compute the derivatives of $\sin z, \cos z$ from their Taylor series.
24. Compute the integral $\oint_{A B C} \bar{z} d z$, where $A B C$ is the triangle that connects the points $A=0, B=1, C=i$ in the positive orientation. Similarly compute $\oint_{A B C} \operatorname{Re} z d z$. Do the above integrals depend or not on which is the closed curve of integration?
25. Compute the following integrals where C is the square with vertices at $\pm 4 \pm 4 i$, in the positive orientation.

$$
\oint_{C} \frac{e^{z}}{z^{3}} d z, \oint_{C} \frac{e^{z}}{(z-\pi i)^{2}} d z, \oint_{C} \frac{\sin 2 z}{(z-\pi)^{2}} d z, \oint_{C} \frac{e^{z} \cos z}{(z-\pi)^{3}} d z
$$

How do the answers to the above change if curve C is the same square but with 2 turns?
26. Compute the integral $\oint_{C} \frac{z}{z^{2}+4} d z$ along the circle $|z|=3$ in the positive orientation.
27. If f is analytic in the closed disk $|z-a| \leq r$ show that $f(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(a+r e^{i \theta}\right) d \theta$ (mean value property).
28. After you find the constants A and B such that

$$
\frac{1}{z^{2}+1}=\frac{A}{z+i}+\frac{B}{z-i}
$$

compute $\oint_{|z|=2} \frac{z e^{z}}{z^{2}+1} d z$.
29. We know Cauchy's integral formula $f(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f(w)}{w-z} d w$ if f is analytic in the interior of C and on it. Show that the same holds if f is analytic in the interior of C and only continuous in the closed set that consists of C and its interior. For simplicity you may assume that C is a circle and z a point in its interior.
30. A trigonometric polynomial is a function $f:[0,2 \pi) \rightarrow \mathbb{C}$ of the form

$$
f(t)=\sum_{n=-N}^{N} a_{n} e^{i n t}, \quad t \in[0,2 \pi)
$$

The natural number N is called the degree of the polynomial (we assume $a_{N} \neq 0$ or $a_{-N} \neq 0$). At most how many roots can a trigonometric polynomial of degree N have in the interval $[0,2 \pi)$?

