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Abstract

A set A of real numbers is called universal (in measure) if every measurable
set of positive measure necessarily contains an affine copy of A. All finite sets are
universal but no infinite universal sets are known. Here we prove some results
related to a conjecture of Erdés that there i1s no infinite universal set. For every
infinite set A there is a set E of positive measure such that (z +tA) C E fails
for almost all (Lebesgue) pairs (2,t). Also the exceptional set of pairs (z,1)
(for which (z 4+ tA) C F) can be taken to project to a null set on the #-axis.
Last, if the set A contains large subsets whose minimum gap is large (in a
scale-invariant way) then there is £/ C R of positive measure which contains no
affine copy of A.

MSC (1991): 28A12

0. Introduction

0.1 Universal sets. Let us call a set A of real numbers universal (in measure) if
every measurable ¥ C R with positive Lebesgue measure necessarily contains an
affine copy of A. That is, for every £ C R with u(F) > 0 there are z,¢ € R such
that

r4+tA:={z+ta: a€ A} CE.

By looking near a point of high density of F it is easy to see that all finite sets are
universal.
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Erdés [3] has asked whether there exist any infinite universal sets but none is
known. Useful references can be found in [2, p. 184].

0.2 It is worth mentioning that the key lemma in a recent paper of Lebedev and
Olevskii [6] is of a similar nature, dealing with the universality of finite sets. For any
set £ C R with p(0F) > 0, and for every two disjoint finite sets B = {by,...,b,}
and W = {w1,...,w,}, thereare z,t € R such that (z+¢B) C F and (z+tW) C E°.
Here OF is the essential boundary of F, that is all points in any neighborhood of
which there is positive measure of both £ and E°¢ (the complement of F). This is
used to prove that all bounded operators LP(R?) — LP(R?), for p # 2, of the type
f—01g- f)v (the idempotent multipliers), necessarily have F equal to an open set
up to measure 0. Here 1g is the indicator function of the set £, and f and fY are
the Fourier and inverse Fourier transform of f respectively.

0.3 Known classes of non-universal sets. Though no infinite universal set is
known, we know of some classes of infinite sets which are not universal.

Falconer [4] has proved that any sequence {z,,} of positive reals decreasing to 0
is not universal if

lim 22+ = 1. (1)

n—o0 I,

Falconer constructs a Cantor-type set with positive measure which avoids all affine
copies of a sequence {z,} satisfying (1). It is unknown whether geometrically de-
creasing sequences such as {27"} are universal or not.

Bourgain [1] shows that any set (in 3 dimensions) of the type S x § x 5, where
S C R is infinite, is not universal, defining universality in 3 dimensions to even allow
affine copies scaled differently along the three axes. His method also gives that any
set of reals of the type 57 4+ 53 4 53, where the §; are infinite, is not universal. He
points out that a variant of his method also permits certain double sums like

2+ {27 (2)
to be shown non-universal. Bourgain uses a probabilistic construction.

Komjath [5] proves that for every infinite set A C [0, 1] there is another subset
of [0, 1], of measure arbitrarily close to 1, that does not contain any translate of A
(no scaling allowed).

We should say at this point that it is not even known whether all uncountable
sets are not universal (see [2]). And, to the best of the author’s knowledge, no
non-universal sequence that decreases geometrically or faster is known. To be more
precise, no sequence z, | 0 is known, which satisfies 2,41 < pz,, for some fixed
p < 1, and is provably non-universal.

0.4 New results. We show that for every infinite set A there is always another set
F of positive measure which avoids “almost all” affine copies z +¢A of A (Theorems



1 and 2). We also prove non-universality in certain cases where the set contains
structures with large minimum gaps (Theorem 3).

In §1 we prove that the exceptional set of pairs (z,t), that is the set of such
pairs for which (z + tA) C F, has two-dimensional Lebesgue measure 0, for some
appropriately constructed set F. Komjith’s result mentioned in §0.3 follows as an
easy corollary.

In §2 we strengthen the result of §1 and prove that the projection of the excep-
tional set on the #-axis can be taken to have (one-dimensional) measure 0. This of
course implies the result of §1 but the proofs of the two results are quite different
and we present both of them.?

In §3 we prove that if the set A contains large structures with large minimum
gap (relative to their scale) then A is not universal. From Theorem 3 we shall be
able to give another proof of Falconer’s result (1), as well as prove that sets of the
type

{271+ {27}, with 0 < a < 2, (3)

are not universal (compare with (2)). Falconer’s criterion (1) cannot be used to
handle the set (3) for a > 1.

0.5 Notation. The letter C' will be used to denote an absolute positive constant,
not necessarily the same in all its occurrences, even in the same equation. We shall
use A+ B to denote the set {a +b: a € A,b € B} and tA for {ta : a € A}. The
expression 1 (condition) is equal to 1 if the condition is true and 0 otherwise. The
fractional part of a real number z will, as usual, be denoted by {z}. We write a ~ b
for lim(a/b) = 1 as an implicit parameter tends to a limit.

1. Almost no affine copy

1.1 Here we prove that almost all copies of a given set can be avoided by some set
of positive measure.

Theorem 1 Let A C R be infinite. Then there is a set E C [0,1], of measure

arbitrarily close to 1, such that the set of pairs

{(2,0): (2 +14)C E)

?Theorem 2 has also been proved by Prof. M. Akcoglu (unpublished) with essentially the same

proof.



has measure 0 (Lebesgue measure in R?).

Remark. Tt is sufficient to restrict the scaling parameter ¢ in an interval [a, ],
with 0 < a < # < 00, because then we can write the whole scaling interval (0, o)
as a countable union of intervals of the above type and intersect the resulting sets.
As the measure of those sets can be taken arbitrarily close to 1, so can the measure
of their intersection.

1.2 Proof. It is obviously sufficient to prove the Theorem for the case of A = {a; >
ay > ---} being a sequence of positive reals decreasing to 0.

We fix an interval [a, 8], 0 < a < 8 < 00, of the scaling parameter and construct
a random Cantor-type set £ C [0,1] which will, with positive probability, have
measure as close to 1 as we please and will contain almost no affine copy of the set
A of the type z + tA, with z arbitrary and ¢ € [a, f].

The set £ will be an intersection
o0
E=)F,
i=1

where the indicator function of the random set of the j-th stage is given by

o k-1 k
1p, = ZeLk 17, where [;; = [ —) .

= m o m;
The ¢ € {0,1} are a collection of independent indicator random variables with
Pricr =1] = p;.

(To state it otherwise, at the j-th stage we divide the unit interval into m; equal
subintervals and we keep each of them in /) independently and with equal proba-
bility p;.) The integers m; are defined to be large enough so that 1/m; is smaller
than 1/2 the minimum gap of the numbers aa,,...,aa;. The probabilities p; are
taken such that

0 o0
Hpj:q>0, and Hpg.:o, (4)

7=1 7=1
something which is clearly possible for every ¢ € [0, 1).

Fixing z € [0, 1] we observe that Pr[z € F] = ¢, since z belongs to exactly one
of the intervals [;; for every value of j. Thus Eu(E) = q.

Now fix both z € [0,1] and t € [a, ], such that (z + tA) C [0,1]. The crucial
observation is that the numbers

tay,tagy,. .., ta;, (5)



belong to different intervals of the collection Z; = {I;, : k =1,...,m;}, since the
length of the I;; has been chosen so small. For the set # +#A to be contained in
E it is necessary that the points in (5) all “survive” the j-th stage. In other words,
all intervals of stage j which contain one of the points in (5) must be kept (their
€% equal to 1). But, since there are exactly j of those intervals, the probability of

this happening is exactly p?, and the probability that this happens for all stages is
equal to []72, p:;- =0.

Write p(z,t) = 1 ((z + tA) C E). We have proved that Eg(z,t) = 0 for all pairs
(z,1), with t € [a, 5], € [0,1]. Therefore

Ep{(z,t): (z +tA) C B} = E/Ol /j@(m,t) -
/01 fﬁEw(w,t) dtdz = 0.

(e}

which proves that
p{(z,t): (z+tA) C E} =0, almost surely. (6)

Thus there exists a set £ with u(£) > ¢q and satisfying (6) at the same time. Since
q € [0,1) is arbitrary the theorem is proved. O

1.3 Komjath’s result. As a corollary of Theorem 1 we can give another proof
of Komjéth’s result [5] mentioned in §0.3. Indeed, let £ be the set constructed in
Theorem 1. By Fubini’s theorem for almost all ¢

p{z: (z+1tA)C K} =0. (7)

Fix such a t close to 1 and remove from E an open cover of the exceptional set in (7)
with small measure. Call the resulting set £’. Now u(£’) > 0 and £’ contains no set
of the form z+tA, z € R, since we have removed a neighborhood of an accumulation
point of every such set. (We can of course assume that 0 is an accumulation point of
A.) Scale E’ by 1/t to obtain a set of positive measure which contains no translate
of A. It is clear that the measure of the resulting set can be arbitrarily close to 1.

2. No translational copy at almost every scale

2.1 In this section we prove the following improvement of Theorem 1.

Theorem 2 Let A C R be an infinite set. Then there exists E C [0, 1], with p(F)

aribitrarily close to 1, such that

p{t: Jz such that (z +tA) C E} = 0. (8)



The improvement over Theorem 1 is that we now know that the set of “bad” pairs
(z,1), for which (z + tA) C F, projects to a null set on the ¢-axis.

The proof of Theorem 2 is rather different from that of Theorem 1. The set that
we construct is a deterministic (and not random as was the case in §1) Cantor-type
set. But we do use the random-like properties of a rapidly decreasing sequence of

positive reals if looked at modulo a sufficiently small real number (the period 7', in
the proof of §2.3).

2.2 It should be pointed out that if we managed to have the set of bad pairs to
project to a null set on the z-axis this would imply Krdos’s conjecture that there
are no infinite universal sets. To see this call P C [0, 1] the projection of the bad
pairs on the z-axis and assume that y(P) = 0. Remove then from the set £ an
open cover of P of measure no larger than u(F)/2 to obtain a set of measure at
least pu(#)/2 that avoids all affine copies of the set A. (Again, we take here 0 to be
an accumulation point of A.)

2.3 Proof. We may assume that A = {ay,as,...}, where a; is a sequence of positive
reals that decreases to 0. Fix an interval [a, (] of the scaling parameter t. Let the
parameter n — oo. All we have to do is construct a set £ = E(n) C [0,1], of
measure u( £) =1— o(1), such that

p{t € [a, 8]+ 3z such that (z +tA) C K} — 0, (9)

as n — 00. Intersecting countably many such sets of measure sufficiently close to 1
one gets a set of positive measure that satisfies (8).

Slightly abusing notation, let us write
Ay, =Har, ... a,}. (10)

We may assume that the a; € A,, decrease to 0 as rapidly as we please. That is we
may assume that

aj+1

<p=pn)<l1, forj=1,...,n—1,
aj

where the sequence p(n) — 0 will be chosen later.
Define the set F to be periodic with period
T=T(n)=paa,

and
EN[0,T]= (eI, T),

with € = ¢(n) — 0 to be determined later. Clearly u(F£) — 1, as n — oc.



Call a scale t “bad” if the maximum gap of the numbers
tay mod T,...,ta, mod T, (11)

(considered as points on a circle of length T') is greater than ¢7. We show that
the measure of the set of bad scales is o(1). This will prove the theorem since, if a
certain t is not bad, then for all z at least one of the numbers

(z4tay) mod T,...,(z + ta,) mod T
falls in [0, €7'], which means that at least one of the numbers
r+tay,...,z + ta,
falls outside £ and (9) follows.

Fix the numbers Ay, p1,..., Ay, by € [0,1] and consider the intervals J; =
[)‘lTa /LIT]a . -aJn = [)‘nTa HnT] - [OaT]' Define

v(Jiyo o dy) = p{t € [o, 8] ¢ (ta; mod T') € J;, for j=1,...,n}.

It is clear that, for fixed Ay, p1, ..., A\n, by, and for any given § > 0, we can take the
ratio p so small so as to have

) J I
Vo) = (5= )L

In other words, for small p, the numbers in (11), behave approximately like uniformly

<4 (12)

distributed, independent random variables, when ¢t moves from a to 3, at least with
respect to simple (i.e. finite unions of intervals) subsets of [0,7]. (See §2.4 for a

proof of this.)
b= 2]
€

Let
Define I; = [%T, %T], i=0,...,k—1,s0 that |[;| ~ ¢/10, and consider the set
B=A{tela,p]: 3 e€{0,....k-1}Vi=1,...,n (ta; mod T) ¢ I,}.
Clearly every bad scale ¢ belongs to B and thus it suffices to show that u(B) — 0,

as n — o0.
Let X1q,..., X, be independent random variables uniformly distributed in [0, 77].
As p — 0 we have, because of (12),
1
S uB) — PrBiVi X, ¢ 1) (13)

FPrlVj X; ¢ ]
EPr[X, ¢ L]

)

ke n/k,

IN



Now let € = ¢(n) = 1/4/n, for example, so that k ~ 10y/n and
ke™"k < C\/ﬁe_c\/ﬁ — 0.

For each n we choose p = p(n) to be so small (remember that the limit in (13) is
taken for p — 0) so as to have u(B) < C(8 — a)y/ne~CV", which tends to 0. O

2.4 Almost independence mod 1. Here we prove the claim made in (12). After
scaling, it follows from the next lemma.

Lemma 1 Let0 < a < 3 be fized, 0 < p < 1, and (ap)™t =any <zny_1 < -+ < 779,

with

Let also I, ..., Ix be subintervals of [0,1] and p — 0 with p = o (%) Write
S(lla"'71N) = {t € [Q,/@] : {t‘rl} € 117"'7{tm]\7} € 1N}

Then

WS(L,. .. In) = (B = @)l 1| | In] + o(L).

Remark. In the application of the lemma in the proof of §2.3 N was kept fixed
while p — 0t.
Proof. (The O(:)- and o(-)-implied constants may depend on o and 8 only.) Write

Sk = {t € [a,ﬂ]: {tmk} € Ik,...,{tmN} € IN}.

Clearly each S} is a collection of subintervals of [a,3]. We prove inductively, for
k= N,N—1,...,1, that, apart from measure O(p(N — k + 1)), each S} consists
of a disjoint collection of equal-length intervals JF, each of length |I|/z, of total
length

(8 = a)lIx| - [IN[ + O(p(N =k +1)).

This clearly proves the lemma.

For k = N the set of t € [a, 5] such that {tznx} € In consists of a collection of
intervals J}V, of length |Iy|/zx each, plus at most two intervals of length at most
|In]/zn < ap each. The number of the intervals J{N is (8 — a)zn + O(1), therefore
the total length of the .J}Y is (3 — a)|In| + O(p), as we had to prove.



Assume the assertion true for k+1,..., N. Each of the JF*" haslength |Ix41|/% k41
The set of ¢ € J[! such that {¢tz;} € I} consists of a collection of intervals of length
|Ix|/xr each plus at most two intervals of length at most |I;|/z; each. Since the

number of the Jf! is < (B — @)zp41 the total error committed at this stage is

TE41
S8 = )=

<(B-a)p
and the total length of the JllC is

(B = a)llg] - [IN|+ O(p(N =k + 1)),

which concludes the proof. O

3. No affine copy for sets with large gaps

3.1 In this section we shall give a simple proof of the fact that a set of real numbers
which contains a large subset with large gaps cannot be universal. Qur result will
imply Falconer’s result (1) as well as the fact that a set of the type B + B, with
B = {27}, for 0 < a < 2, cannot be universal. This is slightly stronger than
the corresponding result (2) by Bourgain [1]. However our method does not give
Bourgain’s main result that a set of the type A = 57 + 53 + 53, with §; infinite, is
not universal.

Theorem 3 Let A C R be an infinite set which contains, for arbitrarily large n, a

subset {ay,...,a,} withay > -+ > a, > 0 and

~logé, = o{n), (14)
where
5, = min @i — i1
1=1,...,n—1 aq

Then A is not universal.

3.2 Proof. Fix the scale interval ¢ € [a,3]. Let n be as in the statement of the
Theorem. For a given F C [0, 1] we write

o(z)=1(3t € [a, 5] such that (z 4+ t{a1,...,a,}) C F).



We shall construct a set £ = FE(n) C [0,1] with u(E) — 1 and [ ¢(z) dz — 0 as
n — oo. As in §2.3 this will suffice to prove the theorem: we intersect countably
many such sets £ with () very close to 1 so that the measure of the intersection
is large, and with the sum of the quantities fol ¢(z) dz being very small. We then
remove from the intersection of the sets a small open cover of all those z’s for which
some @(z) = 1 (see discussion in §2.2).

Let 10
k:[ }
aaq Oy

Partition [0, 1] into k intervals of the type I; = [%, %), 1=0,...,k—1,and put each
I; in F independently of the other intervals and with probability p = p(n) — 17,
which will be determined later in the proof. In other words

1(z €F) ZGZ (z €1,)

where the €,...,ex—1 € {0,1} are independent indicator random variables with
E¢, =p,e=0....,k— 1.

We have Eu(E) = p and
E/ )dz = / Pr[3t € [a, 5] such that (z + t{a1,...,a,}) C E] dz. (15)

We show that the probability in (15) tends to 0 uniformly in z, for p — 1~ properly
chosen as a function of n, and under the assumption (14) made about d,,.

Fix z € [0, 1]. To check whether there exists ¢ € [a, 3] such that (z+t{aq,...,a,})
/it is sufficient to check whether such a ¢ exists in a finite set

S =5(z)={tr,....tx} C [a, ). (16)

This set consists exactly of those t € [a, ] for which some z 4+ ta;, 7 =1,...,n,is
in the set {0, %, %, ey kk;l, 1}. We have

N <CBaynk. (17)

This is so because each of the n points #a; traverses an interval of length at most
B ay, as the parameter ¢ goes from a to 3, and therefore meets at most C' B aq k
endpoints of the intervals I;.

Since the length of the I; has been chosen so small we have that for each t € [a, 5]
the points z + ta;, 7 = 1,...,n, all belong to different intervals I;, ¢ =0,...,k— 1.
Exactly for this reason we have, for any fixed z and ¢,

Pr(z + t{a1,...,a,}) C F]=p

10
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Thus, using the bound (17),

Pr(3t € S:(z +t{a1,...,a,}) C F] Np"

Cpaynkp"

IN A

and therefore

1

E/ plz)de < Cpaynkp”
0

p

< C—
o

o npn.

We want to have p — 1~ and at the same time . 'np” — 0, as n — oc.

Let £ = —logp. Then we want £ — 07 and
ntl —logn + logd, — +oo. (18)

As we are free to take £ — 0% arbitrarily slowly it is necessary and sufficient for
(18) to hold that we have —logd,, = o(n), which is the assumption of our Theorem.

As the random variables u(E) and [ ¢(z)dz are always in the range [0,1], and
we have Eu(E) — 1 while Ef ¢(z)dz — 0, we deduce that there exists a set F
with u(E) =1—o(1) and [ ¢(z)dz = o(1), as we had to show. O

3.3 Falconer’s result as a corollary of Theorem 3. Suppose X = {z1,z,...}

. cps . . Tn41
is a sequence of positive reals that decreases to 0 and is such that lim *L — 1. For
n—oo

aribitrarily large n we shall extract A = {a1,...,a,} C X for which — log d, = o(n),
so that Theorem 3 shows that X is not universal. Let p — 17 and for each p we
construct a set A C X with |A] = n (n will tend to infinity as p — 17).

Tn41 Thk4+1

Since lim = 1 there is M € N such that for all £ > M,

n—oo I, Tr

> p

Consider the intervals of the type [p**1, p¥), for v large enough to have p” < zyy,
say for v > vg. Every such interval contains then at least one point of X. Call z/,
any point of X that belongs to [p**!, p”) and define

! -
aj = Tojqpy J=1,2,...,m.

(That is, we put in A one point of X from every other interval [p**!, p¥), for v > 1y.)

We have ( ) S
L—p)p™™ n
b2 O 2 C(1=p)p""",

and
—log d, < €' —log(1 —p) + (—logp)- (2n+ C),

which is o(n) if p — 17 is chosen so that —log(1 — p) = o(n). O

11



3.4 Sets of the type B+ B, with B = {27""} and 0 < a < 2. To prove using
Theorem 3 that such a set is not universal we shall exhibit arbitrarily large subsets
A C X, |A| = n, for which —logd, = o(n). Let z; = 27" and set
A={z;+z;: i=1,...,N,j=N+1,...,2N},
so that n = |A] = N2, We may assume that @ > 1 as the case @ < 1 can be handled
with Falconer’s criterion (1).
Observing that
i +z; <zp+axp<=(i,j)> (i, j') lexicographically,
it is not hard to see that
6, > C 279N
which implies —log d,, < CN® = o(n), as we had to show. O

We should note that Falconer’s criterion (1) does not apply even to the case a =
1. One can prove that the sequence {27"} + {27"} does not contain a subsequence
z, | 0 that satisfies (1).

3.5 Acknowledgment: [ want to thank the referee for the careful reading and
valuable comments.
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