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Abstract. We study two optimization problems for
positive definite functions on Euclidean space with
restrictions on their support and sign: the Turán
problem and the Delsarte problem. These problems
have been studied also for their connections to geo-
metric problems of tiling and packing. In the fi-
nite group setting the weak and strong linear dual-
ity for these problems are automatic. We prove these
properties in the continuous setting. We also show
the existence of extremizers for these problems and
their duals, and establish tiling-type relations be-
tween the extremal functions for each problem and
the extremal measures or distributions for the dual
problem. We then apply the results to convex bodies,
and prove that the Delsarte packing bound is strictly
better than the trivial volume packing bound for ev-
ery convex body that does not tile the space.
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1. Introduction

The Turán extremal problem on positive definite func-
tions with restricted support (see [  Ste72  ] as well as the
history and references in [  Rev11 ]) is a very natural ques-
tion asking how large the integral of a positive definite
function f can be if its support is restricted to a do-
main U and its value at the origin is normalized to be
f (0) = 1. The problem makes sense in every locally com-
pact abelian (LCA) group and it is interesting in many
such groups, including Euclidean spaces (our main focus
here) and finite groups. It is easy to see that it suffices to
consider continuous positive definite functions, or equiv-
alently, functions f whose Fourier transform f̂ is every-
where nonnegative on the dual group (see [ Rud62 , Sec-
tion 1.4]).

If U is a bounded origin-symmetric open set, and A is a
measurable set of positive measure such that A − A ⊂ U,
then the function f = m(A)−11A ∗ 1−A is supported in U,
is positive definite and f (0) = 1, hence the supremum in
question is at least as large as

∫
f = m(A). A natural

question is therefore to decide if the Turán constant of U,
defined as

T(U) = sup
{ ∫

f : f (0) = 1, f = 0 on U∁, f̂ ⩾ 0
}
, (1.1)

is equal to
sup {m(A) : A − A ⊂ U}. (1.2)

It is not hard to see that the answer is negative in this
generality, i.e. there exist sets U such that ( 1.1 ) is strictly
greater than (  1.2 ) (examples in finite groups are easy to
construct, see e.g. [  MR14 ], and these examples can be car-
ried over to the Euclidean setting in an obvious manner
by placing small cubes around points).

However, interestingly, the question remains open if we
restrict ourselves to convex domains. If U ⊂ Rd is an
origin-symmetric convex body, then it is a consequence of
the Brunn-Minkowski inequality that the quantity (  1.2 )
is the one that corresponds to the set A = 1

2U and hence is
equal to 2−dm(U). A major open problem is therefore to de-
cide whether T(U) = 2−dm(U) for every origin-symmetric
convex body U. We say that U is a Turán domain if it
satisfies this equality. It is known that any convex body
U that tiles the space by translations, as well as the Eu-
clidean ball in Rd, is a Turán domain (and of course their
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linear images are too) [  Gor01 ,  AB02 ,  KR03 ]. It is also not
hard to see that cartesian products of Turán domains are
again Turán domains, but we know the quantity T(U) for
no other origin-symmetric convex body. Even the simplest
cases, such as a regular octagon in the plane, are open.

A related quantity to the Turán constant is the Delsarte
constant of U, defined as

D(U) = sup
{ ∫

f : f (0) = 1, f ⩽ 0 on U∁, f̂ ⩾ 0
}
, (1.3)

so that the condition f = 0 on U∁ in the Turán prob-
lem is now replaced with f ⩽ 0 on U∁. The Delsarte
problem, introduced in [  Del72 ,  DGS77 ], has found many
applications in estimating geometric quantities such as
sphere packing densities, kissing numbers and more (see
[ CE03 ,  Via17 ,  CKMRV17 ,  CLS22 ] and the references in
[ BR23 ]).

The Turán and Delsarte extremal problems are opti-
mization problems where we seek the optimum of a lin-
ear functional over a function space defined by a set of
linear inequalities. In other words, they are linear pro-
grams, albeit infinite dimensional ones. Their dual prob-
lems, called the dual Turán and dual Delsarte problems,
are therefore intimately connected to the primal Turán
and Delsarte problems that we have defined above. These
optimization problems are much better understood in the
finite group setting, where, importantly, weak and strong
duality are always valid. In Section  2 we review the
Turán and Delsarte problems along with their duals in
finite groups, and establish tiling-type relations among
the extremizers of these problems. We also connect the
problems to the notions of tiling and spectrality in finite
groups.

The extension of many of these results to the continu-
ous setting (of domains in Rd) is not obvious, as in the
setting of infinite dimensional linear programs duality
may not hold [ AN87 ]. In the literature, results about
weak and strong duality and the existence of extremizers
have appeared under various conditions [  CLS22  ,  BRR24 ,

 Gab24 ]. In this paper we present a unified treatment of
the Turán and the Delsarte problems and their duals in
the Euclidean setting, and apply our results to obtain in-
teresting consequences concerning the Delsarte packing
bound, and properties of Turán domains.



THE TURÁN AND DELSARTE PROBLEMS AND THEIR DUALS 5

After some preliminaries in Section  3 , we define the pri-
mal and dual Turán and Delsarte problems in Sections

 4 and  5 respectively. We first establish the correspond-
ing weak linear duality inequalities, and then proceed to
prove that in fact strong linear duality holds for both prob-
lems. We show that extremizers for the Turán and Del-
sarte problems and their duals exist and satisfy tiling-
type convolution equalities.

In Section  6 we connect the Delsarte constant of the dif-
ference set A − A to the density of packing by translated
copies of a set A ⊂ Rd, and to tiling and spectrality prop-
erties of A. Finally, we apply our results to convex bodies.
We prove that the Delsarte packing bound is strictly bet-
ter than the trivial volume packing bound for every con-
vex body A that does not tile the space. We also give a
possible path of attack for proving the existence of a con-
vex body which is not a Turán domain.

2. The Turán and Delsarte problems in finite groups

We start our discussion in the context of finite abelian
groups, which motivates the forthcoming results in the
Euclidean setting in the later sections. The Turán and
Delsarte problems in finite groups were discussed in de-
tail in [  MR14 ]. We recall some relevant results for conve-
nience.

If G is a finite abelian group and Ĝ is the dual group,
then we define the Fourier transform of a function f on G
as

f̂ (γ) = |G|−1/2
∑
x∈G

f (x)γ(−x), γ ∈ Ĝ, (2.1)

and the convolution of two functions f and h on G as

( f ∗ h)(x) = |G|−1/2
∑
y∈G

f (y)h(x − y), x ∈ G. (2.2)

The Fourier transforms of f ∗ h and f · h are given by f̂ · ĥ
and f̂ ∗ ĥ respectively.

2.1. The Turán problem. Let U ⊂ G be a set with
0 ∈ U = −U, i.e. U is origin-symmetric and contains the
origin. A function f on G is called Turán admissible if f
is a real-valued function supported on U, f (0) = 1 and f̂ is
nonnegative. The Turán constant T(U) is the supremum
of f̂ (0) over all the Turán admissible functions f .
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We say that a function h on G is admissible for the dual
Turán problem if h(0) = 1, h vanishes on U \ {0}, and ĥ is
nonnegative. The dual Turán constant T′(U) is the supre-
mum of ĥ(0) over all the dual Turán admissible functions
h.

It is easy to check using Plancherel’s theorem that the
inequality T(U)T′(U) ⩽ 1 holds, which is referred to as
weak linear duality. It was proved in [  MR14 , Theorem
4.2] that moreover, there is a strong linear duality:
Theorem 2.1. T(U)T′(U) = 1 holds for every U ⊂ G with
0 ∈ U = −U.

Since the set of Turán admissible functions is compact
and the mapping f 7→ f̂ (0) is continuous, there exists at
least one extremal function f for the Turán problem. Sim-
ilarly, also the dual Turán problem admits an extremal
function h.
Proposition 2.2. If f and h are extremal functions for the
Turán problem and its dual respectively, then f ∗h = |G|−1/2

and f̂ · ĥ = δ0.

Here and below we use δ0 to denote the function which
takes the value 1 at the origin and vanishes everywhere
else. To prove the proposition we observe that
1 =
∑
x∈G

f (x)h(x) =
∑
γ∈Ĝ

f̂ (γ)̂h(γ) ⩾ f̂ (0)̂h(0) = T(U)T′(U) = 1,

(2.3)
and as a consequence, the inequality in ( 2.3 ) is in fact an
equality. Hence f̂ (γ)̂h(γ) = 0 for all nonzero γ ∈ Ĝ, which
implies the claim.

Remark. We obviously also have f · h = δ0 and therefore
f̂ ∗ ĥ = |G|−1/2, but this holds for arbitrary admissible f and
h, not only for extremal functions.

2.2. The Delsarte problem. We again assume that U ⊂
G is a set with 0 ∈ U = −U. A function f on G is called Del-
sarte admissible if f is a real-valued function such that
f (0) = 1, f (x) ⩽ 0 for all x ∈ G \ U, and f̂ is nonnegative.
The Delsarte constant D(U) is the supremum of f̂ (0) over
all the Delsarte admissible functions f .

We say that a function h on G is admissible for the dual
Delsarte problem if h(0) = 1, h vanishes on U \ {0}, h is
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nonnegative on G \ U, and ĥ is nonnegative everywhere.
The dual Delsarte constant D′(U) is the supremum of ĥ(0)
over all the dual Delsarte admissible functions h.

It is again easy to check that the weak linear duality
inequality D(U)D′(U) ⩽ 1 holds, while [ MR14 , Theorem
4.2]) establishes that there is a strong linear duality:

Theorem 2.3. D(U)D′(U) = 1 holds for every U ⊂ G with
0 ∈ U = −U.

The existence of extremal functions for the Delsarte
problem and its dual is again obvious.

Proposition 2.4. If f and h are extremal functions for the
Delsarte problem and its dual respectively, then

(i) f · h = δ0, and as a consequence, f̂ ∗ ĥ = |G|−1/2;

(ii) f ∗ h = |G|−1/2, and f̂ · ĥ = δ0.

To prove this we note that

1 = f (0)h(0) ⩾
∑
x∈G

f (x)h(x) =
∑
γ∈Ĝ

f̂ (γ)̂h(γ) (2.4)

⩾ f̂ (0)̂h(0) = D(U)D′(U) = 1, (2.5)
hence both inequalities in (  2.4 ) and (  2.5 ) are equalities.
It follows that f (x)h(x) = 0 for all nonzero x ∈ G, while
f̂ (γ)̂h(γ) = 0 for all nonzero γ ∈ Ĝ, which implies both
conclusions  (i) and  (ii) above.

2.3. Difference sets. Let A ⊂ G be an arbitrary
nonempty set, and denote

m(A) = |G|−1/2|A|. (2.6)
We now connect the Turán and Delsarte constants of the
difference set U = A − A to tiling and spectrality prop-
erties of the set A. We first observe that the function
f = m(A)−11A ∗ 1−A is Turán admissible and f̂ (0) = m(A),
hence

D(A − A) ⩾ T(A − A) ⩾ m(A). (2.7)

We say that A tiles by translations if there is a set Λ ⊂
G such that the translated copies A + λ, λ ∈ Λ, form a
partition of G. We say that A is a spectral set if it admits
a system of characters Λ ⊂ Ĝ which forms an orthogonal
basis for the space L2(A).
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Proposition 2.5. If A either tiles or is spectral, then
D(A − A) = T(A − A) = m(A). (2.8)

Proof. Assume first that A tiles with a translation setΛ ⊂
G. Then

(A − A) ∩ (Λ −Λ) = {0}, |A| · |Λ| = |G|. (2.9)
Hence the function h := m(A) · 1Λ ∗ 1−Λ is dual Delsarte
admissible with respect to the set U = A−A, and satisfies
ĥ(0) = m(A)−1. Due to weak linear duality, this implies
the inequality D(A − A) ⩽ m(A). Together with ( 2.7 ) this
implies ( 2.8 ).

Next, suppose that A is spectral, i.e. there is a system
of characters Λ ⊂ Ĝ which forms an orthogonal basis for
the space L2(A). Then

Λ −Λ ⊂ {̂1A = 0} ∪ {0}, |Λ| = dim L2(A) = |A|. (2.10)
Let h be the function on G defined by

h(x) = |A|−2 ·
∣∣∣∣∑
γ∈Λ

γ(x)
∣∣∣∣2, x ∈ G, (2.11)

then both h and ĥ are nonnegative functions,

h(0) = 1, ĥ(0) = m(A)−1, supp ĥ ⊂ Λ −Λ. (2.12)

This implies that 1̂A · ĥ = δ0, and as a consequence, 1A ∗h =
|G|−1/2. Since h(0) = 1 and h is nonnegative, this is possible
only if h vanishes on the set (A − A) \ {0}. Hence h is dual
Delsarte admissible with respect to U = A − A, so again
by weak linear duality we obtain that D(A − A) ⩽ m(A).
As before, together with ( 2.7 ) this yields (  2.8 ). □

Remark. The converse to Proposition  2.5 does not hold.
An example constructed in [  KLMS24 ] shows that there is
a finite abelian group G and a set A ⊂ G, such that ( 2.8 )
holds but A neither tiles nor is spectral.

In the next sections we will see that adapting these re-
sults to the Euclidean setting is far from obvious.

3. Euclidean setting preliminaries

In this section we recall some necessary background in
the Euclidean setting and fix notation that will be used
throughout the paper (see also [ Rud91 ] for more details).
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Notation. If A ⊂ Rd then A∁ = Rd \ A is the complement
of A, ∂A is the boundary of A, and m(A) is the Lebesgue
measure of A.

3.1. The Schwartz space S(Rd) consists of all infinitely
smooth functions φ on Rd such that for every n and every
multi-index k = (k1, . . . , kd), the seminorm

‖φ‖n,k := sup
x∈Rd

|x|n|∂kφ(x)|

is finite. A tempered distribution is a linear functional on
the Schwartz space which is continuous with respect to
the topology generated by this family of seminorms. We
use α(φ) to denote the action of a tempered distribution α
on a Schwartz function φ.

We use S′(Rd) to denote the space of tempered distri-
butions on Rd. A sequence of tempered distributions α j

is said to converge in the space S′(Rd) if there exists a
tempered distribution α such that α j(φ) → α(φ) for every
Schwartz function φ.

If φ is a Schwartz function onRd then its Fourier trans-
form is defined by

φ̂(t) =
∫
Rd
φ(x)e−2πi〈t,x〉dx, t ∈ Rd.

The Fourier transform of a tempered distribution α is de-
fined by α̂(φ) = α(φ̂).

If α is a tempered distribution and if φ is a Schwartz
function, then the product α ·φ is a tempered distribution
defined by (α ·φ)(ψ) = α(φ ·ψ), ψ ∈ S(Rd). The convolution
α∗φ of a tempered distribution α and a Schwartz function
φ is an infinitely smooth function which is also a tempered
distribution, and whose Fourier transform is α̂ · φ̂.

A tempered distribution α is called real if α(φ) is a real
scalar for every real-valued φ ∈ S(Rd). We say that α is
even if α(φ) = 0 for every odd φ ∈ S(Rd).

3.2. If µ is a locally finite (complex) measure onRd, then
we say that µ is a tempered distribution if there exists
a tempered distribution αµ satisfying αµ(φ) =

∫
φdµ for

every smooth function φ with compact support. If such
αµ exists, then it is unique.

A measure µ on Rd is called translation-bounded if
there exists a constant C such that |µ|(B+ t) ⩽ C for every
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t ∈ Rd, where B is the open unit ball in Rd. If a measure µ
is translation-bounded, then it is a tempered distribution.

If µ is a translation-bounded measure on Rd, and if ν
is a finite measure on Rd, then the convolution µ ∗ ν is a
translation-bounded measure.
Lemma 3.1 (see [ KL21 , Section 2.5]). Let ν be a finite
measure on Rd, and let µ be a translation-bounded mea-
sure on Rd whose Fourier transform µ̂ is a locally finite
measure. Then the Fourier transform of the convolution
µ ∗ ν is the measure µ̂ · ν̂.

A sequence of measures {µ j} is said to be uniformly
translation-bounded if there exists a constant C such that
supt |µ j|(B+ t) ⩽ C for all j, where B is again the open unit
ball in Rd. If {µ j} is a uniformly translation-bounded se-
quence of measures, then µ j is said to converge vaguely to
a measure µ if for every continuous, compactly supported
function φ we have

∫
φdµ j →

∫
φdµ. In this case, the

vague limit µ must also be a translation-bounded mea-
sure. From any uniformly translation-bounded sequence
of measures {µ j} one can extract a vaguely convergent sub-
sequence.

Similarly, a sequence of finite measures {µ j} on Rd is
said to be bounded if we have sup j

∫
|dµ j| < +∞, and

the sequence {µ j} is said to converge vaguely to a finite
measure µ if we have

∫
φdµ j →

∫
φdµ for every continu-

ous, compactly supported function φ. Every bounded se-
quence of measures {µ j} has a vaguely convergent subse-
quence.

3.3. We use δλ to denote the Dirac measure at the point
λ. If Λ ⊂ Rd is a finite or countable set, then we denote
δΛ =

∑
λ∈Λ δλ.

By a lattice L ⊂ Rd we mean the image of Zd under an
invertible linear map T. The determinant det(L) is equal
to |det(T)|. The dual lattice L∗ is the set of all vectors s such
that 〈l, s〉 ∈ Z, l ∈ L. The measure δL is a tempered distri-
bution, whose Fourier transform is (by Poisson’s summa-
tion formula) the measure δ̂L = (det L)−1∑

s∈L∗ δs.
We say that a set Λ ⊂ Rd is locally finite if the set Λ∩ B

is finite for every open ball B. We say that Λ is periodic if
there exists a lattice L such that Λ + L = Λ. If Λ is both
locally finite and periodic, then it is a union of finitely
many translates of L.
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4. The Turán problem and its dual

4.1. Admissible domains for the Turán problem. An
open set U ⊂ Rd is said to have a continuous boundary if
for each point a ∈ ∂U there exist an open ball B centered at
a, an orthogonal linear map φ : Rd → Rd and a continuous
function ψ : Rd−1 → R, such that

U ∩ B = {φ(x1, . . . , xd) : xd < ψ(x1, . . . , xd−1)} ∩ B. (4.1)

This means that locally near each boundary point, the
set U consists of those points lying to one side of the graph
of some continuous function. This geometric condition is
quite general and is satisfied by most domains of practical
interest.

We now fix an open set U ⊂ Rd with the following prop-
erties:

(i) U is an open set of finite measure; (4.2)
(ii) 0 ∈ U = −U, that is, U is origin-symmetric and con-

tains the origin; (4.3)
(iii) U has a continuous boundary. (4.4)
Note that the set U may be unbounded, disconnected,

or both.

4.2. The Turán constant. A function f on Rd will be
called Turán admissible (with respect to the set U) if f is
a bounded continuous real-valued function vanishing on
U∁, such that f̂ is nonnegative and f (0) = 1.

We first observe that if f is Turán admissible then f ∈
L1(Rd), since f is bounded and vanishes off the set U of fi-
nite measure. In turn, since f is continuous and f̂ is non-
negative, it follows that f̂ is a continuous function belong-
ing to L1(Rd). Moreover, we have ‖ f ‖∞ =

∫
f̂ = f (0) = 1.

Finally, both f and f̂ are even functions.
Definition 4.1. The Turán constant T(U) is the supre-
mum of

∫
f over all the Turán admissible functions f .

We note that the Turán constant is finite, and in fact,
T(U) ⩽ m(U). This is due to the fact that ‖ f ‖∞ ⩽ 1 for any
Turán admissible function f .

4.3. Difference sets and convex domains. As an ex-
ample, suppose that U contains a difference set A − A,
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where A ⊂ Rd is a bounded open set. In this case, the
function f = m(A)−11A∗1−A is Turán admissible, and

∫
f =

m(A). As a consequence, the lower estimate T(U) ⩾ m(A)
holds.

A special case of particular interest is when U ⊂ Rd is a
convex bounded origin-symmetric open set. In this case,
U can be realized as the difference set U = A − A where
A = 1

2U. Hence the function f = m(A)−11A ∗ 1−A is Turán
admissible, and T(U) ⩾ m(A) = 2−dm(U). We note that any
bounded open convex set has a continuous boundary, see
[ Gri85 , Corollary 1.2.2.3], so U satisfies (  4.2 ), (  4.3 ), ( 4.4 ).

If a convex bounded origin-symmetric open set U ⊂ Rd

satisfies T(U) = 2−dm(U), then U is called a Turán do-
main, cf. [  KR03 ]. It is not known whether there exists a
convex bounded origin-symmetric open set U ⊂ Rd which
is not a Turán domain, i.e. such that T(U) > 2−dm(U).

4.4. The dual Turán constant. We say that a tempered
distribution α onRd is admissible for the dual Turán prob-
lem, if it is of the form α = δ0 + β, where β is a tempered
distribution supported in the closed set U∁, and moreover
α is positive definite, which means that α̂ is a positive
measure.

In this case, we may write α̂ = α̂({0})δ0 + µ, where α̂({0})
is the mass of the atom at the origin, and µ is a positive
measure on Rd.
Definition 4.2. The dual Turán constant T′(U) is the
supremum of α̂({0}) over all the tempered distributions α
which are admissible for the dual Turán problem.

We first observe that the dual Turán constant T′(U) is
a strictly positive number, and in fact, T′(U) ⩾ m(U)−1.
Indeed, the tempered distribution α given by
α = δ0+m(U)−11U∁ , α̂ = m(U)−1δ0+ (1−m(U)−11̂U), (4.5)

is admissible for the dual Turán problem and satisfies
α̂({0}) = m(U)−1.

4.5. Weak linear duality in the Turán problem. The
first result we obtain is the following inequality involving
the Turán constant T(U) and its dual T′(U).
Theorem 4.3. Let U ⊂ Rd be an open set satisfying ( 4.2 ),
( 4.3 ), ( 4.4 ). Then

T(U)T′(U) ⩽ 1. (4.6)
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Note that since T(U) is strictly positive, this shows that
T′(U) must be finite.

The inequality ( 4.6 ) implies that any tempered distri-
bution α admissible for the dual Turán problem, yields
the upper bound T(U) ⩽ α̂({0})−1 for the Turán constant.
This principle is usually referred to as weak linear dual-
ity.

The proof of Theorem  4.3 requires several observations.

4.5.1. First we need the following lemma, based on
[ MMO14 , Lemma 2.4]. Note that the assumption that
U has a continuous boundary plays a crucial role in the
proof.

Lemma 4.4. Let f be Turán admissible for an open set U
satisfying ( 4.2 ), ( 4.3 ), ( 4.4 ). For any ε > 0 there is a smooth
real-valued function g with compact support contained in
U, g(0) = 1, such that ‖ f̂ − ĝ‖1 < ε.

Note that the approximating function g is generally not
Turán admissible, since its Fourier transform ĝ need not
be a nonnegative function.

Proof of Lemma  4.4 . Let ψ be a smooth real-valued func-
tion with compact support, ψ(0) = 1, such that ψ̂ is non-
negative. Then the function fδ(x) := f (x)ψ(δx) is Turán
admissible, has compact support, and ‖ f̂δ − f̂ ‖1 → 0 as
δ → 0. Hence, with no loss of generality we may assume
that f has compact support.

The closed support of f is thus a compact set K con-
tained in the closure of U. Since U has a continuous
boundary, for each point a ∈ K ∩ ∂U there is a small open
ball V(a) centered at a, and there is a unit vector τ(a),
such that K ∩ V(a) + δτ(a) ⊂ U for any sufficiently small
δ > 0. By compactness we may choose finitely many points
a1, . . . , an ∈ K ∩ ∂U such that the open balls V j := V(a j),
1 ⩽ j ⩽ n, cover K ∩ ∂U.

If we denote V0 := U, then V0,V1, . . . ,Vn forms an open
cover of K. Let φ0, . . . , φn be a smooth partition of unity
subordinate to this open cover, that is, each φ j is a smooth
real-valued function with compact support contained in
V j, and

∑n
j=0 φ j(x) = 1 on K. Hence, if we denote f j := f ·φ j
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and τ j := τ(a j), then the function

hδ(x) = f0(x) +
n∑

j=1

f j(x − δτ j) (4.7)

has compact support contained in U, and ‖ f̂ − ĥδ‖1 → 0 as
δ → 0. Moreover, since the origin belongs to the interior
of U, we may assume that the open balls V1, . . . ,Vn do not
contain the origin, which implies that hδ(0) = f (0) = 1.

It thus remains to set g := (hδ∗χ)(0)−1(hδ∗χ), where χ is a
smooth nonnegative function supported on a sufficiently
small neighborhood of the origin, with

∫
χ = 1. □

4.5.2. The next observation implies that if a tempered
distribution α is admissible for the dual Turán problem,
then the measure α̂ is translation-bounded.

Lemma 4.5. Let α be a tempered distribution on Rd such
that α = δ0 in some open neighborhood V of the origin, and
α̂ is a positive measure. Then the measure α̂ is translation-
bounded. Moreover, we have supt α̂(B + t) ⩽ C(V), where
B ⊂ Rd is the open unit ball and C(V) is a constant which
depends only on V.

Proof. We choose and fix a smooth function φ with com-
pact support contained in V, and satisfying φ̂(−t) ⩾ 1B(t)
for all t ∈ Rd. Then

α̂(B + t) =
∫

1B(y − t)dα̂(y) ⩽
∫
φ̂(t − y)dα̂(y) = (φ̂ ∗ α̂)(t),

(4.8)
due to the positivity of the measure α̂. But note thatφ·α =
φ(0)δ0, which in turn implies that φ̂ ∗ α̂ = φ(0). Hence the
assertion holds with the constant C(V) = φ(0). □

4.5.3. Let f be any Turán admissible function, and let
α be any tempered distribution admissible for the dual
Turán problem. Then α̂ is a positive, translation-bounded
measure (due to Lemma  4.5 ), while f̂ is a nonnegative
function in L1(Rd). It follows that the convolution f̂ ∗ α̂
is a well-defined, translation-bounded positive measure,
which is also a locally integrable function.

Lemma 4.6. Let f be a Turán admissible function, and
let α be an admissible tempered distribution for the dual
Turán problem. Then f̂ ∗ α̂ = 1 a.e.



THE TURÁN AND DELSARTE PROBLEMS AND THEIR DUALS 15

This is obvious if f is a Schwartz function whose closed
support is contained in U, since in this case the product
f · α is well-defined and is equal to δ0, and therefore the
convolution f̂ ∗ α̂, being the Fourier transform of f · α, is
the constant function 1.

However, if f is only a continuous function and α is a
tempered distribution, then generally the product f · α
does not make sense. Hence, to prove Lemma  4.6 in the
general case, we shall use the approximation result given
in Lemma  4.4 .

Proof of Lemma  4.6 . By Lemma  4.4 there is a sequence
of smooth real-valued functions g j with compact support
contained in U, g j(0) = 1, such that ĝ j → f̂ in L1(Rd). The
extra smoothness and support properties of the functions
g j imply that g j · α = δ0, and as a consequence, ĝ j ∗ α̂ is
the constant function 1. Now we let j → ∞. Let ψ be
a smooth function with compact support. Since α̂ is a
translation-bounded measure, the convolution α̂ ∗ ψ is a
bounded function. Since ĝ j → f̂ in L1(Rd), it follows that
ĝ j ∗ (α̂ ∗ ψ) → f̂ ∗ (α̂ ∗ ψ) pointwise. In turn, this implies
that (ĝ j ∗ α̂) ∗ ψ→ ( f̂ ∗ α̂) ∗ ψ pointwise, since the convolu-
tion is associative (by Fubini’s theorem). But ĝ j ∗ α̂ = 1, so
we conclude that ( f̂ ∗ α̂) ∗ ψ =

∫
ψ. Since this holds for an

arbitrary smooth function ψ with compact support, this
shows that f̂ ∗ α̂ = 1 a.e. □

Remark. Lemma  4.6 does not hold if we drop the as-
sumption that U has a continuous boundary. An exam-
ple constructed in [  Lev22 , Section 3] shows that there is
a bounded open set U ⊂ R satisfying (  4.2 ) and ( 4.3 ), but
not ( 4.4 ), such that for certain admissible f and α, the
function f̂ ∗ α̂ does not coincide a.e. with any constant.

4.5.4. Finally we can establish the weak linear duality
inequality ( 4.6 ).

Proof of Theorem  4.3 . Due to the definitions of the Turán
constant T(U) and its dual T′(U), it suffices to verify that
if f is a Turán admissible function, and if α is a tempered
distribution admissible for the dual Turán problem, then
α̂({0})

∫
f ⩽ 1.



16 M. KOLOUNTZAKIS, N. LEV, AND M. MATOLCSI

We may write α̂ = α̂({0})δ0 + µ, where µ is a positive
measure. By Lemma  4.6 ,

1 = f̂ ∗ α̂ = α̂({0}) f̂ + f̂ ∗ µ ⩾ α̂({0}) f̂ a.e. (4.9)

Since f̂ is a continuous function, this implies that the in-
equality α̂({0}) f̂ (x) ⩽ 1 must in fact hold for every x ∈ Rd.
In particular, we have α̂({0}) f̂ (0) ⩽ 1, as required. □

4.6. Strong linear duality in the Turán problem.
Our next goal is to show that the inequality (  4.6 ) is in
fact an equality.
Theorem 4.7. Let U ⊂ Rd be an open set satisfying ( 4.2 ),
( 4.3 ), ( 4.4 ). Then

T(U)T′(U) = 1. (4.10)

This is usually referred to as strong linear duality. This
principle also inspires the idea of the proof which will be
given next.

4.6.1. Let X be the linear space over R consisting of all
the bounded continuous real-valued and even functions f
vanishing on U∁, and such that f̂ ∈ L1(Rd). We note that
if f ∈ X then also f̂ is a real-valued and even continuous
function.

We consider L1(Rd)×R×R as a Banach space overR (the
functions in the first component are taken real-valued)
and let K be the subset consisting of all triples

( f̂ − u,
∫

f − a, f (0) + b) (4.11)
where f ∈ X, u is a nonnegative function in L1(Rd), and
a, b are nonnegative scalars. It is easy to see that the set
K is a convex cone.
Lemma 4.8. The equality ( 4.10 ) holds if and only if the
triple

(0,T′(U)−1, 1) (4.12)
belongs to the closure of K. Moreover, if this is the case
then there exists a Turán admissible function f with

∫
f =

T(U).

Proof. In one direction this is obvious: if (  4.10 ) holds then
there is a sequence of Turán admissible functions f j such
that

∫
f j → T′(U)−1. Then f j ∈ X, f j(0) = 1, and f̂ j is a

nonnegative function in L1(Rd), hence taking f = f j, u = f̂ j,
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and a = b = 0 in ( 4.11 ) yields the triple (0,
∫

f j, 1) belonging
to K whose limit is ( 4.12 ).

To prove the converse direction, we suppose that ( f̂ j −
u j,
∫

f j−a j, f j(0)+b j) is a sequence in K converging to (  4.12 ),
that is,

‖ f̂ j−u j‖1 → 0,
∫

f j− a j → T′(U)−1, f j(0)+ b j → 1. (4.13)

Since u j is nonnegative, we have

‖u j‖1 =
∫

u j = f j(0)−
∫

( f̂ j−u j) ⩽ f j(0)+b j+ ‖ f̂ j−u j‖1. (4.14)
It follows from (  4.13 ) that the right hand side of ( 4.14 )
tends to 1 as j→∞, hence lim sup ‖u j‖1 ⩽ 1. In particular,
{u j} is a bounded sequence in L1(Rd), so by passing to a
subsequence, we may assume that u j converges vaguely
to some finite measure µ, which ought to be a positive
measure since u j are nonnegative functions.

In turn, we have ‖ f̂ j‖1 ⩽ ‖u j‖1 + ‖ f̂ j − u j‖1, and so
lim sup ‖ f̂ j‖1 ⩽ 1. Hence, { f̂ j} is a bounded sequence in
L1(Rd). Moreover, since we have f̂ j − u j → 0 in L1(Rd)
and therefore also vaguely, the sequence { f̂ j} converges
vaguely to the same measure µ.

If we now set f = µ̂, then f is a bounded continu-
ous function. It follows from the vague convergence that
f j → f in the sense of tempered distributions. Hence the
function f is real-valued and even. Since each f j vanishes
on U∁, then f must be supported in the closure of U, or
equivalently, f vanishes in the interior of U∁. Since U has
a continuous boundary, the closed set U∁ is equal to the
closure of its interior, hence by continuity the function f
must in fact vanish in the whole set U∁. Furthermore,

‖ f ‖∞ = f (0) =
∫

dµ ⩽ lim sup
∫

u j ⩽ 1, (4.15)

and as a consequence, ‖ f ‖1 =
∫

U
| f | ⩽ m(U), so f ∈ L1(Rd).

It follows that µ = f̂ is actually a nonnegative continuous
function in L1(Rd).

We now claim that
∫

f j →
∫

f . Indeed, given ε > 0 we
choose a large ball B such that m(U \ B) < ε, and let φ be
a Schwartz function such that 0 ⩽ φ ⩽ 1, and φ = 1 on B.
Then∫

f j −
∫

f =
∫

( f j − f ) · φ +
∫

( f j − f ) · (1 − φ). (4.16)
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Since lim sup ‖ f j‖∞ ⩽ lim sup ‖ f̂ j‖1 ⩽ 1, and due to ( 4.15 ),
for all sufficiently large j the function ( f j − f ) · (1 − φ) is
bounded in modulus by an absolute constant C, and it
vanishes off the set U \ B. Hence the second integral on
the right hand side of (  4.16 ) is bounded in modulus by
C·m(U\B) < Cε. The first integral on the right hand side of
( 4.16 ) tends to zero as j→∞, since f j → f in the sense of
tempered distributions. This implies that |

∫
f j−
∫

f | < Cε
for all sufficiently large j. As this holds for an arbitrarily
small ε, this shows that

∫
f j →

∫
f and establishes our

claim.
Since the scalars a j are nonnegative, we conclude from

( 4.13 ) that∫
f = lim

j→∞

∫
f j ⩾ lim

j→∞
(
∫

f j − a j) = T′(U)−1. (4.17)

At this point we note that we still do not know that f is
Turán admissible, since we have not shown that f (0) = 1.
However, it follows from (  4.15 ) that 0 ⩽ f (0) ⩽ 1. More-
over, since f (0) = ‖ f ‖∞, the value f (0) must be strictly
positive, for otherwise this would imply that f = 0 which
contradicts ( 4.17 ).

We have thus shown that 0 < f (0) ⩽ 1. The function
f (0)−1 f is therefore Turán admissible, and has integral
f (0)−1

∫
f ⩾ f (0)−1T′(U)−1 due to (  4.17 ). On the other hand,

we have f (0)−1
∫

f ⩽ T(U) ⩽ T′(U)−1 by the definition of
the Turán constant T(U) and the inequality (  4.6 ). This
implies that actually f (0) = 1 and thus f is a Turán ad-
missible function, and

∫
f = T(U) = T′(U)−1. In particu-

lar, the equality (  4.10 ) holds. This completes the proof of
Lemma  4.8 . □

4.6.2. We now continue to the proof of the strong linear
duality equality ( 4.10 ).

Proof of Theorem  4.7 . In view of Lemma  4.8 , in order to
prove that the equality ( 4.10 ) holds, it suffices to show
that the triple (  4.12 ) must belong to the closure of K. Sup-
pose to the contrary that this is not the case. Since K
is convex, then by the Hahn-Banach separation theorem
(see e.g. [  Rud91 , Theorem 3.4]) there exists a continu-
ous linear functional on the space L1(Rd) × R × R which
separates the closure of K from the triple ( 4.12 ). This
means that there exists an element (g, p, q) of the space
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L∞(Rd)×R×R (again the functions in the first component
are taken real-valued), and there is a real scalar c, such
that the inequality∫

( f̂ − u)g + p(
∫

f − a) − q( f (0) + b) ⩽ c (4.18)

holds for every f ∈ X, every nonnegative function u ∈
L1(Rd), and every nonnegative scalars a, b, while at the
same time we have

pT′(U)−1 − q > c. (4.19)

(The left hand side of (  4.19 ) is the action of (g, p, q) on the
triple ( 4.12 ).)

We first observe that the function g must be nonnega-
tive a.e. Indeed, if g(t) < 0 on some set E of positive and
finite measure, then taking f = 0, a = b = 0 and u = λ · 1E
would violate ( 4.18 ) for a sufficiently large positive scalar
λ. Similarly, p must be a nonnegative scalar, for other-
wise taking f = 0, u = 0 and b = 0 would violate (  4.18 ) for
a sufficiently large positive scalar a. In the same way also
q must be a nonnegative scalar. Thus g is a nonnegative
function in L∞(Rd), and p, q are nonnegative scalars.

If we now set u = 0 and a = b = 0 in (  4.18 ) then we
obtain ∫

f̂ g + p
∫

f − q f (0) ⩽ c (4.20)
for every f ∈ X. Since X is a linear space, it follows that
the left hand side can never be nonzero (for otherwise it
could be made positive and arbitrarily large). So we may
assume that c = 0 and that the inequality (  4.20 ) is in fact
an equality.

By replacing g(t) with 1
2 (g(t) + g(−t)), we may also as-

sume that g is a nonnegative and even function in L∞(Rd).
If f ∈ X is a smooth function with compact support con-

tained in U, then the equality in (  4.20 ) may be written in
the distributional sense as

(ĝ + p − qδ0)( f ) = c = 0. (4.21)

Moreover, the tempered distribution ĝ + p − qδ0 is real
and even, therefore the fact that the equality ( 4.21 ) holds
for all smooth functions f ∈ X with compact support con-
tained in U, implies that ĝ + p − qδ0 vanishes in U.

Recall now that p, q are nonnegative scalars. We claim
that in fact they are both strictly positive. Indeed, using
( 4.19 ) and recalling that c = 0, it follows that p > 0. In
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turn, this implies that g + pδ0 is a nonzero positive mea-
sure, whose Fourier transform satisfies ĝ + p = qδ0 in U.
But since ĝ + p cannot vanish in any neighborhood of the
origin, we conclude that also q > 0.

Finally, define α = q−1(ĝ + p). Then α = δ0 in U, and α̂
is a positive measure. Hence α is a tempered distribution
admissible for the dual Turán problem. Furthermore, the
Fourier transform of α is given by α̂ = q−1(pδ0 + g), so that
the measure α̂ has an atom at the origin of mass α̂({0}) =
p/q. However due to ( 4.19 ) and recalling that c = 0, we
conclude that α̂({0}) > T′(U), which gives us the desired
contradiction. □

4.6.3. Remark. We note an interesting consequence of
the last proof. Suppose that we consider the following
smaller class of admissible tempered distributions α on
Rd. We again require that α = δ0 + β, where β is a tem-
pered distribution supported in the closed set U∁, but in
addition we require that α̂ is of the form α̂ = α̂({0})δ0 + g,
where g is a nonnegative even function in L∞(Rd). Then
the supremum of α̂({0}) over this smaller class of admis-
sible α’s still gives us the dual Turán constant T′(U).

4.7. Existence of extremizers for the Turán prob-
lem and its dual. We say that a Turán admissible func-
tion f is extremal if it satisfies

∫
f = T(U). Similarly,

a tempered distribution α which is admissible for the
dual Turán problem will be called extremal if we have
α̂({0}) = T′(U).

Our next goal is to establish the existence of extremiz-
ers for both the Turán problem and its dual. This implies
that in the definition of the constants T(U) and T′(U), the
supremum is in fact a maximum.

The existence of an extremal function for the Turán
problem was proved in [ BRR24 , Corollary 19] in the more
general context of locally compact abelian groups.

Theorem 4.9. Let U ⊂ Rd be an open set satisfying ( 4.2 ),
( 4.3 ), ( 4.4 ). Then,

(i) The Turán problem admits at least one extremal
function f ;

(ii) The dual Turán problem admits at least one ex-
tremal tempered distribution α.
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Proof. Since the equality ( 4.10 ) of Theorem  4.7 is now
proved, then part  (i) follows as a consequence of
Lemma  4.8 . It thus remains to prove part  (ii) .

Let {α j} be a sequence of tempered distributions which
are admissible for the dual Turán problem, and such
that α̂ j({0}) → T′(U). It follows from Lemma  4.5 that
{α̂ j} is a uniformly translation-bounded sequence of posi-
tive measures. As a consequence, by passing to a subse-
quence we may assume that α̂ j converges vaguely to some
translation-bounded positive measure, which we may de-
note as α̂ for some tempered distribution α. The uniform
translation-boundedness and the vague convergence im-
ply that the sequence α̂ j converges to α̂ also in the sense of
tempered distributions. As a consequence, since α j = δ0 in
U for all j, then also α = δ0 in U, hence α is a tempered dis-
tribution admissible for the dual Turán problem. More-
over, since the measure α̂ j is positive and has mass α̂ j({0})
at the origin, then the vague limit α̂ also has an atom at
the origin, of mass at least lim α̂ j({0}) = T′(U). Hence α is
extremal for the dual Turán problem. □

4.8. Relation between extremizers for the Turán
problem and its dual. Let f and α be extremizers for
the Turán problem and its dual, respectively. This means
that f is a Turán admissible function, with

∫
f = T(U),

and that α is a tempered distribution admissible for the
dual Turán problem, with α̂({0}) = T′(U). Note that f̂ is
a continuous function and α̂ is a measure, so the product
f̂ · α̂ is well-defined.

Theorem 4.10. Let U ⊂ Rd be an open set satisfying ( 4.2 ),
( 4.3 ), ( 4.4 ). If f and α are any two extremals for the Turán
problem and its dual, respectively, then the measure α̂ is
supported on the closed set {t : f̂ (t) = 0} ∪ {0}, and as a
consequence, f̂ · α̂ = δ0.

Proof. We can write α̂ = T′(U)δ0 + µ, where µ is a pos-
itive measure. We claim that µ is supported on the set
{t : f̂ (t) = 0}. Suppose to the contrary that this is not
the case, then there is a point a in the closed support of µ
such that f̂ (a) > 0. Let ψ be a smooth function with com-
pact support, satisfying 0 ⩽ ψ ⩽ f̂ and such that ψ(t) > 0
in some open neighborhood V of the point a. Since f̂ is
an even function, we may assume that ψ is even as well.
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Hence ψ ∗ µ is a nonnegative continuous function with
(ψ ∗ µ)(0) =

∫
ψ(t)dµ(t) > 0, where the strict inequality

holds since the positive measure µ has nonzero mass in
V while ψ(t) > 0 for t ∈ V. By Lemma  4.6 , we have

1 = f̂ ∗ α̂ = T′(U) f̂ + f̂ ∗ µ a.e. (4.22)
The right hand side of (  4.22 ) is therefore a.e. not less
than T′(U) f̂ + ψ ∗ µ, which is a nonnegative continuous
function whose value at the origin is strictly greater than
T′(U) f̂ (0) = T′(U)T(U) = 1, which gives us a contradiction.
This shows that the measure µmust indeed be supported
on the set {t : f̂ (t) = 0}. In turn, this implies that α̂ is sup-
ported on the set {t : f̂ (t) = 0} ∪ {0} and that f̂ · α̂ = δ0. □

Remark. Note that we do not say that f ∗α = 1, since gen-
erally if f is a continuous function and α is a tempered dis-
tribution, then the convolution f ∗ α does not make sense.

5. The Delsarte problem and its dual

5.1. Admissible domains for the Delsarte problem.
We now consider a wider class of domains. We fix an open
set U ⊂ Rd satisfying the following two properties:

(i) U is an open set of finite measure; (5.1)
(ii) 0 ∈ U = −U, that is, U is origin-symmetric and con-

tains the origin; (5.2)
Later on, we will also assume that:

(iii) The closed set U∁ is equal to the closure of its inte-
rior. (5.3)

The first two conditions ( 5.1 ), ( 5.2 ) coincide with ( 4.2 ),
( 4.3 ). The third condition ( 5.3 ) will not be assumed from
the beginning, since it is not needed in the proof of the
weak linear duality. We will impose the condition (  5.3 )
later on, when we establish the strong linear duality and
the results which follow it.

The condition (  5.3 ) is a weaker requirement than ( 4.4 ).
Hence, we consider a more general class of admissible do-
mains for the Delsarte problem. The condition (  5.3 ) is
also considered in [  BRR24 ] where it is called “boundary
coherence”.

Note again, that the set U may be unbounded, discon-
nected, or both.
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5.2. The Delsarte constant. We say that a function f
on Rd is Delsarte admissible if f is a continuous real-
valued function in L1(Rd) satisfying the conditions f (0) =
1, f (t) ⩽ 0 for t ∈ U∁, and f̂ is a nonnegative function.

If f is Delsarte admissible then both f and f̂ are even
functions, and f̂ is a continuous function belonging to
L1(Rd). Moreover, we have ‖ f ‖∞ =

∫
f̂ = f (0) = 1.

Definition 5.1. The Delsarte constant D(U) is the supre-
mum of

∫
f over all the Delsarte admissible functions f .

The Delsarte constant D(U) is finite, and satisfies
D(U) ⩽ m(U).

We observe that D(U) ⩾ T(U), that is, the Delsarte con-
stant is at least as large as the Turán constant, since the
supremum is taken over a larger class of admissible func-
tions. Indeed, in the Turán problem we require that f
vanishes on U∁, while in the Delsarte problem f is only
required to be nonpositive in U∁.

In particular (recall Section  4.3 ) this implies that if U
contains a difference set A−A, where A ⊂ Rd is a bounded
open set, then D(U) ⩾ m(A).

5.3. The dual Delsarte constant. We say that a tem-
pered distribution α on Rd is admissible for the dual Del-
sarte problem, if α = δ0 + β, where β is a positive measure
supported in the closed set U∁, and α is positive definite,
which means that α̂ is a positive measure. In this case,
we may as before write α̂ = α̂({0})δ0 + µ, where α̂({0}) is
the mass of the atom at the origin, and µ is a positive
measure.

Definition 5.2. The dual Delsarte constant D′(U) is the
supremum of α̂({0}) over all the tempered distributions α
which are admissible for the dual Delsarte problem.

Similarly, we note that D′(U) ⩽ T′(U), since the supre-
mum is taken over a smaller class of admissible tempered
distributions α. Indeed, in the dual Delsarte problem
we require β to be a positive measure, while in the dual
Turán problem, β is merely a tempered distribution which
need not be a measure.

We observe that the tempered distribution α given by
( 4.5 ) is admissible for the dual Delsarte problem, hence
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D′(U) ⩾ m(U)−1. In particular, the dual Delsarte constant
is strictly positive.

It follows from Lemma  4.5 that if α is a tempered dis-
tribution admissible for the dual Delsarte problem, then
α̂ is a translation-bounded measure.

5.4. Weak linear duality in the Delsarte problem.
We now turn to prove the inequality that establishes the
weak linear duality in the Delsarte problem. Note that
this result does not require the condition ( 5.3 ).

Theorem 5.3. Let U ⊂ Rd be an open set satisfying ( 5.1 ),
( 5.2 ). Then

D(U)D′(U) ⩽ 1. (5.4)

In particular, this shows that the dual Delsarte con-
stant D′(U) is finite.

Moreover, the inequality ( 5.4 ) gives us as before, that
any tempered distribution α admissible for the dual Del-
sarte problem yields the upper bound D(U) ⩽ α̂({0})−1.

Proof of Theorem  5.3 . Let f be any Delsarte admissible
function, and let α be any tempered distribution admis-
sible for the dual Delsarte problem. Note that although
f is not necessarily a smooth function, the product f · α
is a well-defined signed measure, since f is a continuous
function and α is a measure. Moreover, since f̂ is a func-
tion in L1(Rd) and α̂ is a translation-bounded measure,
then by Lemma  3.1 the signed measure f ·α is a tempered
distribution whose Fourier transform is f̂ ∗ α̂, which is a
well-defined, positive translation-bounded measure, and
which is also a locally integrable function.

Fix a nonnegative Schwartz function φ with
∫
φ = 1,

such that φ̂ is nonnegative and has compact support. Let
φε(t) = ε−dφ(t/ε), then φ̂ε(x) = φ̂(εx). The Fourier trans-
form α̂ is of the form α̂ = α̂({0})δ0+µ, where µ is a positive
measure, hence

f̂ ∗ α̂ = α̂({0}) f̂ + f̂ ∗ µ. (5.5)

Since φε is nonnegative, and f̂ ∗ µ is a positive measure,
this implies that

( f̂ ∗ α̂)(φε) ⩾ α̂({0})
∫

f̂ (t)φε(t)dt→ α̂({0}) f̂ (0) = α̂({0})
∫

f

(5.6)
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as ε → 0. On the other hand, α = δ0 + β where β is a
positive measure, hence

( f̂ ∗ α̂)(φε) = ( f ·α)(φ̂ε) = f (0)φ̂ε(0)+
∫
φ̂ε(x) f (x)dβ(x) (5.7)

(the last equality holds and the integral is well-defined
since φ̂ε has compact support). Since β is a positive mea-
sure supported on U∁, f is nonpositive on U∁ and φ̂ε is
nonnegative everywhere, it follows that the integral in
( 5.7 ) is a nonpositive scalar. Hence

( f̂ ∗ α̂)(φε) ⩽ f (0)φ̂ε(0) = 1. (5.8)

Combining ( 5.6 ), (  5.8 ) yields the inequality α̂({0})
∫

f ⩽ 1,
which proves ( 5.4 ). □

5.5. Strong linear duality in the Delsarte problem.
Next we show that in fact we have an equality in (  5.4 ),
which establishes strong linear duality.

Theorem 5.4. Let U ⊂ Rd be an open set satisfying ( 5.1 ),
( 5.2 ), ( 5.3 ). Then

D(U)D′(U) = 1. (5.9)

This result was proved under broader assumptions in
[ CLS22 , Section 3]. Here we give a different presentation
following similar lines to our proof of the strong linear
duality for the Turán problem (Theorem  4.7 ).

5.5.1. Let Y be the linear space over R consisting of all
real-valued and even continuous functions f such that
both f and f̂ are in L1(Rd). Note that if f ∈ Y then also f̂
is a real-valued and even continuous function.

We now consider L1(Rd) × L1(U∁) × R × R as a Banach
space over R (the functions in the first and second com-
ponents are taken real-valued) and let K be the set of all
quadruples

( f̂ − u,− f |U∁ − v,
∫

f − a, f (0) + b) (5.10)

where f ∈ Y, u is a nonnegative function in L1(Rd), v is a
nonnegative function in L1(U∁), and a, b are nonnegative
scalars. Then the set K is a convex cone.

Lemma 5.5. The equality ( 5.9 ) holds if and only if the
quadruple

(0, 0,D′(U)−1, 1) (5.11)
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belongs to the closure of K. Moreover, if this is the case then
there exists a Delsarte admissible function f with

∫
f =

D(U).

Proof. Again one direction is obvious: if (  5.9 ) holds then
there is a sequence of Delsarte admissible functions f j

such that
∫

f j → D′(U)−1. Then f = f j is a function in
Y, u = f̂ j is a nonnegative function belonging to L1(Rd),
v = − f |U∁ is a nonnegative function in L1(U∁), so together
with a = b = 0, the quadruple (  5.10 ) becomes (0, 0,

∫
f j, 1)

which belongs to K and whose limit is ( 5.11 ).
We now must prove also the converse direction. Assume

that

( f̂ j − u j,− f j|U∁ − v j,
∫

f j − a j, f j(0) + b j) (5.12)

is a sequence in K converging to ( 5.11 ), that is,∫
Rd | f̂ j − u j| → 0,

∫
U∁
| f j + v j| → 0, (5.13)∫

f j − a j → D′(U)−1, f j(0) + b j → 1.

In the same way as in the proof Lemma  4.8 , we can
conclude that {u j} and { f̂ j} are two bounded sequences in
L1(Rd), with lim sup ‖u j‖1 and lim sup ‖ f̂ j‖1 both not exceed-
ing 1, and after passing to a subsequence, these two se-
quences converge vaguely to a common vague limit which
is a finite positive measure µ.

We now show that also { f j} is a bounded sequence in
L1(Rd). Indeed, we have

‖ f j‖1 =
∫
Rd

(− f j) +
∫

U
( f j + | f j|) +

∫
U∁

( f j + | f j|). (5.14)

The first integral
∫

(− f j) does not exceed a j −
∫

f j which
tends to a limit by ( 5.13 ), hence this integral remains
bounded from above. The second integral

∫
U

( f j + | f j|) does
not exceed 2m(U)‖ f j‖∞ which is bounded due to the in-
equality ‖ f j‖∞ ⩽ ‖ f̂ j‖1 and the fact that { f̂ j} is a bounded se-
quence in L1(Rd). To estimate the third integral

∫
U∁

( f j+| f j|)
we observe that on the set U∁ we have f j ⩽ −v j + | f j + v j|
as well as the inequality | f j| ⩽ v j + | f j + v j| (since v j is a
nonnegative function). Hence f j + | f j| ⩽ 2| f j + v j| and so
the integral

∫
U∁

( f j+ | f j|) does not exceed 2
∫

U∁
| f j+v j|, which

tends to zero by ( 5.13 ) and in particular remains bounded.
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Thus the right hand side of (  5.14 ) is bounded from above,
and { f j} is a bounded sequence in L1(Rd).

As a consequence, again by passing to a subsequence
we may assume that f j converges vaguely to a finite signed
measure ν. The vague convergence implies that both
f j → ν and f̂ j → µ in the sense of tempered distributions.
Hence we must have ν̂ = µ, which implies that in fact
both ν and µ are real-valued and even continuous func-
tions belonging to L1(Rd). We thus denote f = ν and note
that f̂ = µ is a nonnegative function.

We now claim that the function f is nonpositive in U∁.
To see this, let ψ be a smooth nonnegative function with
compact support contained in the interior of U∁. Then

−
∫
Rd

f jψ =

∫
U∁

v jψ −
∫

U∁
( f j + v j)ψ. (5.15)

The first integral on the right hand side is nonnegative,
while the second integral tends to zero as j → ∞ due to
( 5.13 ). Hence using the vague convergence we obtain

−
∫

fψ = lim
j→∞

(−
∫

f jψ) ⩾ 0. (5.16)

As this holds for an arbitrary smooth nonnegative func-
tion ψ with compact support contained in the interior of
U∁, and since f is a continuous function, this implies that
f is nonpositive in the interior of U∁. Since we have as-
sumed that the closed set U∁ is equal to the closure of its
interior, it follows again by the continuity of f that f must
be nonpositive in the whole set U∁.

Next we claim that
∫

f ⩾ D′(U)−1. To prove this, let ε >
0 be given. We choose a large ball B such that m(U\B) < ε,
and also

∫
B∁
| f | < ε. Letφ be a Schwartz function such that

0 ⩽ φ ⩽ 1, and φ = 1 on B. We have∫
(1−φ)· f j =

∫
U

(1−φ)· f j+

∫
U∁

(1−φ)·( f j+v j)−
∫

U∁
(1−φ)·v j.

(5.17)
Since lim sup ‖ f j‖∞ ⩽ lim sup ‖ f̂ j‖1 ⩽ 1, the function (1−φ) ·
f j is bounded in modulus by an absolute constant C for all
sufficiently large j, and it vanishes on B. Hence the first
integral on the right hand side of ( 5.17 ) does not exceed
C ·m(U \B) < Cε. The second integral tends to zero as j→
∞ due to (  5.13 ), while the third integral is nonnegative.
This shows that lim sup

∫
(1 − φ) · f j < Cε. Next, we have
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f j → f in the sense of tempered distributions, hence∫
f ·φ = lim

j→∞

∫
f j·φ = lim

j→∞

{
(
∫

f j−a j)+a j−
∫

(1−φ)· f j

}
. (5.18)

Since
∫

f j − a j → D′(U)−1, a j is a nonnegative scalar, and
lim sup

∫
(1 − φ) · f j < Cε, this implies that∫

f · φ > D′(U)−1 − Cε. (5.19)

On the other hand, since the function 1 − φ vanishes on
B, we have∫

f ·φ =
∫

f−
∫

B∁
(1−φ)· f ⩽

∫
f+
∫

B∁
| f | <

∫
f+ε. (5.20)

Hence (  5.19 ) and ( 5.20 ) yield that
∫

f > D′(U)−1 − (C+ 1)ε.
As this holds for any ε > 0, this shows that indeed

∫
f ⩾

D′(U)−1, and thus our claim is established.
Finally, we show that f is a Delsarte admissible func-

tion, that is, we need to establish that f (0) = 1. In the
same way as in the proof Lemma  4.8 , we can show at the
first step that we have 0 < f (0) ⩽ 1 (using the fact that
lim sup

∫
u j ⩽ 1). Hence f (0)−1 f is a Delsarte admissi-

ble function, whose integral is not less than f (0)−1D′(U)−1.
But on the other hand, f (0)−1

∫
f ⩽ D(U) ⩽ D′(U)−1 due to

the definition of the Delsarte constant D(U) and the in-
equality ( 5.4 ). Hence f (0) = 1 and f is Delsarte admissi-
ble, and moreover,

∫
f = D(U) = D′(U)−1. In particular,

we conclude that the equality (  5.9 ) holds. This completes
the proof of Lemma  5.5 . □

5.5.2. We continue to the proof of the strong linear du-
ality equality ( 5.9 ).

Proof of Theorem  5.4 . Due to Lemma  5.5 , in order to
prove the equality ( 5.9 ) it suffices to show that the
quadruple ( 5.11 ) must belong to the closure of K. Sup-
pose to the contrary that this is not the case. Since K is
convex, then the Hahn-Banach separation theorem (see
again [  Rud91 , Theorem 3.4]) yields a continuous linear
functional on the space L1(Rd) × L1(U∁) × R × R which
separates the closure of K from the quadruple (  5.11 ),
that is, there exists an element (g, h, p, q) of the space
L∞(Rd) × L∞(U∁) × R × R (again the functions in the first
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and second components are taken real-valued), and there
is a real scalar c, such that the inequality∫
Rd( f̂ −u)g+

∫
U∁

(− f −v)h+p(
∫

f −a)−q( f (0)+b) ⩽ c (5.21)
holds for every f ∈ Y, every nonnegative function u ∈
L1(Rd), every nonnegative function v ∈ L1(U∁), and for ev-
ery nonnegative scalars a, b, while at the same time

pD′(U)−1 − q > c. (5.22)
(The left hand side of ( 5.22 ) is the action of (g, h, p, q) on
the quadruple ( 5.11 ).)

In a similar way as in the proof of Theorem  4.7 , we can
show that both functions g and h are nonnegative a.e. in
their respective domains of definitionRd and U∁, and that
the scalars p, q are nonnegative. In turn, after setting u =
0, v = 0 and a = b = 0 in the inequality ( 5.21 ) it follows
(using the fact that Y is a linear space) that∫

Rd
f̂ g −

∫
U∁

f h + p
∫
Rd

f − q f (0) = 0 (5.23)

for every f ∈ Y. Hence we may assume that c = 0.
By replacing g(t) with 1

2 (g(t) + g(−t)), and similarly re-
placing h(t) with 1

2 (h(t) + h(−t)), we may assume that both
g and h are nonnegative and even functions on their re-
spective domains of definition Rd and U∁ (we note here
that −U∁ = U∁).

It will be convenient now to extend h to the whole Rd

by setting h = 0 on U. In this case, for every Schwartz
function f ∈ Y we can write (  5.23 ) as

(ĝ − h + p − qδ0)( f ) = 0. (5.24)
Using the fact that the tempered distribution ĝ − h + p −
qδ0 is real and even, the equality (  5.24 ) for all Schwartz
functions f ∈ Y implies that ĝ − h + p − qδ0 = 0.

Next we show that the scalars p, q are not only nonneg-
ative, but in fact must be strictly positive. Indeed, from
( 5.22 ) we obtain that p > 0 (since c = 0). Hence g + pδ0
is a nonzero positive measure, whose Fourier transform
satisfies ĝ + p = qδ0 + h, and as a consequence, ĝ + p = qδ0

in U. But since ĝ + p cannot vanish in any neighborhood
of the origin, this implies that q > 0.

Finally, define α = q−1(ĝ + p). Then α = δ0 + q−1h, the
function q−1h vanishes on U and is nonnegative on U∁,
and α̂ is a positive measure. Hence α is an admissible
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tempered distribution for the dual Delsarte problem. But
α̂ = q−1(pδ0+g), so that α̂ has an atom at the origin of mass
α̂({0}) = p/q. However due to ( 5.22 ) and recalling that
c = 0, we have α̂({0}) > D′(U) which gives us the desired
contradiction. □

5.5.3. Remark. Again we obtain an interesting fact as a
consequence of the proof. We may consider a smaller class
of admissible tempered distributions α by requiring that
α = δ0 + h, where h ∈ L∞(Rd) is a nonnegative even func-
tion which vanishes a.e. on U, and that α̂ is of the form
α̂ = α̂({0})δ0 + g, where g is a nonnegative even function
in L∞(Rd). Then the supremum of α̂({0}) over this smaller
class of admissible tempered distributions α still gives us
the dual Delsarte constant D′(U).

5.6. Existence of extremizers for the Delsarte prob-
lem and its dual. We say that a Delsarte admissible
function f is extremal if it satisfies

∫
f = D(U). Similarly,

a tempered distribution αwhich is admissible for the dual
Delsarte problem is called extremal if α̂({0}) = D′(U).

The existence of a Delsarte extremizer in the general
context of locally compact abelian groups was proved in
[ Ram25 ], [ BRR24 , Corollary 20]. The existence of an
extremizer for the dual Delsarte problem is shown in
[ CLS22 , Proposition 3.6].

Theorem 5.6. Let U ⊂ Rd be an open set satisfying ( 5.1 ),
( 5.2 ), ( 5.3 ). Then,

(i) The Delsarte problem admits at least one extremal
function f ;

(ii) The dual Delsarte problem admits at least one ex-
tremal tempered distribution α.

Proof. Again part  (i) follows from Lemma  5.5 and the
equality (  5.9 ) of Theorem  5.4 , which is now proved. We
therefore turn to prove part  (ii) .

Let {α j} be a sequence of tempered distributions which
are admissible for the dual Delsarte problem, and such
that α̂ j({0}) → D′(U). Lemma  4.5 implies that {α̂ j} is a
uniformly translation-bounded sequence of positive mea-
sures. So after passing to a subsequence we may as-
sume that α̂ j converges vaguely to a certain translation-
bounded positive measure, which we denote as α̂ for
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some tempered distribution α. The uniform translation-
boundedness and the vague convergence imply that α̂ j →
α̂ in the sense of tempered distributions. Hence also
α j → α in the sense of tempered distributions. Since we
have α j = δ0+ β j where β j is a positive measure supported
in the closed set U∁, it follows that the limiting tempered
distribution α must also be of the form α = δ0+ β for some
positive measure β supported in the closed set U∁. Hence
α is an admissible tempered distribution for the dual Del-
sarte problem. Moreover, since the measure α̂ j is posi-
tive and has mass α̂ j({0}) at the origin, then the vague
limit α̂ also has an atom at the origin, of mass at least
lim α̂ j({0}) = D′(U). We conclude that α is extremal for the
dual Delsarte problem. □

5.7. Relation between extremizers for the Delsarte
problem and its dual. Our next goal is to establish re-
lations between extremal functions for the Delsarte prob-
lem, and extremal tempered distributions for the dual
Delsarte problem.

5.7.1. We start with a few general observations. Let f be
any function admissible for the Delsarte problem, and let
α be any tempered distribution admissible for the dual
Delsarte problem (we assume neither f nor α to be ex-
tremal here).

First, note that the products f ·α and f̂ · α̂ are both well-
defined, since f and f̂ are continuous functions, while α
and α̂ are positive measures.

Next, we recall that the convolution f̂ ∗α̂ is well-defined.
Indeed, f̂ is a nonnegative continuous function in L1(Rd),
while α̂ is a positive translation-bounded measure (due
to Lemma  4.5 ), hence f̂ ∗ α̂ is a well-defined, positive
translation-bounded measure, which is also a locally in-
tegrable function.

We claim that also the convolution f ∗α is well-defined.
Indeed, we have:

Lemma 5.7. Let α be any tempered distribution admissi-
ble for the dual Delsarte problem. Then α is a translation-
bounded measure.

Proof. We choose and fix a Schwartz function φ satisfying
φ̂(t) ⩾ 1B(t) for all t ∈ Rd, where B is the open unit ball.
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Since α is a positive measure, we have

α(B + t) ⩽
∫
φ̂(s − t)dα(s) =

∫
e2πi〈t,x〉φ(x)dα̂(x), (5.25)

and hence

sup
t∈Rd

α(B + t) ⩽
∫
|φ(x)|dα̂(x) < +∞, (5.26)

where the last integral is finite since φ has fast de-
cay, while α̂ is a translation-bounded measure due to
Lemma  4.5 . This shows that also α is translation-
bounded. □

Hence, if f is Delsarte admissible and α is admis-
sible for the dual Delsarte problem, then f ∈ L1(Rd)
while α is a positive translation-bounded measure (due to
Lemma  5.7 ), which implies that the convolution f ∗ α is a
well-defined translation-bounded signed measure, which
is also a locally integrable function.

5.7.2. Now suppose that f and α are extremizers for the
Delsarte problem and its dual, respectively. This means
that f is a Delsarte admissible function, with

∫
f = D(U),

while α is a tempered distribution which is admissible for
the dual Delsarte problem, such that α̂({0}) = D′(U).

Theorem 5.8. Let U ⊂ Rd be an open set satisfying ( 5.1 ),
( 5.2 ), ( 5.3 ). If f and α are any two extremals for the Del-
sarte problem and its dual, respectively, then

(i) The measure α is supported on the closed set {x :
f (x) = 0}∪{0}, and as a consequence, we have f ·α = δ0

and f̂ ∗ α̂ = 1 a.e.;
(ii) The measure α̂ is supported on the closed set {t :

f̂ (t) = 0} ∪ {0}, and therefore f̂ · α̂ = δ0 and f ∗ α = 1
a.e.

Proof. If f and α are extremals then we have α̂({0})
∫

f =
D′(U)D(U) = 1. Let us recall the proof of Theorem  5.3 , and
examine the circumstances under which the inequality
α̂({0})

∫
f ⩽ 1 becomes an equality.

We fix a nonnegative Schwartz function φ with
∫
φ = 1,

such that φ̂ is nonnegative and has compact support. Let
φε(t) = ε−dφ(t/ε), then φ̂ε(x) = φ̂(εx). We can write α̂ =
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D′(U)δ0 + µ, where µ is a positive measure. Hence

( f̂ ∗ α̂)(φε) = D′(U)
∫

f̂ · φε +
∫

( f̂ ∗ µ) · φε. (5.27)

On the other hand, α = δ0 + β where β is a positive mea-
sure supported on U∁. Recalling that the Fourier trans-
form of f · α is f̂ ∗ α̂, due to Lemma  3.1 , and since we have
f (0)φ̂ε(0) = 1, this implies that

( f̂ ∗ α̂)(φε) = ( f · α)(φ̂ε) = 1 +
∫

U∁
φ̂ε(x) f (x)dβ(x) (5.28)

(we also recall that the integral on the right hand side of
( 5.28 ) is well-defined, since φ̂ε has compact support).

We now claim that the measure β is supported on the
closed set {x : f (x) = 0}, and that the measure µ is sup-
ported on the closed set {t : f̂ (t) = 0}.

To prove these two claims, we first note that β is a
positive measure supported on U∁, while f is a contin-
uous function which is nonpositive on U∁. Hence f · β is
a nonpositive measure. Since φ̂ε is a nonnegative func-
tion, this implies that the right hand side of ( 5.28 ) can-
not exceed 1. Moreover, since φ̂ε → 1 locally uniformly as
ε → 0, it follows that if β is not supported on the closed
set {x : f (x) = 0}, then the lim sup as ε → 0 of the right
hand side of ( 5.28 ) must be strictly smaller than 1.

Next, recall that f̂ ∗ µ is a positive translation-bounded
measure, which is also a locally integrable function.
Since φε is nonnegative, then

∫
( f̂ ∗ µ) · φε is nonnegative;

and since
∫

f̂ · φε → f̂ (0) = D(U) as ε → 0, the lim inf as
ε→ 0 of the right hand side of (  5.27 ) cannot be less than
D′(U)D(U) = 1. Moreover, if µ is not supported on the
closed set {t : f̂ (t) = 0} then, in a similar way to the proof
of Theorem  4.10 , it can be shown that the function f̂ ∗µ is
a.e. not less than some nonnegative continuous function
whose value at the origin is strictly positive. This implies
that the lim inf as ε → 0 of the right hand side of ( 5.27 )
must be strictly larger than 1.

However, since (  5.27 ) and ( 5.28 ) are equal, this implies
that indeed β is supported on the closed set {x : f (x) =
0}, and µ is supported on the closed set {t : f̂ (t) = 0}, for
otherwise this would lead to a contradiction.



34 M. KOLOUNTZAKIS, N. LEV, AND M. MATOLCSI

We conclude that f · α = δ0 and f̂ · α̂ = δ0. Fi-
nally, since both f and f̂ are in L1(Rd), and both α and
α̂ are translation-bounded measures, this implies using
Lemma  3.1 that f̂ ∗ α̂ = 1 a.e., and f ∗α = 1 a.e. Thus both
assertions  (i) and  (ii) are proved. □

6. The Delsarte packing bound, tiling and spectrality

6.1. The essential difference set. Let A ⊂ Rd be a
bounded measurable set of positive measure. The set

∆(A) := {t ∈ Rd : m(A ∩ (A + t)) > 0} (6.1)
is called the essential difference set of A. It is a bounded
origin-symmetric open set, that serves as the measure-
theoretic analog of the algebraic difference set A − A. In
particular, if A is an open set, then ∆(A) = A − A.

In this section we connect packing, tiling and spectral-
ity properties of a bounded measurable set A ⊂ Rd of pos-
itive measure, to the Delsarte problem for the essential
difference set U = ∆(A). We observe that this set U satis-
fies ( 5.1 ) and (  5.2 ), but not necessarily (  5.3 ), as the exam-
ple A = (0, 1) ∪ (2, 3) ⊂ R shows.

The Delsarte constant D(∆(A)) of the set U = ∆(A) sat-
isfies

D(∆(A)) ⩾ m(A), (6.2)
since the function f = m(A)−11A ∗ 1−A is Delsarte admissi-
ble, and

∫
f = m(A).

6.2. Packing. If Λ ⊂ Rd is a countable set, then we say
that A+Λ is a packing if the translated copies A+λ, λ ∈ Λ,
are pairwise disjoint up to measure zero.

Cohn and Elkies [ CE03 ] used the Delsarte problem (not
using this name though) as a method for obtaining upper
bounds for the density of sphere packings, or more gen-
erally, packings by translates of a convex, centrally sym-
metric body A ⊂ Rd, see [  CE03 , Theorem B.1].

The following theorem extends the result to the case
where A ⊂ Rd is a general bounded measurable set (see
also [ KR06 , Theorem 3] and [  BR23 , Theorem 1.1]).

Theorem 6.1. Let A ⊂ Rd be a bounded measurable set
of positive measure. Then any packing by translates of A
has density not exceeding D(∆(A))−1, that is, the reciprocal
of the Delsarte constant of the set U = ∆(A).
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Hence, any Delsarte admissible (with respect to the set
U = ∆(A)) function f , yields an upper bound (

∫
f )−1 for the

density of any packing by translates of A. As an example,
the function f = m(A)−11A ∗ 1−A yields the trivial volume
bound m(A)−1.

Note that the proof of Theorem  6.1 , as well as Theorems
 6.2 and  6.3 below, only relies on Theorem  5.3 which does
not require the condition ( 5.3 ).

Proof of Theorem  6.1 . It is well known and not hard to
show that periodic packings come arbitrarily close to the
greatest packing density, see [  CE03 , Appendix A]. Hence
it suffices to prove that if Λ is periodic and A+Λ is a pack-
ing, then the density of Λ cannot exceed D(∆(A))−1.

Indeed, if Λ is periodic then we may write Λ = L + F
where L is a lattice and F is a finite set such that (F −
F) ∩ L = {0}. Then the measure γ = |F|−1δF ∗ δ−F ∗ δL is
translation-bounded, positive and supported on F−F+L =
Λ −Λ, which is a subset of {0} ∪ ∆(A)∁ by the assumption
that A + Λ is a packing. Moreover, γ has a unit mass at
the origin and γ̂ = |F|−1 |̂δF|2 · δ̂L is a positive measure, so γ
is admissible for the dual Delsarte problem. We now ob-
serve that γ̂ has an atom at the origin of mass |F| · (det L)−1

which is exactly the density of Λ. This shows that the
dual Delsarte constant D′(∆(A)) must be at least as large
as the density of Λ. By the weak linear duality inequal-
ity (  5.4 ) this implies that the density of Λ cannot exceed
D(∆(A))−1. □

Viazovska [  Via17 ] proved that if A is the open unit ball
in R8, then the Delsarte bound D(∆(A))−1 coincides with
the density of the E8-lattice packing, showing that this
is the densest sphere packing in dimension 8. A simi-
lar result was subsequently proved also in dimension 24,
see [ CKMRV17 ]. However, note that the Delsarte bound
D(∆(A))−1 is not expected to yield the sharp estimate for
sphere packing density in every dimension, and more-
over, for certain dimensions the Delsarte bound is known
to be not sharp (see [  CDV24 ] and the references therein).

6.3. Tiling. We say that a bounded measurable set A ⊂
Rd tiles by translations, if there is a countable set Λ ⊂ Rd

such that the translated copies A + λ, λ ∈ Λ, cover the
whole space without overlaps up to measure zero.
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The following result is a direct consequence of Theo-
rem  6.1 above (see also [  KR06 , Section 3.4] and [  BR23 ,
Proposition 5.7]).

Theorem 6.2. If a bounded measurable set A ⊂ Rd tiles
the space by translations, then we have D(∆(A)) = m(A).

Proof. Indeed, a tiling by translates of A is a packing of
density m(A)−1. Hence, using Theorem  6.1 we obtain that
m(A)−1 does not exceed D(∆(A))−1. But we also have the
converse inequality (  6.2 ), so we conclude that the equality
D(∆(A)) = m(A) holds. □

6.4. Spectrality. A bounded, measurable set A ⊂ Rd is
called spectral if the space L2(A) has an orthogonal basis
consisting of exponential functions. Fuglede [  Fug74  ] fa-
mously conjectured that A is a spectral set if and only if
it can tile the space by translations. This conjecture in-
spired extensive research over the years, see [  Kol24 ] for
the history of the problem and an overview of the known
related results.

The following result is analogous to Theorem  6.2 , but
with the tiling assumption being replaced by spectrality
(see also [ KR06 , Theorem 5]).

Theorem 6.3. If a bounded measurable set A ⊂ Rd is
spectral, then D(∆(A)) = m(A).

Proof. This is a consequence of a result proved in [ LM22 ,
Theorem 3.1]. Stated using the terminology of the
present paper, the result asserts that if A is spectral, then
there exists a tempered distribution α on Rd, which is ad-
missible for the dual Delsarte problem with respect to the
set U = ∆(A), and such that α̂({0}) = m(A)−1.

This result thus implies that D′(∆(A)) ⩾ m(A)−1. In
turn, as a consequence of the weak linear duality inequal-
ity (  5.4 ), it follows that D(∆(A)) ⩽ m(A). As before, this
suffices to conclude the proof, since the converse inequal-
ity ( 6.2 ) also holds. □

6.5. Convex bodies. By a convex body A ⊂ Rd we mean
a compact convex set with nonempty interior. A major
recent result proved in [  LM22 ] states that the Fuglede
conjecture holds for convex bodies in all dimensions. That
is, a convex body A ⊂ Rd is a spectral set if and only if it
can tile the space by translations.
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If A ⊂ Rd is a convex body then the set ∆(A) is convex.
Moreover, if the convex body A is origin-symmetric, then
∆(A) is equal to the interior of the set 2A.

The next result shows that for a convex body, the con-
verse to Theorems  6.2 and  6.3 is also true: the condition
D(∆(A)) = m(A) in fact characterizes the convex bodies
A ⊂ Rd which tile the space by translations (or equiva-
lently, which are spectral).
Theorem 6.4. Let A ⊂ Rd be a convex body. The equality
D(∆(A)) = m(A) holds if and only if A tiles by translations.

This result has an interesting consequence for packing
density estimates:
Corollary 6.5. If a convex body A ⊂ Rd does not tile the
space, then the Delsarte bound D(∆(A))−1 for the greatest
packing density provides a strictly better estimate than the
trivial volume packing bound m(A)−1.

It follows that if A does not tile, then there is always a
nontrivial packing density estimate (i.e. better than the
volume packing bound m(A)−1) of the form (

∫
f )−1 for some

appropriately chosen Delsarte admissible function f .
The proof of Theorem  6.4 is based on the connection

of the problem to the concept of weak tiling, introduced
in [  LM22 ] as a relaxation of proper tiling. We say that
a bounded, measurable set A ⊂ Rd weakly tiles its com-
plement if there exists a positive, locally finite measure ν
such that 1A ∗ ν = 1A∁ a.e. This notion generalizes proper
tilings which correspond to the case where the measure ν
is a sum of unit masses.

The notion of weak tiling played a key role in the proof
of Fuglede’s conjecture for convex domains, due to the fact
that every spectral set must weakly tile its complement,
see [  LM22 , Theorem 1.5]. This result can be viewed as a
weak form of the “spectral implies tiling” part of Fuglede’s
conjecture. Note that generally, a set that weakly tiles its
complement need not tile properly (as an example, take
any spectral set which does not tile).

However, it was proved in [  KLM23 , Theorem 1.4] that
for a convex body, weak tiling implies tiling. More pre-
cisely, if a convex body A ⊂ Rd weakly tiles its comple-
ment, then A must be a convex polytope which can also
tile properly by translations. The proof is composed of
several results obtained in different papers, see [  KLM25 ,
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Section 2] for an overview of the ingredients of the proof,
the relevant references, and a simplification of part of the
proof.

We now turn to show that the condition D(∆(A)) = m(A)
indeed characterizes the convex bodies A ⊂ Rd which tile
by translations. Note that if A is a convex body, then the
set U = ∆(A) is a bounded origin-symmetric open convex
set, and hence satisfies all the three conditions ( 5.1 ), (  5.2 ),
( 5.3 ).

Proof of Theorem  6.4 . We already know that if A tiles by
translations, then the equality D(∆(A)) = m(A) holds
(Theorem  6.2 ). We need to prove the converse direction.

Assume that D(∆(A)) = m(A). Then the function f =
m(A)−11A ∗ 1−A is extremal for the Delsarte problem with
U = ∆(A). By Theorem  5.6  (ii) , the dual Delsarte prob-
lem also admits at least one extremal α. The strong lin-
ear duality equality (  5.9 ) gives us that α̂({0}) = D′(∆(A)) =
m(A)−1. Moreover, by Theorem  5.8  (ii) , the measure α̂must
be supported on the set {t : f̂ (t) = 0} ∪ {0}. However,
since f̂ = m(A)−1 |̂1A|2, the two functions f̂ and 1̂A have
the same set of zeros. It thus follows that 1̂A · α̂ = δ0.
By Lemma  5.7 , the measure α is translation-bounded, so
we may use Lemma  3.1 to conclude that 1A ∗ α = 1 a.e. In
turn, since we have α = δ0+β for some positive measure β,
this implies that 1A∗β = 1A∁ a.e., that is, A weakly tiles its
complement. Finally, [  KLM23 , Theorem 1.4] yields that
A can also tile properly by translations. □

6.6. Turán domains. Lastly, we mention another inter-
esting consequence of Theorem  6.4 in relation to the pos-
sible existence of non-Turán domains.

First we recall that for a convex bounded origin-
symmetric open set U ⊂ Rd we have

D(U) ⩾ T(U) ⩾ 2−dm(U). (6.3)
The last inequality is true since the closure of the set 1

2U is
a convex body A satisfying ∆(A) = U and m(A) = 2−dm(U),
and so the function f = m(A)−11A∗1−A is Turán admissible
and satisfies

∫
f = 2−dm(U).

As an example, let U ⊂ Rd be an open ball centered at
the origin. In this case, it is known that T(U) = 2−dm(U),
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see [  Gor01 ], [  KR03 ], [  Gab24 ]. On the other hand, in di-
mensions greater than one, a ball cannot tile by trans-
lations. Hence Theorem  6.4 yields that D(U) > T(U) =
2−dm(U), that is, the Delsarte constant of a ball is strictly
greater than the corresponding Turán constant.

Recall that it is not known whether there exists a con-
vex bounded origin-symmetric open set U ⊂ Rd which is
not a Turán domain, i.e. such that T(U) > 2−dm(U). The
following result gives a possible line of attack for con-
structing a non-Turán domain.
Corollary 6.6. Assume that there exists a convex bounded
origin-symmetric open set U ⊂ Rd, which does not tile, but
T(U) = D(U). Then U is a non-Turán domain.

Proof. Indeed, if U does not tile then by Theorem  6.4 we
have D(U) > 2−dm(U), so using the assumption that T(U) =
D(U) this implies that U is a non-Turán domain. □

In conclusion, for a convex body A ⊂ Rd, it is instructive
to inspect the chain of inequalities

m(A) ⩽ 2−dm(∆(A)) ⩽ T(∆(A)) ⩽ D(∆(A)). (6.4)
If A is non-symmetric then the first inequality is strict by
the Brunn-Minkowski inequality. If A is symmetric but
does not tile the space, then the first inequality becomes
an equality, but at least one of the other two inequlities
must be strict by Theorem  6.4 . Finally, if A tiles the space,
then all inequalities become equalities.

7. Remarks

7.1. Some authors define the Turán constant alterna-
tively as the supremum of

∫
f over all the continuous real-

valued functions f , with compact support contained in the
open set U, such that f (0) = 1 and f̂ is nonnegative. We
denote this supremum by T0(U).

It is obvious that T0(U) ⩽ T(U). The question whether
the equality T0(U) = T(U) holds or not, seems to be largely
open. It is easy to show that the equality holds if U ⊂ Rd

is a convex bounded origin-symmetric open set, or more
generally, if U ⊂ Rd is a bounded origin-symmetric open
set assumed to be strictly star-shaped (with respect to the
origin), which by definition means that the closure of λU
is contained in U for every 0 ⩽ λ < 1, see e.g. [  Mav13 ,
Theorem 1].
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Another case where the equality is known to hold is
when U ⊂ R is a bounded open set, 0 ∈ U = −U, composed
of finitely many intervals, see [ Mav13 , Theorem 2].

No example seems to be known of an open set U ⊂ Rd

of finite measure, 0 ∈ U = −U, such that T0(U) < T(U).
See also [  BRR24 , Section 5] where the question is dis-

cussed in the general context of locally compact abelian
groups.

7.2. The Turán problem and its dual were also consid-
ered by Gabardo in [  Gab24 ]. The main result [ Gab24 ,
Theorem 4] concerns the case where U is an open ball
(centered at the origin) in Rd. In this case, Gabardo con-
structed a tempered distribution α which is admissible
for the dual Turán problem, such that α̂({0}) = 2dm(U)−1.
This allowed him to conclude that α is extremal for the
dual Turán problem, and to obtain a new proof of the fact
that if U is an open ball in Rd then T(U) = 2−dm(U). It
is also noted [  Gab24 , Proposition 18] that this extremal
tempered distribution α is not a measure.

In [ Gab19 ], [  Gab20 ], Gabardo announced a result con-
cerning the factorization of positive definite functions
through convolutions in locally compact abelian groups,
which implies that the strong linear duality equality
T(U)T′(U) = 1 holds for any open set U ⊂ Rd of finite mea-
sure, 0 ∈ U = −U. To our knowledge, the proof remains
unpublished.
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