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ABSTRACT. STEINHAUS asked whether there exists a subset of the plane which, no
matter how translated and rotated, always contains exactly one point with integer
coordinates. The best result on this problem so far has been that of BECK who

showed, using harmonic analysis, that no such bounded measurable set exists.
By simplifying BECK’s method and by pushing it to its limits we improve his
result. We show that if a set is measurable and there exists a direction such that the

set is very small outside large strips parallel to the direction, then the set cannot

have the property of STEINHAUS.

1. INTRODUCTION

STEINHAUS [4, problem 59| asked if there exists a subset of the plane which, no
matter how translated and rotated, always contains exactly one lattice point, that is
a point with integer coordinates. Let us say that such a set satisfies the STEINHAUS

property.
Definition 1. A set S C R? has the STEINHAUS property if for every x € R? and

) we have

‘ cosf) —sind
for every rotation A = ( sinf) cos¥

(1) # (22N (AS +2)) =1,
where AS + 2z ={As+z: s € S}.
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SIERPINSKI [5] proved by elementary methods that no set which is bounded and
either closed or open can have the STEINHAUS property.

The best result on this problem® is due to BECK [1] who, using harmonic analysis,
proved that bounded measurable sets cannot have the STEINHAUS property.

The purpose of this note is to simplify BECK’s argument and push the harmonic
analysis method to its limits. We improve BECK’s result and show that any mea-
surable set whose area outside any strip {x € R? : |(z,u)| < R}, for some fixed
orientation u € R?, drops very fast as R — oo cannot have the STEINHAUS property
(see Theorem 1 below).

We need the following definition.

Definition 2. Let f € L'(R?) and z,u be a pair of orthogonal unit vectors in R?.
The projection of f along u is the function (defined for almost all ¢ € R)

(2) (ILf)(1) = /R F(tu + sz) ds.

Notice that T, f € L'(R) by Fubini’s theorem.

Our main result is the following.

Theorem 1. Let S C R? be a measurable set for which there exists a direction u (a
unit vector in R*) such that

(3) F(z) < exp(—Kz? log!/? x), for large z,

where K > 0 is a sufficiently large absolute constant and
Fla) = [TIL1s)(1) + (M1s)(—1)] dt

(15 is the indicator function of S).
Then S cannot have the STEINHAUS property.

Observe that F(x) above is the Lebesgue measure of the set
Sni{veR*: [(v,u)] > =z}.

The proof of Theorem 1 is based on the observation that, if S has the STEINHAUS
property, then the Fourier transform of its indicator function must have a very rich set
of zeros (Lemma 1). Standard methods involving Jensen’s formula are then used to
show that the postulated fast decrease of the set outside large strips is incompatible
with such a large number of zeros.

T learned very late that the same result had also been proved by H.T. Croft (Quart. J. Math.
Oxford Ser. (2) 33 (1982), 71-83) who used a completely different method.
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2. THE MAIN LEMMA

Denoting the indicator function of a set £/ by 15, the STEINHAUS property implies

(4) Y laspe(m,n) = 1,

m,nEL

for all z € R? and rotations A. In what follows we only assume that S satisfies (4) for
almost all z (in the sense of Lebesgue measure in R?) and for a dense set of rotations

A.

Our main lemma is the following.

Lemma 1. Let S be measurable and assume that it satisfies (4) for almost all x € R?
and for A € A, where A is a dense set of rotations. Then the Fourier transform 1s
of the indicator function 1g vanishes on all circles centered at the origin that contain
a lattice point.

Remarks:
(a) Our definition of the Fourier transform f of a function f € LY(R?) is

e = [ e f(a,y) dedy.
R2
(b) Note that for any f € L'(R?) and any non-singular 2 x 2 matrix A we have

1 ~
(5) g(r) = |detA|f(A_tx)’ for all z € R?,

for g(z) = f(Axz), where A™" is the inverse of the transpose A’ of the matrix A.

c) It is easy to see at i as the STEINHAUS property and is measurable then
It i yt 1] that if S has the S property and i ble th
it necessarily has measure 1.

We can now proceed with the proof of the main lemma.
Proof of Lemma 1. Define
falz) = 3 1s(A7H(y — 2)).

yeZ?
Notice that, since the measure of S is 1, f4 € L'([0,1]*) and is periodic with Z* as
the period lattice. We view f4 as a function on the two-dimensional torus.

Assumption (4) implies that for all A € A the function f4 is equal to 1 almost
everywhere. Therefore all its non-constant Fourier coefficients vanish. On the other

hand, for all ¢ € Z?
Fa(¢) = 1s(=A%),
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by a simple interchange of summation and integration justified by Fubini’s theorem.

Therefore, if £ # 0, we have

T3(A%) = 0,
and since this holds for all A € A, 1g is continuous and A is dense the proof is
complete. O

3. PROOF OF THE MAIN THEOREM

We shall need the following two lemmas concerning the analyticity and the number
of zeros of the Fourier transform of functions f : R — C, now considered as a function
of a complex variable:

f(z) = /Re_%i“f(:p) dz, z € C.

Lemma 2 is a simple application of Fubini’s theorem and Lemma 3 of Jensen’s formula

[3, p. 82].

Lemma 2. If/ |f(z)|eM?!l dz < oo for all M > 0 then f(z) is an entire function of
R
z.

Proof. For any contour I' C C we have

jﬁf(z) dz = ﬁ/Re—W“f(:c) dz dz

= Af(x) <f% e 2mize dz) dz,

the change of the order of integration justified by Fubini’s theorem and our assump-
tion. But the inner contour integral is 0 for all x, since the integrand is entire for all

x, therefore j{ ]?(z) dz = 0 for all . Morera’s theorem implies that f(z) is entire. [
r

Lemma 3. Let f € L'(R) N C(R) and define F(z) = /OO(|f(t)| + |f(—=t)]) dt.

Assume that )

(6) F(z) < exp(—Ka*log'?z), for large z,

where K > 0 is a constant. Then

") HeeC: fO =08 k< R} < CR)

where C(K) > 0 is a function of K with C(K) — 0 as K — oo.

?



A PROBLEM OF STEINHAUS ON LATTICE POINTS )

Proof. Integration by parts shows that the assumption of Lemma 2 clearly holds for
f, therefore f is an entire function. We may clearly assume f(0) = 1. Jensen’s
formula is then

S log & = L/%log‘ﬂ]{ew)‘ d
= Tk 2m Jo ’

o~

where r, k =1,... ,n, are the moduli of the zeros of f(z) in the disk {|z| < R}. We
have

R
#{k: r, <R/e} < > log—
rp<R/e Tk

< Zlogﬁ
k=1 Tk
= L [Tiog |F(Re)| a0
= ﬂ/o og‘f( € )‘ :
It suffices to show
(8) log ‘f(Rew)‘ < C(K)R*log™"/* R, for all large R.
We have
f R i = ‘/ —2 R ML CZ
‘f( e )‘ Rexp( wiRe ”L‘)f(l‘) x
< 27 R|z| d
< [ f(a)] do
= / e?™ e (_F'(z)) dz (since f is continuous)
0
= 27R /Oo ™R () de — e%RxF(:p)‘zo
0
) < 27R /Oo e%RxF(;v) dx + F(0).
0

Write ¢(z) = Kzlog'/? 2 and notice that

/Oo eQTRmF(x) dz < /Oo cGri=e(@))e go 4 Ok (1)
0 0

~1(47R)
= /@ 627rRx dr + O]{(l),
0

where Ok(1) is a quantity bounded by a function of K alone. An easy calculation
shows that
R

“Y47R) < C(K)——+—,
¢~ (17 R) < C(K) g
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with C'(K) decreasing to 0 as K increases to oo, which leads to

1

‘ NR2 log— /2 .
5 R exp(2rC(K)R*log™/* R) + Ok(1),

/oo e%RxF(:ﬂ) der <
0

which, together with (9) and after taking logarithms, concludes the proof of (8) and
the lemma. O

Our main result can now be proved easily.

Proof of Theorem 1: Let u € R? have unit length. The restriction of ¢ € C(R?)
along u is defined to be the function (on the real line)

(Rug)(t) = g(tu).

For any f € L'(R?) we get by an application of Fubini’s theorem

~

(10) (Ruf)(t) = (IL.A)N1), for all t € R.

Assume now that S has the STEINHAUS property. By Lemma 1 we obtain that
15 vanishes on all circles centered at the origin that contain a lattice point and by
a well known result [2, p. 19] the number of those circles with radius < R (which is
the same as the number of integers < R? representable as a sum of two squares) is

—1/2 R, for a constant ¢ > 0.

~ cR*log
If we define the continuous function

f = (Hu]-S) * @,

where ¢ is, say, the indicator function of the unit interval, then the number of zeros

of
f=(L1s)"-¢ = (R.s)- 2
in the interval [—R, R] is also at least ~ ¢R?log™"/? R. Define the function
Fla) = [ HLAE@) + (L)1) dt
and notice that it too satisfies (3) with slightly smaller K. We can now apply Lemma

3 to the function f and obtain that the number of zeros of f in [—R, R] is at most
C(K)R*log™"/? R. Choose K large enough to obtain a contradiction. [
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