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Abstract

Let A be a d x d expanding integer matrix and p : Z¢ — C be absolutely summable
and satisfy - cza p(z) = [det Al. A function f € LY (R?) is called an integral self-
affine function for the pair (A,p) if it satisfies the functional equation f(A~'z) =
ZyEZd p(y)f(x —y), a.e. (). We prove that for such a function there is always a
sublattice A of Z? such that f tiles R? with A with weight w = |Zd : A|_1 fRd f. That
is ) yea f(z=2) = w,ae. (x). The lattice A C Z% is the smallest A-invariant sublattice
of Z? that contains the support of p. This generalizes results of Lagarias and Wang
[LaW] and others, which were obtained for f and p which are indicator functions of
compact sets. The proofs use Fourier Analysis.

§0. Integral self-affine functions

Let A € My(Z) be a d X d non-singular integer matrix which is also expanding, i.e., all
its eigenvalues have modulus larger than 1. Let also p : Z¢ — C be absolutely summable
and satisfy

Z p(z) = |det Al.

reZd

We generalize the terminology of Hutchinson [Hu] and Lagarias and Wang [LaW].

Definition 1 A measurable function f : R* — C is an integral self-affine function corre-
sponding to the pair (A, p) if it has the property

JAT ) = Y o) f (- ), for ae. 2 € RY. (1)
yeZd
As an example, in dimension 1, the function f(z) = max{l —|z|,0} is an integral

self-affine function with A = [2] and

1 ifaz=0
plz)=1¢ 1/2 ifz =41
0 otherwise.

Let A = A(A,p) be the smallest A-invariant sublattice of Z? (i.e., AN C A) which
contains

Di=suppp={yez’: p(y)£0}.
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Definition 2 The complex-valued function f € Ll(Rd) tiles R? with the discrete tile set
A C R? and weight w € C if

Z flz —a)=w, ae. (z),
aEA

with the series converging absolutely.

In our definition of tiling the tiles may “overlap”. This means that we admit tilings with

weights different from 1 (even for tiles f which are indicator functions of sets), as was done
in [KLa].

The purpose of this note is to give a short proof of the following result about self-affine
functions f € L'(R%).

Theorem 1 Let [ € Ll(Rd) be an integral self-affine function corresponding to the pair
(A, p). Then f tiles R* with A(A, p) and weight

w = ‘Zd : A‘_l . f(z) dx. (2)

This generalizes a result of Lagarias and Wang [LaW], in which the result was proved
under the additional assumptions that

(i) f is the indicator function of a compact set T C R?, and

(ii) p takes the values 0 and 1 only.

In this special case the set D is called a digit set and has |det A| elements. The set 7" is then
called an integral self-affine tile for the pair (A, D) and satisfies the set-theoretic equation

AT = | J(T+d),
deD

with the translates T 4 d, d € D, overlapping at most on a set of measure 0.

The reader should consult [LaW, LaW2] where the state of our knowledge about in-
tegral self-affine tiles, as well as their uses, is discussed. Let us only mention here that an
indicator function of an integral self-affine tile 7" can be used [GM] as a scaling function of
a mutliresolution analysis for orthonormal wavelets, provided that T tiles with the lattice
Z? (at weight 1).

The following is immediate from Theorem 1. It was also proved in [LaW] under the
extra assumptions (i) and (ii) mentioned above.

Corollary 1 Let f € L'(R?) be an integral self-affine function for the pair (A, p) which is
the indicator function of some measurable set T C R? of finite measure. Then |T'| is an
integer multiple of the index ‘Zd : A(A,p)‘.

Notice that we do not require the range of p to be {0,1}.

Proof. The weight w of any tiling of f with A must obviously be an integer. Use (2).
|



It is well known [LaW] that an integral self-affine tile 7" which satisfies conditions (i)
and (ii) above tiles R? (with weight 1) by translation by some set S C Z? if and only if the
measure of 7" is positive. Regarding lattice tilings of 7', it is known now [LaW2] (and quite
hard to prove) that, whenever D is a standard digit set, i.e., whenever D is a complete set
of representatives of the cosets of Z%/AZ?, then there is a lattice I' C Z? such that 7 tiles
with I' and with weight 1. Thus Theorem 1 can be viewed as an easy version of this last
result, one in which we do not necessarily get the weight of the tiling to be 1. However,
Theorem 1 applies to much more general objects than indicator functions of compact sets
and its proof, which uses Fourier Analysis, is rather straightforward. Even when f is an
indicator function, our proof has the advantage that we do not need to worry about the
topological properties of T (as in the proof in [LaW]) beyond its measurability and finite
measure.

§1. Proof of the Theorem

Let
A={eeR!: VAEA (2,)) € 2}

be the dual lattice of A. It turns out that, if A = BZ?, for some B € My(R), then
A* = B~TZ%. We shall use the following criterion (Theorem 2) for lattice tiling (for a more
detailed proof see, for example, [K]).

The Fourier Transform we use in this paper is defined for f € L'(R?) with the normal-
ization

fé) = /Rd f(z)exp(—2mi(x,€)) dz.

Theorem 2 Assume that f € LY(RY). Then f tiles R? with a lattice A and some weight
w if and only if its Fourier Transform, f, vanishes on A* \ {0}. In this case we have

w = (vol A)~! /Rd f.

Proof. This is almost immediate if one notices that the function )7y, f(z—A) is a function
in L'(R?/A) whose non-constant Fourier coefficients are exactly the values of the Fourier
Transform of f at A*\ {0}. For the details see [K], where more applications of Theorem 2
to lattice tilings of some simple polyhedra can also be found.

u

Proof of Theorem 1. Taking the Fourier Transform of both sides of the functional
equation (1) we get

o~

FATE) = (&) - 0(0), (3)

where
1

o(€) = et A yEXZ:dp(y) exp(—27i(y, £)).

Iterating (3) we get

k-1

AT = F(O) T e(ATY¢),  for all k > 0. (4)

i=0



Observe that, since A is expanding, whenever ¢ # 0 we get ATF¢ — 00, as k — oo, and,
therefore, by the Riemann-Lebesgue lemma the left hand side of (4) tends to 0. (The fact
that we need to use the Riemann-Lebesgue lemma is the reason that we restrict ourselves
to L! functions and do not consider integral self-affine measures.)

Since A is A-invariant it follows that A* is AT-invariant and therefore for each £ € A*
we have AT/¢€ € A* for all j > 0. It follows that for all £ € A* and all j > 0

PATE) = o 3 ) = 1.
y€Zd

since p(y) # 0 implies y € A. Thus, for £ € A*\ {0}, if we take limits in (4) we obtain
f(§)=o.
By Theorem 2 we get that f tiles R? with A and weight
w = (volA)™! / f(z) dz

Rd

‘Zd : A‘_l / f(z) dz.

Rd
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