Lattice-tiling properties of integral self-affine functions

MIHAIL N. KOLOUNTZAKIS¹

April 1997

Abstract

Let A be a $d \times d$ expanding integer matrix and $\rho: \mathbf{Z}^d \to \mathbf{C}$ be absolutely summable and satisfy $\sum_{x \in \mathbf{Z}^d} \rho(x) = |\det A|$. A function $f \in L^1(\mathbf{R}^d)$ is called an *integral self-affine function* for the pair (A, ρ) if it satisfies the functional equation $f(A^{-1}x) = \sum_{y \in \mathbf{Z}^d} \rho(y) f(x-y)$, a.e. (x). We prove that for such a function there is always a sublattice Λ of \mathbf{Z}^d such that f tiles \mathbf{R}^d with Λ with weight $w = |\mathbf{Z}^d: \Lambda|^{-1} \int_{\mathbf{R}^d} f$. That is $\sum_{\lambda \in \Lambda} f(x-\lambda) = w$, a.e. (x). The lattice $\Lambda \subseteq \mathbf{Z}^d$ is the smallest A-invariant sublattice of \mathbf{Z}^d that contains the support of ρ . This generalizes results of Lagarias and Wang $[\mathbf{LaW}]$ and others, which were obtained for f and ρ which are indicator functions of compact sets. The proofs use Fourier Analysis.

§0. Integral self-affine functions

Let $A \in M_d(\mathbf{Z})$ be a $d \times d$ non-singular integer matrix which is also expanding, i.e., all its eigenvalues have modulus larger than 1. Let also $\rho : \mathbf{Z}^d \to \mathbf{C}$ be absolutely summable and satisfy

$$\sum_{x \in \mathbf{Z}^d} \rho(x) = |\det A|.$$

We generalize the terminology of Hutchinson [Hu] and Lagarias and Wang [LaW].

Definition 1 A measurable function $f: \mathbf{R}^d \to \mathbf{C}$ is an integral self-affine function corresponding to the pair (A, ρ) if it has the property

$$f(A^{-1}x) = \sum_{y \in \mathbf{Z}^d} \rho(y) f(x-y), \text{ for a.e. } x \in \mathbf{R}^d.$$
 (1)

As an example, in dimension 1, the function $f(x) = \max\{1 - |x|, 0\}$ is an integral self-affine function with A = [2] and

$$\rho(x) = \begin{cases} 1 & \text{if } x = 0\\ 1/2 & \text{if } x = \pm 1\\ 0 & \text{otherwise.} \end{cases}$$

Let $\Lambda = \Lambda(A, \rho)$ be the smallest A-invariant sublattice of \mathbf{Z}^d (i.e., $A\Lambda \subseteq \Lambda$) which contains

$$\mathcal{D} := \operatorname{supp} \rho = \Big\{ y \in \mathbf{Z}^d: \ \rho(y) \neq 0 \Big\}.$$

¹Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green St., Urbana, IL 61801. E-mail: kolount@math.uiuc.edu

Definition 2 The complex-valued function $f \in L^1(\mathbf{R}^d)$ tiles \mathbf{R}^d with the discrete tile set $A \subset \mathbf{R}^d$ and weight $w \in \mathbf{C}$ if

$$\sum_{a \in A} f(x - a) = w, \quad a.e. \ (x),$$

with the series converging absolutely.

In our definition of tiling the tiles may "overlap". This means that we admit tilings with weights different from 1 (even for tiles f which are indicator functions of sets), as was done in $[\mathbf{KLa}]$.

The purpose of this note is to give a short proof of the following result about self-affine functions $f \in L^1(\mathbf{R}^d)$.

Theorem 1 Let $f \in L^1(\mathbf{R}^d)$ be an integral self-affine function corresponding to the pair (A, ρ) . Then f tiles \mathbf{R}^d with $\Lambda(A, \rho)$ and weight

$$w = \left| \mathbf{Z}^d : \Lambda \right|^{-1} \cdot \int_{\mathbf{R}^d} f(x) \ dx. \tag{2}$$

This generalizes a result of Lagarias and Wang [LaW], in which the result was proved under the additional assumptions that

- (i) f is the indicator function of a compact set $T \subset \mathbf{R}^d$, and
- (ii) ρ takes the values 0 and 1 only.

In this special case the set \mathcal{D} is called a *digit set* and has $|\det A|$ elements. The set T is then called an *integral self-affine tile* for the pair (A, \mathcal{D}) and satisfies the set-theoretic equation

$$AT = \bigcup_{d \in \mathcal{D}} (T + d),$$

with the translates T+d, $d \in \mathcal{D}$, overlapping at most on a set of measure 0.

The reader should consult [LaW, LaW2] where the state of our knowledge about integral self-affine tiles, as well as their uses, is discussed. Let us only mention here that an indicator function of an integral self-affine tile T can be used [GM] as a scaling function of a mutliresolution analysis for orthonormal wavelets, provided that T tiles with the lattice \mathbf{Z}^d (at weight 1).

The following is immediate from Theorem 1. It was also proved in [LaW] under the extra assumptions (i) and (ii) mentioned above.

Corollary 1 Let $f \in L^1(\mathbf{R}^d)$ be an integral self-affine function for the pair (A, ρ) which is the indicator function of some measurable set $T \subset \mathbf{R}^d$ of finite measure. Then |T| is an integer multiple of the index $|\mathbf{Z}^d : \Lambda(A, \rho)|$.

Notice that we do not require the range of ρ to be $\{0,1\}$.

Proof. The weight w of any tiling of f with Λ must obviously be an integer. Use (2).

It is well known [LaW] that an integral self-affine tile T which satisfies conditions (i) and (ii) above tiles \mathbf{R}^d (with weight 1) by translation by some set $\mathcal{S} \subseteq \mathbf{Z}^d$ if and only if the measure of T is positive. Regarding lattice tilings of T, it is known now [LaW2] (and quite hard to prove) that, whenever \mathcal{D} is a standard digit set, i.e., whenever \mathcal{D} is a complete set of representatives of the cosets of $\mathbf{Z}^d/A\mathbf{Z}^d$, then there is a lattice $\Gamma \subseteq \mathbf{Z}^d$ such that T tiles with Γ and with weight 1. Thus Theorem 1 can be viewed as an easy version of this last result, one in which we do not necessarily get the weight of the tiling to be 1. However, Theorem 1 applies to much more general objects than indicator functions of compact sets and its proof, which uses Fourier Analysis, is rather straightforward. Even when f is an indicator function, our proof has the advantage that we do not need to worry about the topological properties of T (as in the proof in [LaW]) beyond its measurability and finite measure.

§1. Proof of the Theorem

Let

$$\Lambda^* = \left\{ x \in \mathbf{R}^d : \ \forall \lambda \in \Lambda \ \langle x, \lambda \rangle \in \mathbf{Z} \right\}$$

be the dual lattice of Λ . It turns out that, if $\Lambda = B\mathbf{Z}^d$, for some $B \in M_d(\mathbf{R})$, then $\Lambda^* = B^{-\top}\mathbf{Z}^d$. We shall use the following criterion (Theorem 2) for lattice tiling (for a more detailed proof see, for example, $[\mathbf{K}]$).

The Fourier Transform we use in this paper is defined for $f \in L^1(\mathbf{R}^d)$ with the normalization

$$\widehat{f}(\xi) = \int_{\mathbf{R}^d} f(x) \exp(-2\pi i \langle x, \xi \rangle) \ dx.$$

Theorem 2 Assume that $f \in L^1(\mathbf{R}^d)$. Then f tiles \mathbf{R}^d with a lattice Λ and some weight w if and only if its Fourier Transform, \hat{f} , vanishes on $\Lambda^* \setminus \{0\}$. In this case we have $w = (\operatorname{vol} \Lambda)^{-1} \int_{\mathbf{R}^d} f$.

Proof. This is almost immediate if one notices that the function $\sum_{\lambda \in \Lambda} f(x-\lambda)$ is a function in $L^1(\mathbf{R}^d/\Lambda)$ whose non-constant Fourier coefficients are exactly the values of the Fourier Transform of f at $\Lambda^* \setminus \{0\}$. For the details see $[\mathbf{K}]$, where more applications of Theorem 2 to lattice tilings of some simple polyhedra can also be found.

_

Proof of Theorem 1. Taking the Fourier Transform of both sides of the functional equation (1) we get

$$\widehat{f}(A^{\mathsf{T}}\xi) = \widehat{f}(\xi) \cdot \varphi(\xi),\tag{3}$$

where

$$\varphi(\xi) = \frac{1}{|\det A|} \sum_{y \in \mathbf{Z}^d} \rho(y) \exp(-2\pi i \langle y, \xi \rangle).$$

Iterating (3) we get

$$\widehat{f}(A^{\top k}\xi) = \widehat{f}(\xi) \prod_{j=0}^{k-1} \varphi(A^{\top j}\xi), \quad \text{for all } k \ge 0.$$
 (4)

Observe that, since A is expanding, whenever $\xi \neq 0$ we get $A^{\top k}\xi \to \infty$, as $k \to \infty$, and, therefore, by the Riemann-Lebesgue lemma the left hand side of (4) tends to 0. (The fact that we need to use the Riemann-Lebesgue lemma is the reason that we restrict ourselves to L^1 functions and do not consider integral self-affine measures.)

Since Λ is A-invariant it follows that Λ^* is A^{\top} -invariant and therefore for each $\xi \in \Lambda^*$ we have $A^{\top j}\xi \in \Lambda^*$ for all $j \geq 0$. It follows that for all $\xi \in \Lambda^*$ and all $j \geq 0$

$$\varphi(A^{\top j}\xi) = \frac{1}{|\det A|} \sum_{y \in \mathbf{Z}^d} \rho(y) = 1,$$

since $\rho(y) \neq 0$ implies $y \in \Lambda$. Thus, for $\xi \in \Lambda^* \setminus \{0\}$, if we take limits in (4) we obtain $\widehat{f}(\xi) = 0$.

By Theorem 2 we get that f tiles \mathbf{R}^d with Λ and weight

$$w = (\operatorname{vol} \Lambda)^{-1} \cdot \int_{\mathbf{R}^d} f(x) \, dx$$
$$= \left| \mathbf{Z}^d : \Lambda \right|^{-1} \cdot \int_{\mathbf{R}^d} f(x) \, dx.$$

§2. Bibliography

- [GM] K. Gröchenig and W. Madych, Multiresolution analysis, Haar bases, and self-similar tilings, IEEE Trans. Inform. Th. 38 (2), Part 2 (1992), 558-568.
- [Hu] J.E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747.
- [K] M.N. Kolountzakis, Lattice tilings by cubes: whole, notched and extended, preprint.
- [KLa] M.N. Kolountzakis and J.C. Lagarias, Tilings of the line by translates of a function, Duke Math. J. 82 (1996), 3, 653-678.
- [LaW] J.C. Lagarias and Y. Wang, Integral self-affine tiles in \mathbb{R}^n , I. Standard and non-standard digit-sets, J. London Math. Soc. (2) **54** (1996), 161-179.
- [LaW2] J.C. Lagarias and Y. Wang, Integral self-affine tiles in \mathbb{R}^n , II. Lattice tilings, J. Fourier Anal. Appl. 3 (1997), 1, 83-102.