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Abstract. We prove that any finite union P of
interior-disjoint polytopes in Rd has the Pompeiu
property, a result first proved by Williams [ Wil76 ].
This means that if a continuous function f onRd inte-
grates to 0 on any congruent copy of P then f is identi-
cally 0. By a fundamental result of Brown, Schreiber
and Taylor [ BST73 ] this is equivalent to showing that
the Fourier–Laplace transform of the indicator func-
tion of P does not vanish identically on any 0-centered
complex sphere in Cd. Our proof initially follows the
recent one of Machado and Robins [ MR23 ] who are
using the Brion–Barvinok formula for the Fourier–
Laplace transform of a polytope. But we simplify this
method considerably by removing the use of proper-
ties of Bessel function zeros. Instead we use some
elementary arguments on the growth of linear com-
binations of exponentials with rational functions as
coefficients. Our approach allows us to prove the non-
existence of complex spheres of any center in the zero-
set of the Fourier–Laplace transform. The planar
case is even simpler in that we do not even need the
Brion–Barvinok formula. We then go further in the
question of which sets can be contained in the null
set of the Fourier–Laplace transform of a polytope by
extending results of Engel [ Eng23 ] who showed that
rationally parametrized hypersurfaces, under some
mild conditions, cannot be contained in this null-
set. We show that a rationally parametrized curve
which is not contained in an affine hyperplane in Cd

cannot be contained in this null-set. Results about
curves parametrized by meromorphic functions are
also given.
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1. Introduction

The Pompeiu problem [ Pom29a ,  Pom29b ,  Zal80 ] is to de-
termine if a bounded measurable subset E ⊆ Rd has the
Pompeiu property:

Definition 1.1. The measurable set E ⊆ Rd has the Pom-
peiu property if the only continuous function f on Rd

whose integrals on all congruent copies of E vanish is the
zero function.

If D is the unit ball in Rd with indicator function 1D

then the Fourier transform of 1D, i.e., 1̂D(ξ) =
∫

D
e−2πiξ·x dx,

for ξ ∈ Rd, has rotational symmetry, is real-valued and it
does have at least one zero. If A = (a, 0, . . . , 0), with a > 0,
is such a zero it follows that the integrals of the function
f (x) = e−2πiA·x on every translate of D are 0, without f being
0. So D (and any ball) does not have the Pompeiu property.

It has been conjectured that the ball is the only bounded
convex body in Rd that does not have the Pompeiu prop-
erty. In [ Wil76 ] it is even conjectured that the ball is the
only body homeomorphic to the ball that does not have
the Pompeiu property. These conjectures are still open,
but several large classes of sets are known which do have
the Pompeiu property [ Zal92 ].

A very important result [ BST73 ,  Wil76 ] regarding this
problem is that a bounded measurable set E ⊆ Rd does
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not have the Pompeiu property if and only if the Fourier–
Laplace transform of its indicator function 1E

(1) 1̂E(z) =
∫
Rd

1E(x)e−2πiz·x dx, z ∈ Cd,

does not vanish on any complex sphere C0,R (definition fol-
lows). Notice that since E is bounded the function 1̂E(z) is
entire.
Notation: In this paper the inner product x · y of two
vectors in Rd or Cd is always the quantity x · y = x1y1 +
x2y2 + · · · + xdyd (no conjugation).
Definition 1.2. A complex sphere (complex circle if d = 2)
of center a = (a1, . . . , ad) ∈ Cd and radius R ∈ C \ {0} is the
subset of Cd

(2)
Ca,R =

{
z = (z1, . . . , zd) ∈ Cd : (z1 − a1)2 + · · · + (zd − ad)2 = R2

}
.

Remark 1.1. Let us stress here that the “radius” R of
the complex spheres related to Pompeiu’s problem by the
results in [ BST73 ,  Wil76 ] is allowed to be a (non-zero)
complex number. Such a complex sphere C0,R contains no
points in Rd if R < R. It may be possible to eliminate the
case of complex radii in relation to the Pompeiu problem
(see discussion in [ MR23 ]) but we do not have to do so in
this paper.

The reason we are excluding the case R = 0 is that in
this case the structure of the variety is very different. For
instance, in dimension d = 2 the variety z2

1+ z2
2 = 0 consists

of the two complex lines z1 = ±iz2.
Let us finally observe that every complex sphere C0,R in
Cd, d ≥ 2, contains a complex circle of the same radius,
centered at 0, in C2

× {0}d−2.

In this paper we build on the recent approach in [ MR23 ]
who used the Brion–Barvinok [ Bri88 ,  Bar92 ] formula for
the Fourier–Laplace transform of a convex polytope in Rd

in order to show that this Fourier–Laplace transform does
not vanish on any complex sphere centered anywhere in
Cd and, therefore, that any such polytope has the Pompeiu
property (only 0-centered spheres matter for the Pompeiu
problem).

Our innovation is that we do not use at all properties of
the zeros of Bessel functions as is done in [ MR23 ]. This al-
lows us to give a much simpler proof with a clear potential
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for generalization to other varieties on which the Fourier–
Laplace transform of a polytope cannot vanish identically.
(These varieties do not necessarily mean something for
the Pompeiu problem.)

Our main theorem concerning the Pompeiu problem is
the following:
Theorem 1.1. The Fourier–Laplace transform of the indi-
cator function of any finite union of bounded convex poly-
topes with disjoint interiors cannot vanish on any complex
sphere of any center in Cd and any non-zero radius in C.
Therefore such a region has the Pompeiu property.

The vanishing set of the Fourier–Laplace transform of
the indicator function of a domain Ω ⊆ Rd is a much-
studied object of huge importance in analysis and geom-
etry [  Ber80 ,  Kob94 ,  Kol04 ,  KW99 ], though often it is only
its part contained in Rd that is studied. The possibility to
exclude certain varieties from the zero set is therefore po-
tentialy very useful and we anticipate that our approach
will be useful to other problems as well.

This work is also related to the recent paper [ Eng23 ],
where a method similar to ours has already been given
to show the non-existence of spheres in the the Fourier
zeros of polytopes. In [ Eng23 ] the author is mainly inter-
ested in identifying two polytopal regions (finite unions
of interior-disjoint convex polytopes) whose Fourier–
Laplace Transform is identical on some subset E ofCd (see
our Corollary  3.2 ). The results obtained therein concern
the case where E is a rationally parametrized hypersur-
face in Cd satisfying certain mild conditions, and also im-
ply that such a surface cannot be contained in the null
set of the Fourier–Laplace transform of a polytopal re-
gion. Our results do not concern identifying two polytopal
regions from the equality of their Fourier–Laplace trans-
form on a subset (which is the main concern of [ Eng23 ]).
We only deal with what sets can be contained in the null
set of the Fourier–Laplace transform of a polytopal re-
gion. In contrast to [ Eng23 ] we, however, require vanish-
ing of the Fourier–Laplace Transform only on a rationally
parametrized curve which is not contained in an affine hy-
perplane in Cd. (If the curve is real then it is enough that
it is not contained in an affine hyperplane of Rd.) Our re-
sults also cover curves which are parametrized by higher
order meromorphic functions and are not restricted to the
rational case (though the cleanest results for polytopes
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are still in the rational case). We achieve this by invoking
a theorem [ Bro76 , Corollary of Theorem 1] (see also our
Theorem  3.2 ) that uses the growth of entire functions in
order to show linear independence with coefficients from
entire functions of smaller order. In [ Eng23 ] the same
theorem is reproved for the case of order 0 essentially.

1.1. Structure of the paper. It all comes down to the
null set of functions of the form

(3)
N∑

j=1

g j(z)e f j(z), z ∈ C,

where the f j, g j are analytic functions, either entire or
meromorphic, and where the growth of g j is restricted
in relation to the growth of the f j. By the Brion–
Barvinok formula ( 17 ), ( 18 ) the Fourier–Laplace trans-
form of a convex polytope, when restricted on a rationally
parametrized curve, is given by exactly such an expres-
sion, where the g j and f j are rational functions.

In §  2 we develop our main tools about the zero sets of
functions of the form ( 3 ). In Theorem  2.1 we first examine
the simple case where γ(t) is a complex circle and the g j
are polynomials, which is followed by Corollary  2.1 where
γ(t) is still a circle but the coefficients are allowed to be
rational functions on γ(t). Theorem  2.1 leads us to the
Fourier–Laplace zeros of a measure consisting of multi-
ples of arc-length on line segments not being able to van-
ish identically on a circle (Theorem  2.2 ). This is essen-
tially the Pompeiu property for polygonal regions (Corol-
lary  2.2 ). In general dimension d ≥ 2 it is Corollary  2.1 

that leads to the Pompeiu property for polytopal regions
(Theorem  2.3 , which is one step before Theorem  1.1 ) via
the Brion–Barvinok formula (  17 ), ( 18 ). We treat the case
d = 2 separately from the general case d ≥ 2 as in this
case the situation is much simpler and does not require
the Brion–Barvinok formula.

In § 3 then we leave the realm of circles and extend our
discussion to curves defined by a rational or meromorphic
parametrization. We show in Theorem  3.1 that such a
curve γ(t), parametrized by meromorphic functions, can-
not be in the zero set of

(4)
N∑

j=1

q j(z)
p j(z)

e−2πiv j·z, z ∈ Cd,
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where q j, p j are polynomials in Cd and v j ∈ Rd, unless
some strong relations are satisfied by the parametriza-
tion functions of γ(t) or the q j vanish identically on γ(t). In
Corollary  3.1 we show that this implies that no function
( 4 ) can vanish identically on a rationally parametrized
curve which is not contained in an affine hyperplane in
Cd, unless the q j themselves all vanish on the curve. This
in turn implies (Corollary  3.2 ) that the Fourier–Laplace
transform of a polytopal region cannot vanish identically
on a rationally parametrized curve which is not contained
in an affine hyperplane. In § 3.1 we reprove our results
about the absence of circles in the null set using the the-
orems developed in § 3 . We also exhibit a simple curve in
C2 which is not rationally parametrizable yet can also not
be contained in the null set of functions of the form dealt
with in Corollary  3.1 .

2. Vanishing on circles and growth of analytic
functions

Lemma 2.1. For complex circles (d = 2) we have the
parametrization

Ca,R = {a + (R cos t)e1 + (R sin t)e2 : t ∈ C}(5)
= {(a1 + R cos t, a2 + R sin t) : t ∈ C}

where e1 = (1, 0), e2 = (0, 1), a = (a1, a2).

Proof. It is clear that Ca,R contains the right hand side of
( 5 ). To prove the reverse containment it suffices to show
that whenever w2

1 + w2
2 = 1, with w1,w2 ∈ C, then there is

t ∈ C such that w1 = cos t, w2 = sin t. For this it is enough
to show that cos t is onto C and this reduces to solving a
quadratic (not satisfied by 0) to find eit.

□

The following lemma is an easy calculation and is the
basis of the method we are using in this section of the
paper.

Lemma 2.2. If z = x + iy with x fixed and y→ +∞ then

(6) |cos z| =
(1
2
+ o(1)

)
ey, Arg cos z = −x + o(1).
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And if A,B ∈ C and w = A sin z + B cos z then

|w| =
(1
2
+ o(1)

)
|B + iA|ey,(7)

Arg w = −x +Arg (B + iA) + o(1).

Proof. We have, for z = x + iy,

cos z =
eiz + e−iz

2
=

1
2

ey−ix(1 + e−2y+2ix),

from which ( 6 ) is immediate for x held fixed and y→ +∞.
As for ( 7 ), simple calculation shows:

w = e−ix+y

(
B + iA

2
+

(B − iA) e−2(y+ix)

2

)
and, again, fixing x ∈ R and letting y→ +∞we obtain ( 7 ).

□

We will use Lemma  2.2 in proving that certain linear
combinations of exponential functions with polynomial or
rational function coefficients cannot vanish on certain va-
rieties of Cd. The first, easier case, which already exhibits
the basic method, is the case of polynomial coefficients.
(See also [ KP17 ] for the case of constant coefficients.)
Theorem 2.1. Let V = {v1, . . . , vN} ⊆ Rd be a finite set of
points in Rd, d ≥ 2, such that their orthogonal projections
onto R2

× {0}d−2 are all different and let p j(x) be N polyno-
mials in x ∈ Cd. Let also

γ(t) = a + R cos t e1 + R sin t e2, 0 ≤ t < 2π,

denote a curve (here R ∈ C \ {0}, a ∈ Cd and e1 =
(1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0)). Suppose finally that the
function

(8) ϕ(t) =
N∑

j=1

p j(γ(t))e−2πiv j·γ(t)

vanishes identically in t ∈ [0, 2π). Then all p j(γ(t)) vanish
identically in t ∈ C.

Proof. Observe first that if we translate the set V by τ ∈
Rd the function ϕ gets multiplied by e−2πiτ·γ(t), so the zeros
of ϕ are not altered. This allows us to assume that one
point of V (say v1) satisfies:
(9) |v1 · e1 + i(v1 · e2)| >

∣∣∣v j · e1 + i(v j · e2)
∣∣∣,
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for every j > 1. In other words, there is a single orthogonal
projection of the points v j ∈ Rd onto R2

× {0}d−2 of largest
Euclidean length.

Next, by analytic continuation, we conclude that ϕ(t) =
0 for all t ∈ C.

Finally, we may remove from ( 8 ) all the summands for
which pi vanishes identically on the complex circle γ(C)
and assume, contrary to what we want to prove, that at
least one term remains in ( 8 ). We will obtain a contradic-
tion.

The j-th exponent in ( 8 ) is
−2πiv j · γ(t) = −2πi(v j · a + Rv j · e1 cos t + Rv j · e2 sin t),

so that, as Re t is held fixed and Im t → +∞, we have, by
Lemma  2.2 ,∣∣∣−2πiv j · γ(t)

∣∣∣ = (
π
∣∣∣R∣∣∣ + o(1)

) ∣∣∣v j · e1 + i(v j · e2)
∣∣∣ eIm t

and
Arg (−2πiv j ·γ(t)) = −Re t+Arg (−2πi(Rv j ·e1+i(Rv j ·e2))+o(1).

Fixing Re t = Arg (−2πi(Rv1 · e1+ i(Rv1 · e2)) we achieve that
for large enough Im t

Re (−2πiv1 · γ(t)) ≥
(
π
∣∣∣R∣∣∣ + o(1)

) ∣∣∣v1 · e1 + i(v1 · e2)
∣∣∣eIm t,

while, at the same time, for j ≥ 2 we have
Re (−2πiv j · γ(t)) ≤ (1 − ϵ)

(
π
∣∣∣R∣∣∣ + o(1)

) ∣∣∣v1 · e1 + i(v1 · e2)
∣∣∣eIm t,

for some ϵ > 0.
And by the following Lemma  2.3 the first term in ( 8 ),

whose exponential factor grows doubly exponentially in
Im t and dominates all the others, is multiplied by p1(γ(t)),
a polynomial in cos t, sin t, which does not vanish iden-
tically and which can only affect the doubly exponential
growth by an exponential.
Lemma 2.3. If z ∈ C tends to infinity along a straight line,
that is z = b + ta, with a, b ∈ C, a , 0, t ∈ R, and t → +∞
then any exponential sum

S(z) =
N∑

j=1

c jeµ jz, c j, µ j ∈ C,

which is not identically 0 in t ∈ R cannot decay more than
exponentially in t. In other words, for some c ∈ R

lim sup
t→+∞

ect
|S(b + ta)| > 0.
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Proof. We can absorb the constant b into the coefficients c j
of S(z) so we can assume that z = ta. We can of course as-
sume a = 1 (by replacing the µ j with aµ j) so we are looking
at the function

S(t) =
N∑

j=1

c jeµ jt =

N∑
j=1

c jetReµ jeitImµ j .

This sum is dominated by the terms for which Reµ j is
maximal. Let us say that this happens for j ∈ J ⊆
{1, . . . ,N} and assume (possibly renumbering) that 1 ∈ J.
Collecting these terms together their sum can be written
as

T(t) = etReµ1

∑
j∈J

c jeitImµ j ,

and we have
(10) C1|T(t)| ≤ |S(t)| ≤ C2|T(t)|

for two positive constants C1,C2 that do not depend on t.
In particular (  10 ) implies that T(t) does not vanish iden-
tically since S(t) does not.

The trigonometric polynomial

q(t) =
∑
j∈J

c jeitImµ j

is a non-zero almost periodic function so L =
lim supt→∞

∣∣∣q(t)
∣∣∣ > 0. This implies that

lim sup
t→∞

e−tReµ1 |T(t)| > 0,

and the same is true for S(t) due to ( 10 ). □

Lemma  2.3 together with the clear fact that all factors
p j(γ(t)) can grow at most exponentially in t implies that
the term for j = 1 is dominant in ( 8 ) so that the vanishing
of ( 8 ) is impossible, a contradiction.

□

We can also allow for rational coefficients.

Corollary 2.1. Let V = {v1, . . . , vN} ⊆ Rd be a finite set of
points in Rd, d ≥ 2, such that their orthogonal projections
onto R2

× {0}d−2 are all different and let p j(x), q j(x), j =
1, 2, . . . ,N, be 2N polynomials in x ∈ Cd. Let also

γ(t) = a + R cos t e1 + R sin t e2, 0 ≤ t < 2π,
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denote a complex circle in Cd. Here R ∈ C \ {0}, a ∈ Cd and
e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0). Assume that none of the
functions p j(γ(t)), q j(γ(t)), j = 1, 2, . . . ,N, vanish identically
for t ∈ [0, 2π), so that the function

(11) ϕ(t) =
N∑

j=1

q j(γ(t))
p j(γ(t))

e−2πiv j·γ(t), 0 ≤ t < 2π,

is defined for all but finitely many points in [0, 2π). Then
ϕ(t) cannot vanish identically in t.

Proof. It follows from our assumptions the no finite prod-
ucts of the functions p j(γ(t)), q j(γ(t)), j = 1, 2, . . . ,N, van-
ish identically for t ∈ [0, 2π). Multiplying ( 11 ) by the
product of the denominators P(t) =

∏N
j=1 p j(γ(t)) gives

that
∑N

j=1 q j(γ(t))P(t)e−2πiv j·γ(t) is identically zero for 0 ≤
t ≤ 2π, which contradicts Theorem  2.1 , as the functions
q j(γ(t))P(t) do not vanish identically.

□

2.1. No circles in the Fourier zeros of polytopes. Let
us start with the Pompeiu problem in dimension 2. This
case is simpler than the case of general dimension since
we do not need the Brion–Barvinok formula ( 17 ), ( 18 ).
Theorem 2.2. Suppose I j are different straight line seg-
ments in R2, j = 1, 2, . . . ,N, and c1, . . . , cN ∈ C \ {0}. Let µ
be the measure µ =

∑N
j=1 c jδI j, where δI j is arc-length on I j.

Then µ̂ cannot vanish identically on any complex circle in
C2.

Proof. Let the unit vectors u1, . . . ,uK ∈ R2, K ≤ N, be all
the different directions of the I j and apply the differential
operator

D = ∂u1 . . . ∂uK

to µ, which we view as a tempered distribution. Suppose
the line segment I has endpoints a and b, and is of direc-
tion u1 (from a to b). Then

DδI = ∂u2 · · · ∂uK(δa − δb) = ∂u2 · · · ∂uKδa − ∂u2 · · · ∂uKδb,

and
D̂δI(x) = (−2πi)K−1(x · u2) · · · (x · uK) e(−a · x)(12)

− (−2πi)K−1(x · u2) · · · (x · uK) e(−b · x).

(Here e(x) = e2πix.)
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Summing over the different line segments in µ we ob-
tain for ν = Dµ

(13) ν̂(x) =
∑
v∈V

pv(x)e(−v · x),

where V is the set of endpoints of the I j (once each) and
pv(x) is the polynomial which arises if we add up (with the
corresponding coefficients) all terms arising in the corre-
sponding equations ( 12 ) over all segments I j that have v
as a vertex. For every occurence of equation (  12 ) we have
K− 1 non-collinear unit vectors. This implies that pv(x) is
always homogeneous of degree K − 1. (We omit from (  13 )
those v for which pv(x) is the zero polynomial.) Notice also
that ν is not the zero distribution as the differential op-
erator D translates to multiplication by a polynomial on
the Fourier side and cannot kill µ since µ̂, a continuous
function on R2, is not supported on subspaces and the ze-
ros introduced by D are a finite union of straight lines in
R2.

Assume now that ν̂(x) vanishes on all points

γ(t) = a + R cos t e1 + R sin t e2

= (a1 + R cos t, a2 + R sin t), 0 ≤ t < 2π,

for some R ∈ C \ {0}, a = (a1, a2) ∈ C2. By Theorem  2.1 all
pv(γ(t)) must vanish identically in t. But pv(x) is a homoge-
neous polynomial of two variables, so, by the fundamental
theorem of algebra, it factors over C as a product of linear
factors

pv(x) = pv(x1, x2) =
K−1∏
j=1

(c jx1 + d jx2),

so γ(C) ⊆
{
z ∈ C2 : pv(z) = 0

} should be contained in a union
of complex lines inC2, which clearly it is not, as this would
imply a linear relation between cos t and sin t.

We have proved that all polynomials pv in (  13 ) are iden-
tically zero, which means that ν = Dµ ≡ 0, and this is
impossible as mentioned above.

□

Corollary 2.2. The Fourier–Laplace transform of the in-
dicator function of any polygonal region (not necessarily
convex or even connected) cannot vanish on a complex cir-
cle. Therefore every such region has the Pompeiu property.
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Proof. If we differentiate the indicator function of this re-
gion along a direction which is not parallel to any of the
sides we get a measure as in Theorem  2.2 and the zero
set of the Fourier Transform only increases with the dif-
ferentiation.

□

Remark 2.1. Corollary  2.2 is true even of the Fourier–
Laplace transform of any function that is locally constant
on such a region (i.e. the level sets of this function are
polygonal regions), not necessarily equal to 1 everywhere
in the region as the indicator function is.

For general dimension d ≥ 2 we can now show that a
polytopal region has the Pompeiu property.

Theorem 2.3. Let P ⊆ Rd be a d-dimensional polytope and
e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0). Suppose that all points
in V(P), the set of vertices of P, project orthogonally onto
different points of R2

× {0}d−2. Let N(P)⊆ Cd be the null set
of the Fourier–Laplace transform of the indicator function
of the polytope P. Then, N(P) does not contain any complex
circle

Ca,R = {a + R cos t · e1 + R sin t · e2 : t ∈ C)}(14)
⊆ a + C2

× {0}d−2

for any a ∈ Cd,R ∈ C \ {0}.
The same is true if P is a finite union of interior-disjoint

polytopes.

Proof. The proof follows from Corollary  2.1 , using the
Brion–Barvinok formula for the Fourier–Laplace Trans-
form of the indicator function of a d-dimensional polytope.
Given a d-dimensional polytope P of Rd with a vertex set
V(P), one can define for each element of V(P), call it v, its
tangent cone, denote it Kv, as :
(15) Kv := {v + λ(x − v)|x ∈ P, λ ≥ 0}.

This is a pointed cone with apex v and it has a set of gen-
erators, call them wv

1, ...,w
v
m, so that it can also be written

as Kv = {v + λ1wv
1 + ... + λmwv

m|λ j ≥ 0}. Each wv
k is a 1-

dimensional edge of P, emanating from v. When m = d,
we say that the cone is simplicial and so we can define its
determinant as:
(16) det Kv := |det(wv

1, ...w
v
d)|.
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It is also known that every pointed cone can be triangu-
lated into simplicial cones with no new generators, which
means a collection Kv,1, ..,Kv,Mv of simplicial cones with
disjoint interiors such that Kv =

⋃
j≤Mv

Kv, j. The Brion–
Barvinok [ Bri88 ,  Bar92 ,  MR23 ] formula is:

(17) 1̂P(z) =
∑

v∈V(P)

qv(z)
pv(z)

e−2πi v·z,

whenever no denominator pv(z) vanishes, where

(18)
qv(z)
pv(z)

=

Mv∑
j=1

∣∣∣det Kv, j

∣∣∣
(2πi)d (wv

j,1 · z) · · · (wv
j,d · z)

.

If P is a finite union of interior-disjoint polytopes P =⋃J
j=1 P j then 1P =

∑J
j=1 1P j and taking the Fourier–Laplace

Transform we conclude that P still satisfies (  17 ) with (  18 ),
where now V(P) is the totality of the vertices of the P j,
written once each, and Mv is the total number of simpli-
cial cones emanating from vertex v, over all polytopes that
share v as a vertex.

From the form of ( 18 ) it follows that the denominator
pv(z) can be taken to be a product of linear factors of the
form w · z. First we have to make sure that the denomina-
tors do not vanish identically on Ca,R. This is indeed true
as such a vanishing would require that some w · z would
vanish identically on Ca,R, where w = (w1, . . . ,wd) ∈ Rd is
one of the one-dimensional edges of the polytope (and a
difference of two vertices of the polytope). This is equiva-
lent to
0 = w · (a+R cos t · e1+R sin t · e2) = w ·a+Rw1 cos t+Rw2 sin t

for all t ∈ C. By our assumption on the unique projection
of the vertices of P onto R2

× {0}d−2 it follows that w1,w2
cannot both be 0, so this equation contradicts the linear
independence over C of the functions 1, cos t, sin t.

At the same time, the numerator qv(z) can be taken to
be a homogeneous polynomial. Since we care about the
vanishing of ( 17 ) on Ca,R we may discard all fractions in
( 18 ) for which qv(z) vanishes identically on Ca,R. We as-
sume that no term remains in ( 17 ) and we arrive at a
contradiction. By the homogeneity of both qv(z) and pv(z)
it follows that qv(z)/pv(z) vanishes on all points of CCa,R
on which ( 17 ) is valid, i.e., on all points out of the hyper-
planes w · z = 0 appearing in the denominators of ( 18 ).
Since these hyperplanes do not cover Ca,R, as explained in
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the previous paragraph, it follows that 0 is an accumula-
tion point of the zeros of qv(z) (for all v). By the continuity
of 1̂P(z) we obtain that this function vanishes at 0, a con-
tradiction since 1̂P(0) = |P| (the volume of P).

Thus the requirements of Corollary  2.1 (that all frac-
tions appearing in ( 11 ) do not vanish identically on Ca,R)
are satisfied and we conclude that 1̂P(z) does not vanish
identically on Ca,R.

□

We can now complete the proof of Theorem  1.1 .

Proof of Theorem  1.1 . The Pompeiu property is invariant
under orthogonal transformations so by applying an ap-
propriate orthogonal transformation to our set we may
assume that all its vertices project orthogonally onto dif-
ferent points in R2

× {0}d−2. If our set does not have the
Pompeiu property then the Fourier–Laplace transform of
its indicator function must contain some complex sphere
C0,R. This complex sphere contains a complex circle in
C2
× {0}d−2. But this is impossible by Theorem  2.3 . □

3. Curves parametrized by meromorphic functions

Theorem 3.1. Let V = {v1, . . . , vN} ⊆ Rd be a finite set of
points inRd, d ≥ 2, and let p j(x), q j(x) ∈ C[x], j = 1, 2, . . . ,N,
be N polynomials in x ∈ Cd. Let also

γ(t) = (r1(t), . . . , rd(t)), 0 ≤ t ≤ 1,

denote a complex curve in Cd parametrized by functions

r j(t) =
a j(t)
b j(t)
, j = 1, 2, . . . , d,

where a j(t), b j(t) are entire functions (of finite order) of t ∈
C, and let 0 ≤ ρ < ∞ denote the maximum order of all
a j(t), b j(t).

Assume that none of the functions p j(γ(t)), q j(γ(t)), j =
1, 2, . . . ,N, vanish identically for t ∈ [0, 1], so that the func-
tion

(19) ϕ(t) =
N∑

j=1

q j(γ(t))
p j(γ(t))

e−2πiv j·γ(t), 0 ≤ t < 1,

is defined for all but finitely many points in [0, 1].
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Then ϕ(t) cannot vanish identically in t unless some
non-trivial linear combination of the r j(t) (with complex
coefficients) is a polynomial in t of degree ≤ ρ.

Proof. We will use the following result with d = 1.
Theorem 3.2 (Corollary of Theorem 1 in [ Bro76 ]). Let
f1(z), . . . , fm(z) be meromorphic functions of z ∈ Cd. Then
exp( f1), . . . , exp( fm) are linearly dependent over the ring of
entire functions of order ≤ ρ if and only if, for some 1 ≤
k < l ≤ m, fk(z) − fl(z) ∈ C[z] with total degree at most ρ.

If the meromorphic function ϕ(t) vanishes identically
for t ∈ [0, 1] then it vanishes on all t ∈ C that are not poles
of some p j(γ(t)) or some rk(t). Write

q j(γ(t))
p j(γ(t))

=
Q j(t)
P j(t)

,

with Q j(t),P j(t) entire, of order ≤ ρ, having no common
zeros. The entire function P(t) =

∏N
j=1 P j(t) can also not

vanish identically on [0, 1]. Multiplying the identityϕ(t) =
0 by P(t) we obtain, for some entire functions Q̃ j(t) . 0 of
order ≤ ρ,

(20) 0 =
N∑

j=1

Q̃ j(t)e−2πiv j·γ(t), t ∈ C.

We now apply Theorem  3.2 to ( 20 ). It follows that for some
1 ≤ k < l ≤ N we have that

−2πi(vk − vl) · γ(t) is a polynomial of degree ≤ ρ.
Writing 0 , w = −2πi(vk − vl) this means that

w1r1(t) + · · · + wdrd(t) is a polynomial of degree ≤ ρ,
as we had to show.

□

In the important case of rationally parametrized curves
we have the following.
Corollary 3.1. Let V = {v1, . . . , vN} ⊆ Rd be a finite set of
points inRd, d ≥ 2, and let p j(x), q j(x) ∈ C[x], j = 1, 2, . . . ,N,
be N polynomials in x ∈ Cd. Let also

γ(t) = (r1(t), . . . , rd(t)), 0 ≤ t ≤ 1,

denote a complex curve in Cd parametrized by rational
functions r j(t), j = 1, 2, . . . , d, which is not contained in
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any affine hyperplane of Cd (translate of some (d − 1)-
dimensional C-subspace).

Assume that none of the functions p j(γ(t)), q j(γ(t)), j =
1, 2, . . . ,N, vanish identically for t ∈ [0, 1], so that the func-
tion

(21) ϕ(t) =
N∑

j=1

q j(γ(t))
p j(γ(t))

e−2πiv j·γ(t), 0 ≤ t < 1,

is defined for all but finitely many points in [0, 1].
Then ϕ(t) cannot vanish identically in t.

Proof. The r j(t) are quotients of polynomials which are en-
tire functions of order 0, so, by Theorem  3.1 , for some
1 ≤ k < l ≤ d we must have

−2πi(vk − vl) · γ(t) = C,

a constant. But this implies that γ([0, 1]) is contained in
the affine hyperplane{

x ∈ Cd : (vk − vl) · x =
Ci
2π

}
,

in contradiction to our assumption. □

The following result specializes Corollary  3.1 to
Fourier–Laplace transforms of polytopal regions.
Corollary 3.2. Suppose γ(t), t ∈ [0, 1], is a curve
parametrized by rational functions with complex coeffi-
cients, which is not contained in any affine hyperplane
of Cd. If P is a polytopal region then its Fourier–Laplace
transform cannot vanish identically on γ(t), t ∈ [0, 1].

In particular, the conclusion is true if γ([0, 1]) ⊆ Rd and
γ([0, 1]) is not contained in any (real) affine hyperplane of
Rd.

Proof. As explained in the proof of Theorem  2.3 and for-
mulas ( 17 ) and ( 18 ) the Fourier–Laplace transform of a
polytopal region P, is of the form

(22)
∑

v

qv(z)
pv(z)

e−2πiv·z.

Corollary  3.1 tells us that this function cannot vanish on
γ([0, 1]) as soon as we can prove that all qv(z), pv(z) do not
vanish identically on γ([0, 1]). There is no doubt about
the pv(z) which, according to ( 18 ), are products of linear
factors and γ([0, 1]) is not contained in any hyperplane,
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by assumption. Then, as we did in the proof of Theorem
 2.3 , we throw away all summands where qv(z) vanishes
identically on γ([0, 1]) and assume that nothing remains,
in order to reach a contradiction.

Were the homogeneous polynomial qv(z) to vanish iden-
tically on γ([0, 1]) it would not be a constant, hence we
would have qv(0) = 0 and also qv(z) would vanish on
Cγ([0, 1]) minus the hyperplanes on which some pv(z) van-
ishes. By the continuity of the Fourier–Laplace trans-
form at 0 we obtain then that 1̂P(0) = 0 which is a contra-
diction since 1̂P(0) = |P| > 0. Therefore some summands in
( 22 ) do remain which do not vanish identically on γ([0, 1])
and Corollary  3.1 proves what we want.

To see the last remark about real curves, notice that if
the curve γ([0, 1]) ⊆ Rd is not contained in an affine sub-
space of Rd then its difference set γ([0, 1])− γ([0, 1]) spans
Rd over the reals. But this implies that γ([0, 1]) − γ([0, 1])
spansCd over the complex numbers so that γ([0, 1]) cannot
be contained in an affine hyperplane of Cd. □

3.1. Some specific curves.

3.1.1. Circle. Using Theorem  3.1 we can give an alterna-
tive proof of Theorem  2.3 . As in our previous proof on p.

 12 we deduce that we have

1̂P(z) =
∑

v∈V(P)

qv(z)
pv(z)

e−2πiv·z,

when no denominator pv(z) vanishes. Restricting z3 =
· · · = zd = 0 we want to show that the above function of
z1, z2 does not vanish on a circle. We can use either the
trigonometric parametrization ( 14 ) or the well-known ra-
tional parametrization

Ca,R =

{
a +

1 − t2

1 + t2 e1 +
2t

1 + t2 e2 : t ∈ C \ {±i}
}
.

We use the rational parametrization first. By Corollary
 3.1 , with d = 2, and with the curve γ(t)

r1(t) = a1 +
1 − t2

1 + t2 ,

r2(t) = a2 +
2t

1 + t2 ,

being the circle in question we obtain our contradiction
since γ(C \ {±i}) is not contained in a one-dimensional
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affine subspace of C2 (no linear combination of r1(t), r2(t)
is a constant).

If we use the trigonometric parametrization ( 14 ), we
conclude that some non-trivial linear combination of the
functions

r1(t) = a1 + R cos t,
r2(t) = a2 + R sin t,

must equal a polynomial of t of degree at most 1 (as the
trigonometric functions are entire of order 1). Again this
is impossible (the function t is not a trigonometric polyno-
mial).

3.1.2. Not rationally parametrized. Next we give an ex-
ample of a curve in R2 which cannot be rationally
parametrized, yet can serve as a curve such that no
Fourier–Laplace transform of a polytopal region can van-
ish identically on it. There are of course many other ex-
amples.
Lemma 3.1. If p(x, y) ∈ C[x, y] is not the zero polynomial
then it cannot vanish identically on the curve
(23) γ(t) = (t2, sin t), t ∈ [0, 1].

Proof. One may invoke the fact that all entire algebraic
functions must be polynomials (easily seen as a conse-
quence of Picard’s great theorem). Here we give an el-
ementary proof.

Write p(x, y) =
∑N

j=0 p j(x)y j for some p j(x) ∈ C[x]. Sup-
pose p(t2, sin t) = 0 for all t ∈ [0, 1]. This leads to the equa-
tion

0 =
N∑

j=0

p j(t2) sin j t, (all t ∈ C)

for some polynomials p j(t) ∈ C[t]. By a method similar to
that used in the proof of Theorem  2.1 we can prove that
this implies that all p j(t) are identically 0. More concretely
writing t = −is and letting s→ +∞ we have

0 =
N∑

j=0

p j(−s2)
1

(2i) j (e
s
− e−s) j

=

N∑
j=0

p j(−s2)
1

(2i) j (e
js +O(e( j−1)s)),
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and from this, working successively from j = N down
to j = 0, it easily follows that all p j ≡ 0, which implies
p(x, y) ≡ 0. □

The curve (  23 ) inR2 cannot be rationally parametrized.
If it could be rationally parametrized then it would also
be an algebraic curve [ Cox18 , Chapter 3, §3, Implicitiza-
tion], meaning that there exists a polynomial 0 . p(x, y) ∈
C[x, y] such that p(t2, sin t) = 0 for all t. From Lemma  3.1 

this implies that p(x, y) ≡ 0, a contradiction.
Suppose now that a function of the form ( 19 ) vanishes

identically on γ([0, 1]). It follows from Lemma  3.1 that
none of the fractions q j(γ(t))/p j(γ(t)) in ( 19 ) vanish iden-
tically in t. By Theorem  3.1 , with ρ = 1, it follows then
that

−2πi(vk − vl) · γ(t) = At + B,

for some A,B ∈ C, k , l, and for all t ∈ [0, 1]. By the linear
independence of the functions 1, t, t2, sin t this implies that
A = B = 0, vk = vl, which contradicts the fact that all v j
are distinct. So vanishing on this curve is impossible for
such functions (and therefore for Fourier–Laplace trans-
forms of indicator functions of polytopal regions). This is
a curve which is not covered by results in [ Eng23 ] as it is
not rationally parametrizable.

We have shown the following.

Theorem 3.3. If P is a polygonal region then its Fourier–
Laplace transform cannot vanish identically on ( 23 ).
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