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Abstract

A conjecture of Fuglede states that a bounded measurable set Q C R?, of measure 1, can tile
R? by translations if and only if the Hilbert space L?(Q2) has an orthonormal basis consisting of
exponentials ey (z) = exp 2mi(\, x). If  has the latter property it is called spectral. Let Q be a
polytope in R? with the following property: there is a direction € € S?~! such that, of all the
polytope faces perpendicular to &, the total area of the faces pointing in the positive £ direction
is more than the total area of the faces pointing in the negative £ direction. It is almost obvious
that such a polytope 2 cannot tile space by translation. We prove in this paper that such a
domain is also not spectral, which agrees with Fuglede’s conjecture. As a corollary, we obtain a
new proof of the fact that a convex body that is spectral is necessarily symmetric, in the case
where the body is a polytope.

Let ©Q be a measurable subset of R%, which we take for convenience to be of measure 1. Let also
A be a discrete subset of R?. We write

ex(z) = exp2mi(\z), (AzeR?),
Ey = {e,\ T AE A} - LQ(Q).

The inner product and norm on L?(Q) are

(f. 9o = /Q £7. and |3 = /Q 2

Definition 1 The pair (2, A) is called a spectral pair if E is an orthonormal basis for L?(2). A set
Q will be called spectral if there is A C R? such that (2, A) is a spectral pair. The set A is then called
a spectrum of €.

Example: If Q; = (—1/2,1/2)? is the cube of unit volume in R? then (Qg,Z?) is a spectral pair
(d-dimensional Fourier series).

We write Br(z) = {y € R?: |z —y| < R}.

Definition 2 (Density)
The discrete set A C R? has density p, and we write p = dens A, if we have

uniformly for all z € R?.

We define translational tiling for complex-valued functions below.
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Definition 3 Let f : R — C be measurable and A C R? be a discrete set. We say that f tiles with
A at level w € C, and sometimes write “f + A = wR" | if

Z f(z —X) =w, for almost every (Lebesgue) = € R, (1)
AEA

with the sum above converging absolutely a.e. If @ C R? is measurable we say that Q + A is a tiling
when 1g + A = wR?, for some w. If w is not mentioned it is understood to be equal to 1.

Remark 1
If fe L'(RY), f >0, and f+ A = wR? then the set A has density

dens A = l.

If

The following conjecture is still unresolved in all dimensions and in both directions.

Conjecture: (Fuglede [F74]) If Q@ C R? is bounded and has Lebesgue measure 1 then L?(2) has
an orthonormal basis of exponentials if and only if there exists A € R? such that Q + A =R is a
tiling.

Fuglede’s conjecture has been confirmed in several cases.

1. Fuglede [F74] shows that if Q tiles with A being a lattice then it is spectral with the dual
lattice A* being a spectrum. Conversely, if 2 has a lattice A as a spectrum then it tiles by
the dual lattice A*.

2. If Q is a convex non-symmetric domain (bounded, open set) then, as the first author of the
present paper has proved [K00], it cannot be spectral. It has long been known that convex
domains which tile by translation must be symmetric.

3. When € is a smooth convex domain it is clear that it admits no translational tilings. losevich,
Katz and Tao [IKT] have shown that it is also not spectral.

4. There has also been significant progress in dimension 1 (the conjecture is still open there as
well) by Laba [La, Lb]. For example, the conjecture has been proved in dimension 1 if the
domain 2 is the union of two intervals.

In this paper we describe a wide class of, generally non-convex, polytopes for which Fuglede’s
conjecture holds.

Theorem 1 Suppose ) is a polytope in R? with the following property: there is a direction & € S

such that
> ot () #0.

The finite sum is extended over all faces Q; of Q which are orthogonal to § and o*(€;) = o (),
where o(SY;) is the surface measure of Q; and the + sign depends upon whether the outward unit
normal vector to ); is in the same or opposite direction with &.

Then € is not spectral.



Such polytopes cannot tile space by translation for the following, intuitively clear, reason. In any
conceivable such tiling the set of positive-looking faces perpendicular to & must be countered by
an equal area of negatively-looking ¢-faces, which is impossible because there is more (say) area of
the former than the latter.

The following corollary is a special case of the result in [KO00], which says that all spectral
convex domains are symmetric.

Corollary 1 If Q) is a spectral convex polytope then it is necessarily symmetric.

Proof. If Q is spectral, then, from Theorem 1 the area measure of €2 is symmetric (see [S] for the
definition of the area measure).

This implies that € is itself symmetric, as the area measure determines a convex body up
to translation [S, Th. 4.3.1], and therefore 2 and — which have the same surface measure are
translates of each other.

O

It has been observed in recent work on this problem (see e.g. [K00]) that a domain (of volume
1) is spectral with spectrum A if and only if | )25|2 + A is a tiling of Euclidean space at level 1. By
Remark 1 this implies that A has density 1.

By the orthogonality of ey and e, for any two different A and p in A, it follows that
Xa(A—p) =0. (2)

It is only this property, and the fact that any spectrum of {2 must have density 1, that are used in
the proof.

Proof of Theorem 1.

The quantities P,Q, N, ¢ and K, which are introduced in the proof below, will depend only on the
domain Q. (The letter K will denote several different constants.)

Suppose that A is a spectrum of €. Define the Fourier transform of xq as

o = [ e
Q

By an easy application of the divergence theorem we get

ilnl Joq i

where v(x) = (vi(x),...,v4(z)) is the outward unit normal vector to 9Q at = € 9Q and do is the
surface measure on 0.

) = e2”<x’"><1,u<w>>da<x>, n#0,

From the last formula we easily see that for some K > 1

IVxa(n)| < In| > 1. (3)

K
Inl’
Without loss of generality we assume that £ = (0,...,0,1). Hence

xa(t€) = —.l /(99 e 2™y, (1) do(x).
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Now it is easy to see that each face of the polytope other than any of the ;s contributes O(t~2)
to xq(t§) as t — oco. Therefore

K

SRSt (4)

Xﬂtg Ze 27rz)\t* )S

where )\; is the value of x4 for x = (x1,...,24) € ;.

Now define
= 0" (Q)e PN teR.
K3
f is a finite trigonometric sum and has the following properties:

(i) f is an almost-periodic function.
(ii) f(0) # 0 by assumption. Without loss of generality assume f(0) =
(iii) |f'(t)] < K, for every t € R.

By (i), for every € > 0 there exists an £ > 0 such that every interval of R of length ¢ contains a
translation number 7 of f belonging to e:

sup| (¢ +7) = F(B)] < ¢ )

(see [B32]).

Fix € > 0 to be determined later (e = 1/6 will do) and the corresponding ¢. Fix the partition
of R in consecutive intervals of length ¢, one of them being [0, ¢]. Divide each of these (-intervals
into N consecutive equal intervals of length ¢/, where

N> 6K/ d— 1'
€

In each /¢-interval there is at least one %—interval containing a number 7 satisfying (5). For
example, in [0, /] we may take 7 = 0 and the corresponding %—interval to be [0,¢/N].

Define the set L to be the union of all these %-intervals in R. Then L£ is a copy of L on the
rg-axis. Construct M by translating copies of the cube [0,¢/N]?¢ along the zg4-axis so that they
have their z4-edges on the %—intervals of L&.

The point now is that there can be no two As of A in the same translate of M, at distance
D > 2K from each other. Suppose, on the contrary, that

)\1,)\26A, |)\1—)\2| > D, )\1,)\2€M+77.

Then A\ = 1€+ n+ n1, A2 = t2€ + 1+ 19, for some ty,to € L, 11,12 € R? with

Iml, !nz\<—v <—

Hence, A1 — Ao = (t1 — t2)§ + 11 — 12 and an application of the mean value theorem together with
(2) and (3) gives

xa((ty — t2))] < || m —n2l.
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From (4) we get

K
’f(tl — t2)’ < 3K‘7}1 — 772‘ + — < 2e.
t1 — o

Now, since t1,t2 € L, there exist 71, 7o satisfying (5) so that

J4
|T1 *751’,‘7’2 *t2| < N

and hence (by (iii))

£ = m) = = )], | — ) = flt1 — )] < K < e

Therefore

2¢

V

| f(t1 — t2)|
1£O)] = [£(0) = f(=m)| = [f(=72) = f(1 — 72)]
—|f(r1 —72) — f(r1 —t2)| = |f(11 —t2) — f(t1 — t2)|

> l—e—€e—€e—e.

v

It suffices to take e = 1/6 for a contradiction.

Therefore, as the distance between any two As is bounded below by the modulus of the zero
of Xo that is nearest to the origin, there exists a natural number P so that every translate of
M contains at most P elements of A and, hence, there exists a natural number @) (we may take
@ = 2N P) so that every translate of

l
RE + [0, 17
contains at most () elements of A.
It follows that A cannot have positive density, a contradiction as any spectrum of  (which has

volume 1) must have density equal to 1.
O
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