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Abstract

Suppose that A ⊆ Z is a finite set of integers of diameter D = maxA − min A.
Suppose also that B ⊆ Z is such that A ⊕ B = Z, that is each n ∈ Z is uniquely
expressible as a + b, a ∈ A, b ∈ B. We say then that A tiles the integers if
translated at the locations B and it is well known that B must be a periodic set
in this case and that the smallest period of B is at most 2D. Here we study the
relationship between the diameter of A and the least period P(B) of B. We show
that P(B) ≤ c2 exp(c3

√
D log D

√
log log D) and that we can have P(B) ≥ c1D

2,
where c1, c2, c3 > 0 are constants.

Notation.
Let G be an abelian group denoted additively.
If A,B ⊆ G we write

A+B = {a+ b : a ∈ A, b ∈ B}.

We also write A+ b in place of A + {b} to denote a translate of set A.
If in the set A + B every element is written uniquely as a + b, with a ∈ A and b ∈ B

we may write A⊕B in place of A+B.
If A,B,E ⊆ G and E = A ⊕ B we say that A tiles E when translated by B (and

similarly that B tiles E when translated by A). We also say that A⊕ B is a tiling of E
by A (or B). Sets A for which there is B ⊆ G such that G = A⊕B are called tiles.
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For every positive integer n we write [n] = {0, 1, . . . , n− 1}. Subsets of [n] will also
be viewed as subsets of Zn = Z/(nZ), the additive group of residues modn.

For any integer n and a set X ⊆ G we write

nX = {nx : x ∈ X}.

A set B ⊆ G is called periodic if there exists a nonzero g ∈ G such that B + g = B.
Such a g is then called a period of B and clearly the set of all periods plus 0 forms a,
possibly trivial, subgroup of G. In case B ⊆ Z, is a periodic set of integers, its least
positive period is denoted by P(B). The set B is then clearly a union of congruence
classes modP(B) and we can write

B = B̃ ⊕ P(B)Z,

where B̃ ⊆ [P(B)Z].

1 Introduction and results

It has long been known (see e.g. [7]) that, when G = Z is the integer group, A⊕ B = Z

and A ⊆ Z is a finite set, then B is necessarily periodic. We are interested in the case
when we know the diameter D of the tile A, and ask how large can the period of a tiling
by A be. (The period of a tiling by a finite set A when translated by B is the quantity
P(B).) In [7] it is proved that every such tiling has period at most 2D.

The main quantity of interest is defined below.

Definition 1 If D is a positive integer we write T (D) for the largest integer k such that
there exists A ⊆ {0, . . . , D} and B ⊆ Z with P(B) = k and A⊕ B = Z.

It has been noted by some authors (e.g. [2]) that no tilings A ⊕ B = Z are known
with P(B) > 2D and A ⊆ {0, . . . , D}. So apparently the state of knowledge regarding
the function T (D) is

2D ≤ T (D) ≤ 2D,

as it is easy to see that 2D can be achieved for the tile A = {0, D} which tiles with the
set of translates B = {0, . . . , D − 1} + (2D)Z.

In this paper we improve these bounds somewhat, at least in the asymptotic sense.

Theorem 1 There are absolute constants c1, c2, c3 > 0 such that, for D > 1,

c1D
2 ≤ T (D) ≤ c2 exp(c3

√
D logD

√
log logD).

Theorem 1 follows directly from Theorems 2 and 3 below.

Theorem 2 There is a constant c1 > 0 such that for all D > 1 there are tilings X⊕Y = Z

with X ⊆ {0, . . . , D} and
P(Y ) ≥ c1D

2.
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Theorem 3 There are constants c2, c3 > 0 such that, for all D > 1, if A ⊕ B = Z is a
tiling and A ⊆ {0, . . . , D} then

P(B) ≤ c2 exp(c3
√
D logD

√
log logD). (1)

Remarks.

1. In Theorem 2 we have not been able to construct a set X which tiles only with long
periods. This would be very interesting as this could be a finitary and translational
analog of aperiodic tiling, the ability that is of a set of tiles to tile space but only
aperiodically [3].

2. There is a theorem of de Bruijn [1, Theorem 1] whose proof can be used to prove
Theorem 2. De Bruijn constructs a non-periodic tiling in certain abelian groups.
With proper choices of the parameters of his proof one can get, for arbitrarily large
N , a cyclic group ZN to be non-periodically tiled by a subset of it of diameter at
most αN1/2, where α > 0 is a constant. This is the essential ingredient for the proof
of Theorem 2, as is shown by Lemma 1 below. We think our proof is more intuitive
(but a more general problem is studied in [1]).

3. The largest part of the proof of Theorem 3 appears also in an argument by Granville
in [5].

4. As pointed out to the author by S. Konyagin and an anonymous referee, and as
proved independently by I. Ruzsa in [8], Theorem 3 (and, consequently, Theorem
1) is not sharp.Working a more carefully on the least common multiple instead
of the product (see the proof of Theorem 3 below) one gets the upper estimate
c4 exp(c5

√
D logD), for some positive constants c4 and c5.

5. I expect the lower bound in Theorem 1 to be closer to the true order of magnitude
of T (D) than the upper bound.

Tiling the integers with a long period is equivalent to tiling a long finite cycle in a
non-periodic way, as the following easy lemma claims.

Lemma 1 Suppose A ⊆ [M ], M a positive integer, and that B ⊆ Z has period M :
B = B̃ ⊕MZ, where B̃ ⊆ [M ] and B̃ is viewed also a set in the cyclic group ZM . Then
A⊕B = Z and M = P(B) if and only if A⊕ B̃ = ZM and B̃ is not a periodic set in ZM.

Proof. Suppose that A ⊕ B = Z. It follows that A ⊕ (B̃ ⊕MZ) = Z hence A ⊕ B̃ =
Z/MZ = ZM . If t ∈ {1, . . . ,M − 1} and B̃ = B̃+t in ZM then B = (B̃+t)+MZ = B+t
which contradicts the fact that M is a minimal period for B. Conversely, suppose that
A ⊕ B̃ = ZM and that B̃ is not a periodic set in ZM . Then A ⊕ B = A ⊕ B̃ ⊕MZ =
[M ] ⊕ MZ = Z is a tiling of period M . Furthermore, by the previous argument if B
has a smaller period t ∈ {1, . . . ,M − 1} it follows that B̃ has t as a period in ZM , a
contradiction.
2
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However, it is not possible to have non-repetitive tilings of intervals with tiles which
are very short compared to the interval. Essentially, in any tiling of an interval by a tile of
diameter D the length of the interval is at most 2D, otherwise there is a smaller sub-tiling.
This fact is probably responsible for some researchers being unaware of “complicated”
tilings (such as those claimed by Theorem 2), as one tends to think of tilings of the
integers which are created by first tiling an interval and then repeating the tiling of that
interval in order to tile the integer line.

Theorem 4 If 0 ∈ A∩B, n > 1, A⊕B = [n] as subsets of Z, and maxA > maxB then
A is periodic as a subset of Zn.

Remark.
Under the assumptions of Theorem 4 maxA 6= maxB, as the two sets cannot have two
elements in common (0 and their common maximum) without violating unique represen-
tation in A⊕ B. So one of maxA, maxB is larger.

Corollary 1 If A ⊆ {0, . . . , D}, 0 ∈ A ∩ B, A ⊕ B = [n] is a tiling in Z and n > 2D
there is t < n such that t | n and A⊕ (B ∩ [t]) = [t] is already a tiling.

Proof of Corollary 1. Since n − 1 = maxA + maxB it follows that maxB > maxA
and, by Theorem 4 with the roles of A and B reversed, B = B + t in Zn, for some
t ∈ {1, . . . , n− 1}, t | n. From this it follows that A⊕ (B ∩ [t]) = [t] is also a tiling in Z.
2

2 Proofs

Proof of Theorem 2. By Lemma 1 it suffices to construct, for all D larger than a certain
number D1, a set A ⊆ {0, . . . , D} and a non-periodic set B ⊆ ZM , such that A⊕B = ZM

is a tiling and M ≥ c6D
2, where c6 > 0 is a constant that will be specified later in the

proof. The constant c1 then is taken small enough so as to have T (D) ≥ c1D
2 even for

D ≤ D1.
Assume that D > D1 = 105 and pick p and q two distinct primes in the range

D/200 ≤ p, q ≤ D/50, for example. Two such primes always exist. Let M = 2 · 3 · 5 · p · q,
so that M ≥ c6D

2 = 30
2002D

2. The group ZM is isomorphic to Z3p × Z5q × Z2, and we
visualize it as a parallelogram Q in three dimensions with Z3p along the x-axis, Z5q along
the y-axis and Z2 along the z-axis, and keep in mind that opposite x and y edges are
identified and that “moving” distance 1 upwards from the upper level brings one back to
the lower level.

We define A as being the 3 × 5 rectangle on the xy-plane with corner at 0,

A = {(i, j, 0) : 0 ≤ i < 3, 0 ≤ j < 5},

as is shown in Figure 1. Now we observe that A can tile the group Q non-periodically, as
shown in Figure 2. To obtain the tiling shown in Figure 2, first tile Q by A in the usual
way, i.e. with B equal to the subgroup generated by the elements of Q: (3, 0, 0), (0, 5, 0)
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Figure 1: The group Z3p × Z5q × Z2

and (0, 0, 1). Then, in the bottom level of the tiling shift one of the columns along the x
direction, say the second one as shown, by the vector (1, 0, 0), and shift the second row
in the upper level (one which is parallel to the y direction) by the vector (0, 1, 0).

The set B is therefore given by B = L∪U (lower and upper part) and L = {(i, j, 0)},
where j takes all values in < 5 >⊆ Z5q and i takes all values in < 3 >⊆ Z3p, except when
j = 5 in which case i takes all values in < 3 > +1 ⊆ Z3p. Similarly U = {(i, j, 1)}, where
i takes all values in < 3 >⊆ Z3p and j takes all values in < 5 >⊆ Z5q, except when i = 3,
in which case j takes all values in < 5 > +1 ⊆ Z5q.

It is clear that B is not periodic. Indeed, if t = (i, j, k) ∈ Q \ {0} is a period then it
must belong to B as 0 ∈ B. If t ∈ L then it must belong to the group < (3, 0, 0) > but
U shifted by any of these non-zero elements does not go into U , because the second row
shifted by such an element does not go into another row. If t ∈ U then U + t ought to be
equal to L but it is clearly not.

Fix now a group isomorphism ψ : Q→ ZM and define

X = ψ(A), Y = ψ(B).

Clearly X⊕Y = ZM is a tiling and Y is not a periodic set in ZM , as both these properties
are invariant under group isomorphisms. It remains to find the diameter of X, which of
course depends on the choice of the isomoprhism ψ. Choose then the isomorphism

ψ(i, j, k) = i(2·5q)+j(2·3p)+k(3p5q) mod M, (i = 0, . . . , 3p−1, j = 0, . . . , 5q−1, k = 0, 1),

which maps A to the set X ⊆ {0, . . . , 20q + 24p}. Hence the set X has diameter at most
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Figure 2: A non-periodic tiling by A

44
50
D ≤ D whereas M ≥ c6D

2.
2

Remarks.

1. In our construction for the proof of Theorem 2 the tile X has constant cardinality
15.

2. There is nothing magical about the choice of the primes 2, 3 and 5 in the proof of
Theorem 2. Any three different primes distinct from p and q could be used, but this
does not allow one to get a larger order of magnitude for the lower bound.

Proof of Theorem 3. Suppose that A ⊆ {0, . . . , D}, D < M , and that A ⊕ B̃ = ZM ,
for some B̃ ⊆ ZM . We will show that if M is large then B̃ is periodic. The Theorem
follows using Lemma 1.

We use the cyclotomic polynomials which are the irreducible polynomials Φs(x), s =
1, 2, . . ., defined by the equation

xn − 1 =
∏
s|n

Φs(x),
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valid for all n = 1, 2, . . .. Equivalently Φs(x) is the minimal polynomial of any primitive
s-th root of unity. The degree of Φs(x) is φ(s), the Euler function, i.e. the number of
t ∈ {1, s} which are coprime to s.

For B̃ to be periodic we must show the existence of t ∈ ZM \ {0} such that B̃ = B̃+ t.
Equivalently, writing for any finite set of integers E

E(x) =
∑
n∈E

xn,

we must ensure that
B̃(x) = xtB̃(x) mod xM − 1.

This is equivalent to
xM − 1 | (xt − 1)B̃(x). (2)

On the other hand, the fact that A⊕ B̃ is a tiling of ZM is equivalent to

A(x)B̃(x) = 1 + x+ x2 + · · · + xM−1 mod xM − 1,

which is equivalent to

xM − 1 | A(x)B̃(x) − xM − 1

x− 1
, (3)

which implies that all M-th roots of unity except 1 are roots ofA(x) or B̃(x). Equivalently,
we must have that for each d | M , d > 1, the cyclotomic polynomial Φd(x) divides A(x)
or B̃(x). And, similarly, (2) is equivalent to having all cyclotomic polynomials Φd(x), for
d |M , d > 1, divide xt − 1 or B̃(x).

Hence, for t to be a period of B̃, it suffices that all cyclotomic Φd(x), for d | M ,
d > 1, that divide A(x) also divide xt − 1. Let now Φs1(x), . . . ,Φsk

(x) be all cyclotomic
polynomials Φs(x) with s > 1 that divide A(x), written once each and numbered so that
1 < s1 < s2 < · · · < sk. Since deg Φs = φ(s) it follows that

φ(s1) + · · · + φ(sk) ≤ degA(x) ≤ D. (4)

But [4, p. 267]

φ(n) ≥ c4
n

log log n
, (n ≥ n0), (5)

where c4 can be taken equal to e−γ − ε and n0 is a constant (ε > 0 can be as small
as we please if we enlarge n0). Multiplying the above inequality by log logn and taking
logarithms we get

logφ(n) + log log logn ≥ log c4 + log n

and hence
log φ(n) ≤ logn ≤ 2 logφ(n), (n > n1 > n0), (6)

where n1 is a constant.
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We have

k∑
i=1

si =
∑

si≤n1

si +
∑

si>n1

si

≤ n2
1 +

∑
si>n1

(e−γ + ε)φ(si) log log si (from (5))

≤ n2
1 + (e−γ + ε)D log log sk (from (4))

≤ n2
1 + (e−γ + ε)D(log 2 + log logD) (from (6))

≤ (e−γ + 2ε)D log logD, (for D > D2)

where D2 is a positive constant.
From the fact that the si are different integers and the inequality

s1 + · · · + sk ≤ (e−γ + 2ε)D log logD, (D > D2)

proved above it follows that

k ≤ c5
√
D log logD, (D > D2)

(where c5 is a positive constant) hence

k∏
i=1

si ≤ ((e−γ + 2ε)D log logD)k

≤ exp(2c5
√
D logD

√
log logD), (D > D3) (7)

where we used: log ((e−γ + 2ε)D log logD) ≤ 2 logD for D > D3, a constant.
Define now t =

∏k
i=1 si, so that all cyclotomic polynomials that divide A(x) are also

divisors of xt − 1. From (7) it follows that (2) holds and, therefore, t is a period of B̃, if
only t < M . But B̃ is assumed to be non-periodic so

M ≤ c2 exp(c3
√
D logD

√
log logD), (8)

as we had to prove, where c3 = 2c5 and c2 > 1 is taken large enough to make sure that
(1) holds for all D ≤ D3 as well.
2

Proof of Theorem 4. We use the following result by Long [6, Lemma 1].

Theorem A Suppose n > 1, 0 ∈ A∩B and A⊕B = [n]. Then there is an integer m ≥ 2,
m | n, and sets E,D ⊆ [n/m], such that E ⊕D = [n/m], 0 ∈ E ∩D, and

A = mE ⊕ [m], B = mD

or
A = mD,B = mE ⊕ [m].
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Suppose now that n > 1 is minimal such that Theorem 4 fails for n and let A,B ⊆ [n],
0 ∈ A ∩ B, be such that maxA > maxB, A⊕ B = [n] and A is not periodic as a subset
of Zn. Now Theorem A applies and let m,E,D be as in the conclusion of it. If m = n
it follows that A = [n], B = {0}, so that A is periodic as a subset of Zn. If m < n then
n > n/m > 1 hence Theorem 4 holds for the integer n/m.

Since E⊕D = [n/m] is a tiling it follows (see remark after Theorem 4) that maxE 6=
maxD and there are now two cases: (i) maxE > maxD, and (ii) maxD > maxE.

In case (i) max(mE + [m]) > max(mD) hence A = mE + [m]. Since Theorem 4 holds
for the integer n/m it follows that E is periodic as a subset of Zn/m with some period
t ∈ {1, . . . , n/m− 1}, which implies that A is periodic as a subset of Zn with period
mt ∈ {1, . . . , n− 1}.

In case (ii) max(mD) > max(mE + [m]) hence A = mD. By Theorem 4 again we get
that D is periodic as a subset of Zn/m with some period t ∈ {1, . . . , n/m− 1}, and A is
therefore periodic as a subset of Zn with period mt ∈ {1, . . . , n− 1}.

In both cases we conclude that our theorem applies for n, hence it is true for all n.
2

Acknowledgment: I would like to thank the anonymous referees for their thorough
work.
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